

Rogers Labs, a division of The Compatibility Center LLC

7915 Nieman Rd. Lenexa, KS 66214 Phone / Fax (913) 660-0666

47CFR Paragraph 15.247 FHSS and Industry Canada RSS-GEN Issue 5 and RSS-247 Issue 3 Application For Grant of Certification

Model: A04438

2402-2480 MHz (DSS) Frequency Hopping Spread Spectrum License Exempt Intentional Radiator

FCC ID: IPH-04438 IC: 1792A-04438

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

Test Report Number: 240304 Test Date: March 4, 2024

Authorized Signatory: FDR-eu

Patrick Powell Rogers Labs, a division of The Compatibility Center LLC FCC Designation: US5305 ISED Registration: 3041A

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 1 of 42

TABLE OF CONTENTS2
REVISIONS4
EXECUTIVE SUMMARY
OPINION / INTERPRETATION OF RESULTS5
EQUIPMENT TESTED
Equipment Operational Modes9
Equipment Function9
Equipment Configuration10
APPLICATION FOR CERTIFICATION11
TEST SITE LOCATIONS
UNITS OF MEASUREMENTS 12
ENVIRONMENTAL CONDITIONS13
STATEMENT OF MODIFICATIONS AND DEVIATIONS
APPLICABLE STANDARDS14
INTENTIONAL RADIATORS
Antenna Requirements14
TEST PROCEDURES
AC Line Conducted Emission Test Procedure15
Radiated Emission Procedure15
Antenna Port Conducted Emission Test Procedure15
Diagram 1 Test arrangement for power-line conducted emissions16
Diagram 2 Test arrangement for radiated emissions of tabletop equipment17

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 2 of 42

	ngement for radiated emissions tested in Semi-Anechoic ite (OATS)	
Diagram 4 Test arra	ngement for Antenna Port Conducted emissions	1
Restricted Bands of	Operation	2
Table 1 Radiated En	nissions in Restricted Frequency Bands Data Mode 2, BT BI	R (GFSK)2
Summary of Results	for Radiated Emissions in Restricted Bands	2
General Radiated Er	nissions Procedure	2
Table 2a General Ra	diated Emissions Data – Worst Case (Horizontal Polarizatio	on)2
Table 2b General Ra	adiated Emissions Data – Worst Case (Vertical Polarization)	2
Summary of Results	for General Radiated Emissions	2
Operation in the Ban	nd 2400 – 2483.5 MHz	2
Figure 1 Plot of Tran	nsmitter Emissions Operation in 2402-2480 MHz Mode 2, B	T BR GFSK2
Figure 2 Plot of Tran	nsmitter Emissions 20-dB Occupied Bandwidth Mode 2, BT	BR GFSK2
Figure 3 Plot of Tran	nsmitter Emissions 99% Occupied Bandwidth Mode 2, BT E	BR GFSK2
Figure 4 Plot of Nun	nber of Hopping Channels Mode 2, BT BR GFSK	2
Figure 5 Plot of Num	nber of Hopping Channels Mode 2, BT BR GFSK	2
Figure 6 Plot of Nun	nber of Hopping Channels Mode 2, BT BR GFSK	2
Figure 7 Plot of Nun	nber of Hopping Channels Mode 2, BT BR GFSK	3
Figure 8 Plot of Cha	nnel Separation Mode 2, BT BR GFSK	3
Figure 9 Plot of Dwo	ell time On Channel Mode 2, BT BR GFSK	3
Figure 10 Plot of Nu	umber of Times on Channel over 6 Second Period Mode 2, B	BT BR GFSK3
Figure 11 Plot of Tra	ansmitter Emissions Low Band Edge Mode 2, BT BR GFSK	
Figure 12 Plot of Tra	ansmitter Emissions High Band Edge Mode 2, BT BR GFSK	K3
Transmitter Emissio	ns Data	3
Table 6 Transmitter	Radiated Emissions Mode 2, BT BR GFSK	
Table 7 Transmitter	Antenna Port Conducted Data Mode 2, BT BR GFSK	3
Summary of Results	for Transmitter Radiated Emissions of Intentional Radiator	3
INEX		
Annex A Measureme	ent Uncertainty Calculations	
Annex B Test Equip	ment	4
Annex C Laboratory	V Certificate of Accreditation	4
•	n of The Compatibility Center LLC Garn	
	FCC ID: IPH-04438 IC: 1792A-04438 PMN	
	Test: 240304 SN's: 3475527948, 3465437947, 8	
one/Fax: (913) 660- vision 1	-0666 Test to: 47CFR 15C, RSS-Gen RSS-247 File: A04438 DSS TstRpt 240304 r1	Date: August 12, 202 Page 3 of 42
131011 1	1 nc. A07730 D55 13npt 27030711	$1 age 5 01 T \Delta$

Revisions

Revision 1 Issued August 8, 2024 - Initial Release

Revision 2 Issued August 12, 2024 - Updated footer

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 4 of 42

Executive Summary

License Exempt Digital Transmission System Intentional Radiator operating under Title 47 of the Code of Federal Regulations (47CFR) Paragraph 15.247 and Industry Canada RSS-247 Issue 3 and RSS-GEN Issue 5, Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence Spread Spectrum (DSS) transmitter operations in the 2400-2483.5 MHz frequency band.

Name of Applicant:Garmin International, Inc.
1200 East 151st Street
Olathe, KS 66062PMN: A04438IC: 1792A-04438FCC ID: IPH-04438IC: 1792A-04438Operating Frequency Range: 2402-2480 MHz

Operation Direct Sequence Spread Spectrum (DSS) communication mode 2

A04438 was chosen for transmitter configuration testing and used for final measurements.

Mode	Antenna Port	99% OBW	20-dB OBW
	Conducted Power Watts	(kHz)	(kHz)
Mode 1, BT BR (GFSK)	0.008	913.5	990.4

This report addresses EUT Operations as Direct Sequence Spread Spectrum Transmitter using transmitter modulation in mode 1. Note, the production device utilizes integral non-user accessible antenna system providing 2.18 dBi gain.

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Bands 47CFR 15.205, RSS-210 4.1	-5.4	Complies
Conducted Emissions as per 47CFR 15.207, RSS-GEN 8.8	N/A	Complies
Radiated Emissions 47CFR 15.209, RSS-GEN 8.9	-0.15	Complies
Harmonic Emissions per 47CFR 15.247, RSS-247	-0.8	Complies

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 5 of 42

Tests performed include 47CFR

§15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20-dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20-dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(c) Operation with directional antenna gains greater than 6 dBi.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 6 of 42

RSS-247 Issue 3

5.1 Frequency hopping systems (FHS)

FHSs employ a spread spectrum technology in which the carrier is modulated with coded information in a conventional manner, causing a conventional spreading of the radio frequency (RF) energy around the carrier frequency. The carrier frequency is not fixed, but changes at fixed intervals under the direction of a coded sequence.

FHSs are not required to employ all available hopping frequencies during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the requirements in this section in case the transmitter is presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of frequency hopping equipment and must distribute its transmissions over the minimum number of hopping channels specified in this section.

Incorporation of intelligence into an FHS that enables it to recognize other users of the band and to avoid occupied frequencies is permitted provided that the FHS does it individually and independently chooses or adapts its hopset. The coordination of FHSs in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The following applies to FHSs in each of the three bands:

a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

b) FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

c) For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

d)FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

e)FHSs operating in the band 5725-5850 MHz shall use at least 75 hopping channels. The maximum20 dB bandwidth of the hopping channel shall be 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30-second period.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 7 of 42

Equipment Tested

Model: A04438

Garmin International, Inc. 1200 East 151st Street Olathe, KS 66062

Equipment	Model / PN	Serial Number
EUT Tx Radiated #1	A04438	3475527948
EUT Antenna Port Conducted #2	A04438	3465437947
EUT Tx Radiated #3	A04438	865000094
EUT Antenna Port Conducted #4	A04438	865000102
DC power Cable (<80cm)	Garmin 2-pin	N/A
DC power Cable (2cm)	Garmin 2-pin	N/A
Garmin Network Switch	011-05723-00	3378919849
5-pin NMEA 2000 Cable	Garmin NMEA Cable	N/A
Temperature Sensor	GTEMP10-TH	4QM000022
External SIM Card Reader	Garmin Card Reader	N/A
Garmin HDMI Cable	Garmin HDMI Cable	N/A
Garmin CVBS Cable	Garmin HDMI Cable	N/A
Garmin Network Cable (6m)	320-00372-03	N/A
FireStick	E9L29Y	N/A
FireStick	E9L29Y	N/A
DC power Cable (2.3m)	Garmin 2-pin	N/A
DC Power Supply	BK 1745	209C13
Laptop Computer	Latitude 7480	EFSPSN2
USB Printer	Dell 0N5819	5D1SL61

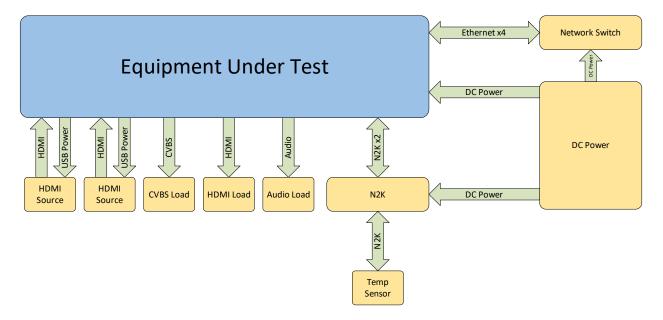
Test results in this report relate only to the items tested. Worst-case configuration data recorded in this report.

Software (FVIN): 1.05 or higher; Antennas: 2.4 GHz PIFA (0.94 dBi)

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 8 of 42

Equipment Operational Modes

Mode	Transmitter Operation			
1	ANT (GFSK)			
2	BT BR (GFSK)			
3	BT (2EDR π/4 DQPSK)			
4	BT (3EDR 8DPSK)			
5	BT BLE (GMSK)			
6	802.11b			
7	802.11g			
8	802.11n			


Equipment Function

The EUT incorporates transmitter circuitry operating in the 2402-2480 MHz frequency band. The typical use configuration has the EUT and powered from direct current power. The design provides interface capability as presented below and wireless communications with compatible equipment. The design contains four collocated transmitters each providing specific functionality. The EUT was arranged as described by the manufacturer emulating typical user configurations for testing purposes. The EUT offers no other interface connections than those presented in the configuration options as described by the manufacturer and presented below. For testing purposes, the EUT received power from external direct current power supply. During testing, the test system was configured to operate in a manufacturer defined modes. The manufacturer provided test software for testing transmitter and equipment function. The software provided the ability to operate the transmitters at near 100% duty cycle for testing purposes. The testing mode of operation exceeds typical duty cycle operation of production equipment. As requested by the manufacturer the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 9 of 42

Equipment Configuration

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 10 of 42

Application for Certification

(1)	Manufacturer:	Garmin International, Inc.
		1200 East 151st Street
		Olathe, KS 66062

- (2) Identification: HVIN: A04438 FCC ID: IPH-04438 IC: 1792A-04438
- (3) Instruction Book:Refer to Exhibit for Instruction Manual.
- (4) Description of Circuit Functions:Refer to Exhibit of Operational Description.
- (5) Block Diagram with Frequencies:Refer to Exhibit of Operational Description.
- (6) Report of Measurements:

Report of measurements follows in this Report.

- (7) Photographs: Construction, Component Placement, etc.:Refer to Exhibit for photographs of equipment.
- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from external direct current power provided from installation vehicle. The EUT provides interface ports for power, loads and communications as presented in this filing.
- (9) Transition Provisions of 47CFR 15.37 are not requested.
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 11 of 42

Test Site Locations

Conducted EMI	AC line conducted emissions testing performed in a shielded screen room
	located at Rogers Labs, a division of The Compatibility Center LLC, 7915
	Nieman Rd., Lenexa, KS (or satellite location).
Antenna port	Antenna port conducted emissions testing was performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).
Radiated EMI	The radiated emissions tests were performed at the 3 meters Semi- Anechoic Chamber (SAC) located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS or at the 3 meters Outdoor Area Test Site (OATS) in the satellite location.
Registered Site inform	nation: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096

NVLAP Accreditation Lab code 200087-0

Units of Measurements

Conducted EMI Data presented in dBµV; dB referenced to one microvolt

Antenna port Conducted Data is in dBm; dB referenced to one milliwatt

Radiated EMI Data presented in dBµV/m; dB referenced to one microvolt per meter

Note: The limit is expressed for a measurement in $dB\mu V/m$ when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters. Sample calculation demonstrates corrected field strength reading for Semi-Anechoic Chamber using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength MeasuredA.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains RFS (dBµV/m @ 3m) = FSM (dBµV) + A.F. (dB/m) + Losses (dB) - Gain (dB)

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 12 of 42

Frequency: 9 kHz-30 MHz	Frequency: 30 MHz- 1 GHZ	Frequency: Above 1 GHz
Loop Antenna	Broadband Biconilog	Horn
RBW = 9 kHz	RBW = 120 kHz	RBW = 1 MHz
VBW = 30 kHz	VBW = 500 kHz	VBW = 3 MHz
Sweep time = Auto	Sweep time = Auto	Sweep time = Auto
Detector = PK, QP	Detector = PK, QP	Detector = PK, AV
Antenna Height 1m	Antenna Height 1-4m	Antenna Height 1-4m

Environmental Conditions

Ambient Temperature	23.8° C
Relative Humidity	39.0 %
Atmospheric Pressure	1008.2 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the 47CFR Part 15C, Industry Canada RSS-247 Issue 3, and RSS-GEN Issue 5 emission requirements. There were no deviations to the specifications.

Applicable Standards

The following information is submitted in accordance with the eCFR (electronic Title 47 Code of Federal Regulations) (47CFR), dated February 15, 2024: Part 2, Subpart J, Part 15C Paragraph 15.247, RSS-247 Issue 3, and RSS-GEN Issue 5. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013. This report documents compliance for the EUT operations as Frequency Hopping Spread Spectrum (DSS) Transmitter.

Intentional Radiators

The following information is submitted supporting compliance with the requirements of 47CFR, Subpart C, paragraph 15.247, Industry Canada RSS-247 Issue 3, and RSS-GEN Issue 5.

Antenna Requirements

The EUT incorporates integral non-user accessible system. Production equipment offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 14 of 42

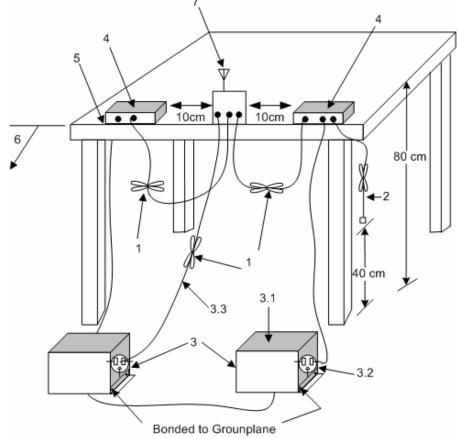
Test Procedures

AC Line Conducted Emission Test Procedure

The design operates from Direct Current power only and offers no provision to interface with Utility AC Power systems. Therefore, No AC Line conducted emissions testing was required or preformed.

Radiated Emission Procedure

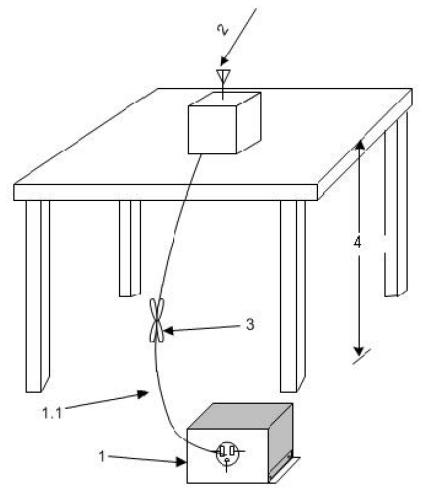
Radiated emissions testing was performed as required in 47CFR 15C, RSS-247 Issue 3, RSS-GEN and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising, and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams two and three showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.


Antenna Port Conducted Emission Test Procedure

The EUT was assembled as required for operation placed on a benchtop. This configuration provided the ability to connect test equipment to the provided test antenna port Antenna Port conducted emissions testing was performed presented in the regulations and specified in ANSI C63.10-2013. Testing was completed on a laboratory bench in a shielded room. The active antenna port of the device was connected to appropriate attenuation and the spectrum analyzer. Refer to diagram 4 showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 15 of 42

Diagram 1 Test arrangement for power-line conducted emissions

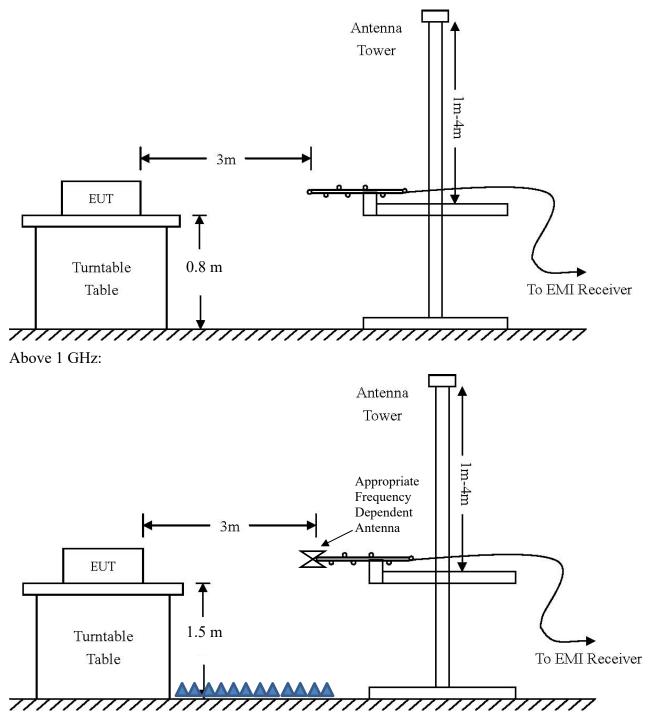

- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
- 2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4. Non-EUT components of EUT system being tested.
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).

7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 16 of 42

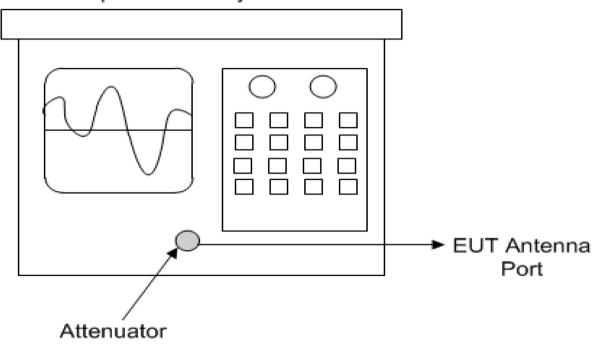
1. A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).

1.1. LISN spaced at least 80 cm from the nearest part of the EUT chassis.


- 2. Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
- 4. For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 17 of 42

Diagram 3 Test arrangement for radiated emissions tested in Semi-Anechoic Chamber (SAC) and Outdoor Area Test Site (OATS)


Below 1 GHz

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 18 of 42

Diagram 4 Test arrangement for Antenna Port Conducted emissions Spectrum Analyzer

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 19 of 42

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the SAC. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the SAC, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values consider the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2390.0	48.9	34.7	48.6	34.7	54.0	-19.3	-19.3
2483.5	49.3	36.1	49.5	36.1	54.0	-17.9	-17.9
4804.0	50.6	37.9	52.7	41.1	54.0	-16.1	-12.9
4882.0	50.1	37.6	51.2	38.5	54.0	-16.4	-15.5
4960.0	50.7	37.7	53.2	42.8	54.0	-16.3	-11.2
7206.0	54.4	41.8	55.7	44.0	54.0	-12.2	-10.0
7323.0	54.5	41.9	55.1	42.5	54.0	-12.1	-11.5
7440.0	56.2	43.9	58.3	48.6	54.0	-10.1	-5.4
12010.0	60.4	47.8	60.5	47.8	54.0	-6.2	-6.2
12205.0	60.3	48.1	60.9	48.1	54.0	-5.9	-5.9
12400.0	60.9	48.2	60.9	48.2	54.0	-5.8	-5.8

Table 1 Radiated Emissions in Restricted Frequency Bands Data Mode 2, BT BR (GFSK)

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz. Rogers Labs, a division of The Compatibility Center LLC Garmin International, Inc.

7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 20 of 42

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C and RSS-247 Issue 3 Intentional Radiator requirements. The EUT demonstrated a worst-case minimum margin of -5.4 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

General Radiated Emissions Procedure

Testing for the radiated emissions were performed as specified in CFR47 15B, RSS-GEN, and directed in ANSI C63.4-2014. For testing purposes, the EUT was arranged as presented in the applicable configuration diagrams above and operated through all modes as presented.

Exploratory radiated emissions measurements were performed in the SAC chamber or screen room, finding maximized emissions over frequency, EUT orientation, antenna height and polarity. This data is then used to focus the final radiated emissions measurements on these maximized points.

Final radiated emissions data were taken with the EUT located in the OATS or SAC at distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 6,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, changing cable location, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop, Biconical, Broadband Biconilog, Log Periodic, and Double Ridge or Pyramidal Horns and mixers above 1 GHz.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 21 of 42

Frequency (MHz)	Peak (dBµV/m)	Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Margin (dBm)
83.51	48.655	46.44	50	-3.56
109.94	48.463	45.99	50	-4.01
123.17	45.915	43.37	50	-6.63
272.03	44.467	39.61	57	-17.39
445.04	43.682	40.93	57	-16.07
593.27	36.317	28.09	57	-28.91

Table 2a General Radiated Emissions Data – Worst Case (Horizontal Polarization)

Table 2b General Radiated Emissions Data – Worst Case (Vertical Polarization)

Frequency (MHz)	Peak (dBµV/m)	Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Margin (dBm)
84.14	50.889	49.25	50	-0.75
109.91	51.512	49.85	50	-0.15
123.8	47.483	45.61	50	-4.39
445.04	41.78	40.44	57	-16.56
593.42	39.392	33.99	57	-23.01
620	41.599	35.67	57	-21.33

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C paragraph 15.209, RSS-247 Issue 3, and RSS-GEN Issue 5 Intentional Radiators. The EUT configuration demonstrated a minimum margin of -0.15 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 22 of 42

Operation in the Band 2400 – 2483.5 MHz

Test procedures of ANSI C63.10-2013 and KDB 558074 D01 15.247 Meas Guidance v05 were used during transmitter testing. The transmitter peak power was measured at the antenna port as described in ANSI C63.10-2013. The 20-dB and 99% emission bandwidths were measured as described in C63.10-2013. The channel separation and the number of hopping channels were measured at the antenna port as described in C63.10-2013. The system utilizes at least 15 channels with average time of occupancy on any channel not exceeding 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. The transmitter radiated spurious and general emissions were measured on an open area test site (a) 3 meters. During radiated emissions measurements, the EUT sample #1 was placed on a turntable elevated as required above the ground plane at a distance of 3 meters from the measurement antenna. The amplitude of each emission was then recorded from the measurement results. The test system gains and losses were accounted for in the measurement results presented. The amplitude of each radiated emission was maximized by equipment orientation and placement on the turn table, raising and lowering the FSM (Field Strength Measuring) antenna, changing the FSM antenna polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 25 GHz. Emissions were measured in $dB\mu V/m$ (a) 3 meters. Antenna port conducted emission data and plots were taken using test sample #2.

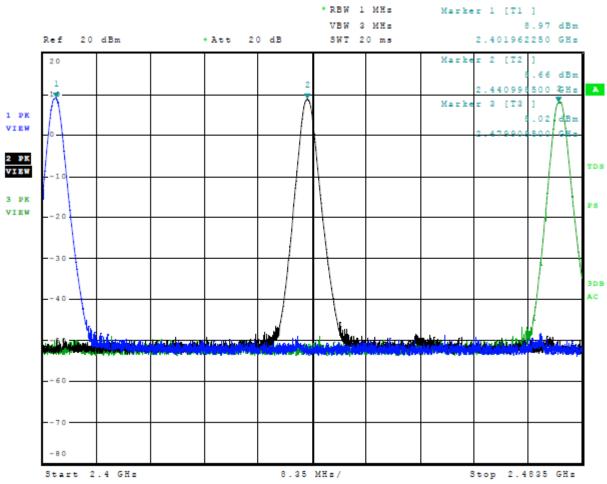
Requirement:

Average occupancy time Requirement:

Average time of occupancy on any channel shall not be greater than 400 mS (0.4 seconds) within a 30 second period (0.4 times the number of hopping channels of 79).

Time on channel:

The design resides on channel 60 times in 6 seconds (300 times in a 30 second period) transmitting each time for 141.5 μ S. This equates to an average time of occupancy of (300*141.5 μ S) 42.5 mS over 30 seconds.


The 42.5 mS average time of occupancy over 30 seconds demonstrates compliance with the requirement of less than 400 mS in 30 second period. Additional Frequency Hopping detail may be found in the operational description exhibits.

Refer to figures one through twelve showing plots taken of the 2402-2480 MHz BT BR (GFSK)

Frequency Hopping Spread Spectrum operation displaying compliance with the specifications.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 23 of 42

Figure 1 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 24 of 42

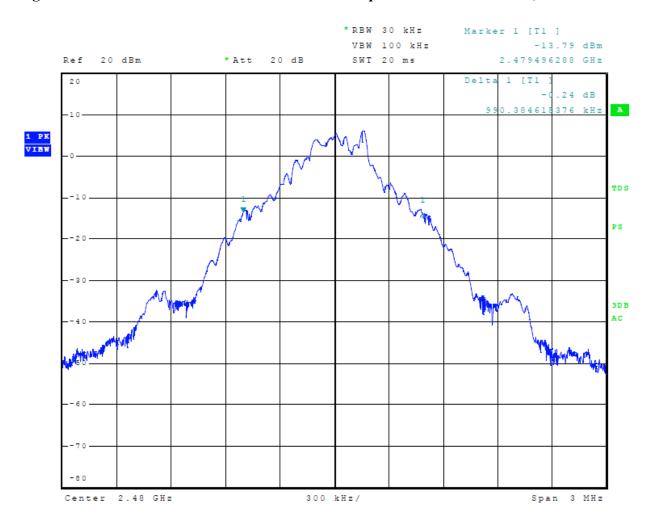
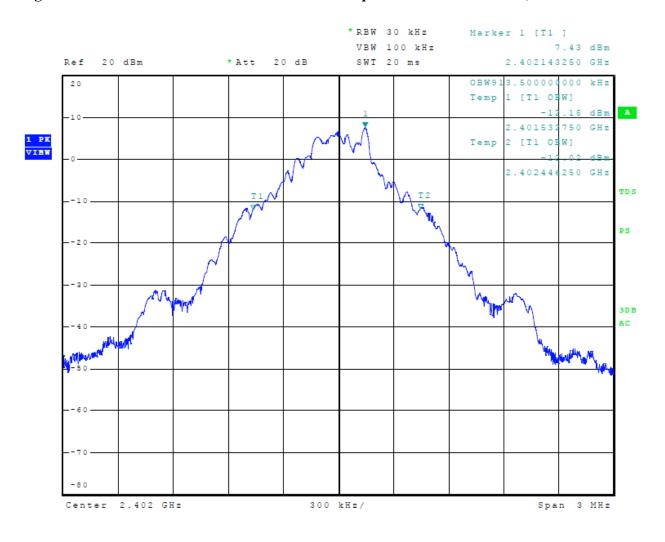



Figure 2 Plot of Transmitter Emissions 20-dB Occupied Bandwidth Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 25 of 42

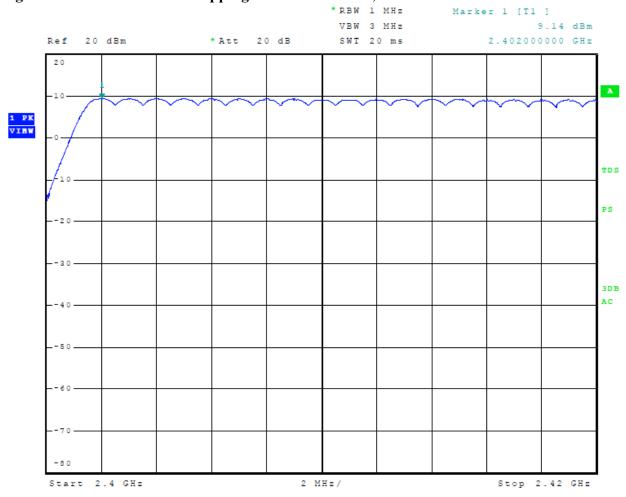


Figure 3 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 26 of 42

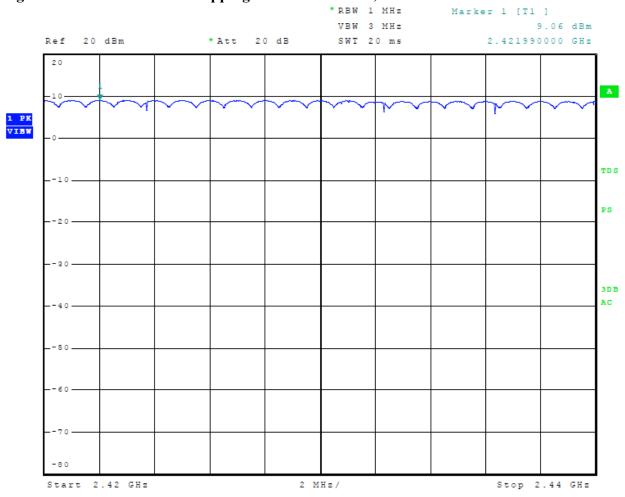


Figure 4 Plot of Number of Hopping Channels Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 27 of 42

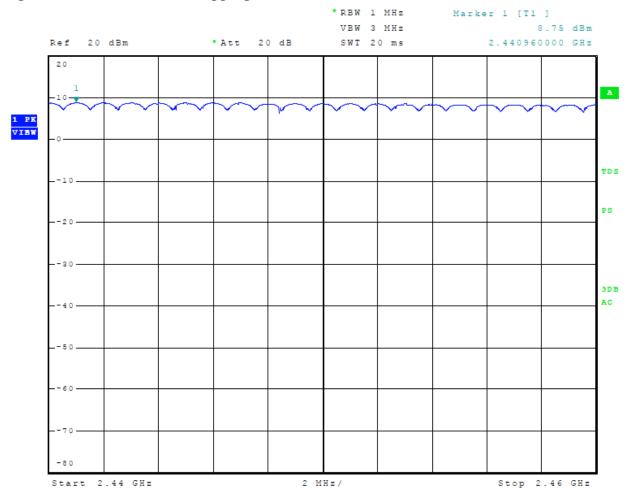


Figure 5 Plot of Number of Hopping Channels Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 28 of 42

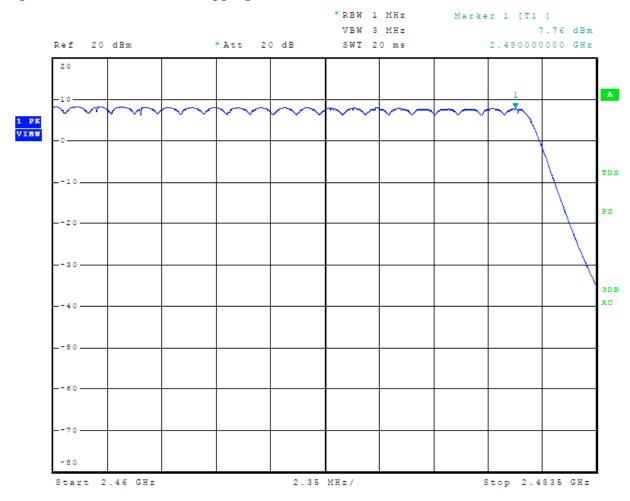


Figure 6 Plot of Number of Hopping Channels Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 29 of 42

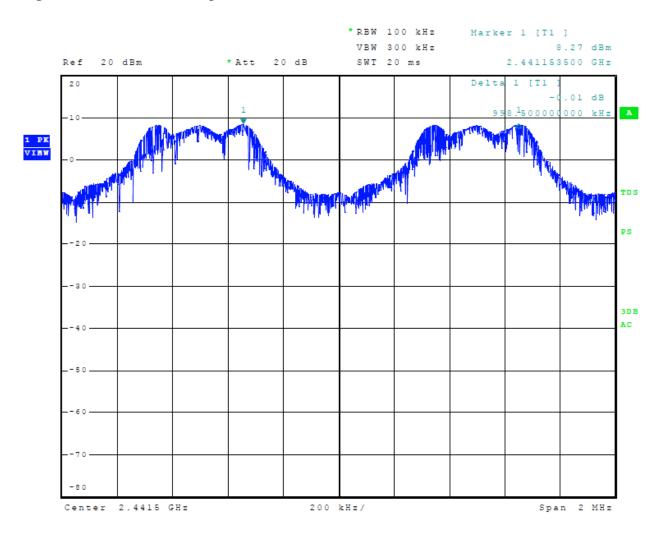


Figure 7 Plot of Number of Hopping Channels Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 30 of 42

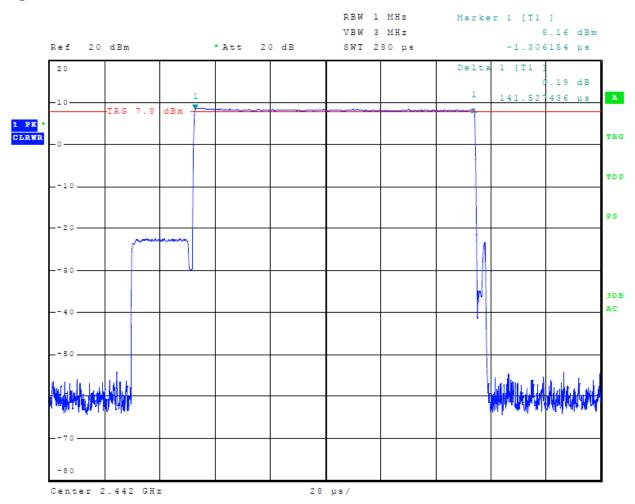


Figure 8 Plot of Channel Separation Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 31 of 42

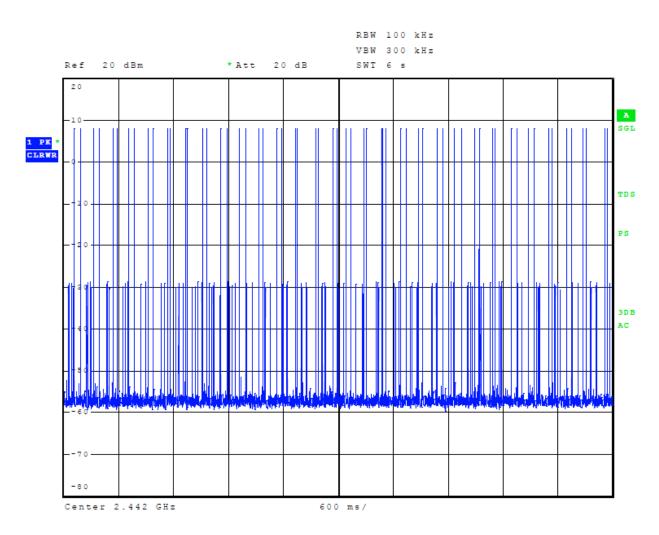


Figure 9 Plot of Dwell time On Channel Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 32 of 42

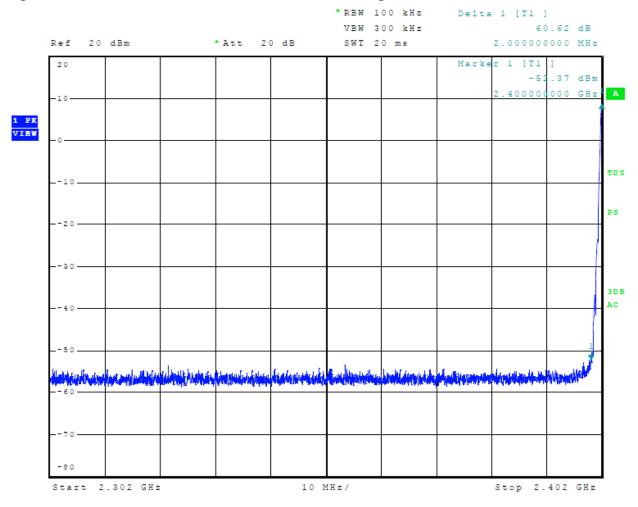


Figure 10 Plot of Number of Times on Channel over 6 Second Period Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 33 of 42

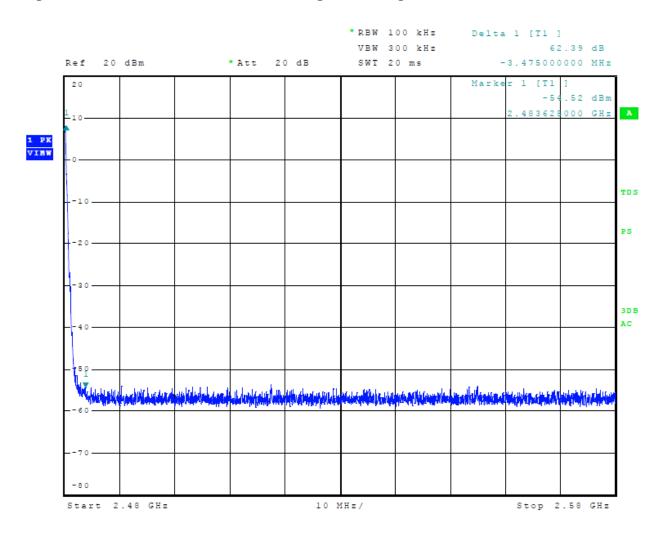


Figure 11 Plot of Transmitter Emissions Low Band Edge Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 34 of 42

Figure 12 Plot of Transmitter Emissions High Band Edge Mode 2, BT BR GFSK

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 35 of 42

Transmitter Emissions Data

Table 6 Transmitter Radiated Emissions Mode 2, BT BR GFSK

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2402.0							
4804.0	50.6	37.9	52.7	41.1	54.0	-16.1	-12.9
7206.0	54.4	41.8	55.7	44.0	54.0	-12.2	-10.0
9608.0	58.1	45.4	59.1	46.2	54.0	-8.6	-7.8
12010.0	60.4	47.8	60.5	47.8	54.0	-6.2	-6.2
14412.0	61.1	47.6	60.8	47.5	54.0	-6.4	-6.5
16814.0	66.3	53.0	66.2	53.1	54.0	-1.0	-0.9
2441.0							
4882.0	50.1	37.6	51.2	38.5	54.0	-16.4	-15.5
7323.0	54.5	41.9	55.1	42.5	54.0	-12.1	-11.5
9764.0	57.6	45.0	58.3	45.3	54.0	-9.0	-8.7
12205.0	60.3	48.1	60.9	48.1	54.0	-5.9	-5.9
14646.0	62.2	49.8	62.4	49.7	54.0	-4.2	-4.3
17087.0	65.7	53.2	65.5	53.2	54.0	-0.8	-0.8
2480.0							
4960.0	50.7	37.7	53.2	42.8	54.0	-16.3	-11.2
7440.0	56.2	43.9	58.3	48.6	54.0	-10.1	-5.4
9920.0	58.3	45.5	58.3	45.9	54.0	-8.5	-8.1
12400.0	60.9	48.2	60.9	48.2	54.0	-5.8	-5.8
14880.0	62.1	49.4	62.2	49.4	54.0	-4.6	-4.6
17360.0	65.5	53.0	65.8	53.0	54.0	-1.0	-1.0

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 36 of 42

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Frequency MHz	Antenna Port Average Output	Antenna Port Average Output	99% Occupied Bandwidth (kHz)	20-dB Occupied Bandwidth (kHz)		
IVII IZ	Power (Watts)	Power (dBm)	Dund Widdin (K112)	Dunawidan (M112)		
	Mode 2, BT BR GFSK					
2402	0.008	7.9	913.5	990.4		
2441	0.007	7.3	912.0	980.8		
2480	0.006	6.3	912.0	990.4		

Table 7 Transmitter Antenna Port Conducted Data Mode 2, BT BR GFSK

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Paragraph 15.247, Industry Canada RSS-247 Issue 3, and RSS-GEN Issue 5. The antenna port conducted output power measured was 0.008 Watts. The unit utilizes 79 hopping channels with the average time of occupancy less than 0.4 seconds over the required time. The EUT worst-case configuration demonstrated minimum radiated harmonic emission margin of -0.8 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 37 of 42

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Laboratory Certificate of Accreditation

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 38 of 42

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16–4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty U _(lab)		
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16		
3 Meter Vertical 0.009-1000 MHz Measurements	4.33		
3 Meter Measurements 1-18 GHz	5.46		
3 Meter Measurements 18-40 GHz	5.16		
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15		
10 Meter Vertical Measurements 0.009-1000 MHz	4.32		
AC Line Conducted	1.75		
Antenna Port Conducted power	1.17		
Frequency Stability	1.00E-11		
Temperature	1.6°C		
Humidity	3%		

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 39 of 42

Annex B Test Equipment

	_quipinent				
Equipment	Manufacturer	Model (SN)	Band	Last Cal Date	Next Cal Due
□ AC Power Source	Ametech / California Instruments		N/A	2/18/2023	2/18/2024
□ Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	9/26/2023	9/26/2024
□Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	9/26/2023	9/26/2024
√ Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	9/26/2023	9/26/2024
√ Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	9/26/2023	9/26/2024
√ Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	7/8/2024	7/8/2025
√ Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/26/2024	1/26/2025
□ Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2027
√ Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	3/25/2024	3/25/2025
√ Antenna	Com Power	AL-130 (121055)	.001-30 MHz	9/26/2023	9/26/2024
□ Antenna	ARA	BCD-235-B (169)	20-350MHz	9/26/2023	9/26/2024
√ Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	11/8/2023	11/8/2024
□ Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	9/26/2023	10/11/2024
√ Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	3/25/2024	3/25/2026
√ Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/11/2022	10/11/2024
√ Antenna	Com Power	AH-1840 (101046)	18-40 GHz	3/27/2023	3/27/2025
□ Antenna	ЕМСО	6509	.001-30 MHz	10/11/2022	10/11/2024
□ Antenna	Solar	9229-1 & 9230-1	??	2/18/2023	2/18/2024
□ Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	3/25/2024	3/25/2025
√ Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	3/25/2024	3/25/2025
√ Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	3/25/2024	3/25/2025
√ Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	3/25/2024	3/25/2025
□ Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	3/25/2024	3/25/2025
□ Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	3/25/2024	3/25/2025
√ Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(303073)	9kHz-40Ghz	9/26/2023	9/26/2024
√ Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303069)	9kHz-40Ghz	9/26/2023	9/26/2024
□ Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303070)	9kHz-40Ghz	9/26/2023	9/26/2024
√ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	9/26/2023	9/26/2024
□ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	9/26/2023	9/26/2024
√ Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303072) 9kHz- 40 GHz	9kHz-40Ghz	9/26/2023	9/26/2024
√ Cable	Huber & Suhner Inc.	Sucoflex102ea(L1M)(281183) 9kHz- 40 GHz	9kHz-40Ghz	9/26/2023	9/26/2024
√ Cable	Huber & Suhner Inc.	Sucoflex102ea(L4M)(281184) 9kHz- 40 GHz	9kHz-40Ghz	9/26/2023	9/26/2024
√ Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(317546)9kHz- 40 GHz	9kHz-40Ghz	9/26/2023	9/26/2024
√ Cable	Time Microwave	4M-750HF290-750 (S/N-L4M)	9kHz-24 GHz	9/26/2023	9/26/2024
□ Cable	Mini-Circuits	KBL-2M-LOW+ (23090329)	9kHz-40Ghz	3/25/2024	3/25/2025

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 40 of 42

Equipment	Manufacturer	Model (SN)	Band	Last Cal Date	Next Cal Due
□ CDN	Com-Power	CDN325E		10/11/2022	10/11/2024
□ EMC Transient Generator HVT	EMC	TR3000		2/18/2023	2/18/2024
□ ESD Simulator		MZ-15	N/A	2/18/2023	2/18/2024
□ Field Intensity Meter		EFM-018		2/18/2023	2/18/2024
□ Frequency Counter	Leader	LDC-825		3/28/2023	3/28/2025
√ Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	3/25/2024	3/25/2025
√ Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	3/25/2024	3/25/2025
□ ISN	Com-Power	ISN T-8 (600111)		3/25/2024	3/25/2025
√ LISN	Fischer Custom Communications	FCC-LISN-50-25-10(1PA) (160611)	.15-30MHz	3/25/2024	3/25/2025
□ LISN	Fischer Custom Communications	FCC-LISN-50-16-2-08		3/25/2024	3/25/2025
□ LISN	Compliance Design	FCC-LISN-2.Mod.cd,(126)	.15-30MHz	9/26/2023	10/11/2024
🗆 LISN	Com-Power	LI-220A		3/29/2023	3/29/2025
√ LISN	Com-Power	LI-550C		9/26/2023	10/11/2024
□ Oscilloscope Scope	Tektronix	MDO 4104		2/18/2023	2/18/2024
√ Power meter	Agilent	N1911A with N1921A	0.05-40 GHz	3/28/2023	3/28/2025
√ Pwr Sensor	Rohde & Schwarz	NRP33T	0.05-33 GHz	9/26/2023	9/26/2025
√ RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	3/25/2024	3/25/2025
□ RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	3/25/2024	3/25/2025
□ RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	3/25/2024	3/25/2025
□ RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	3/25/2024	3/25/2025
√ RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	3/25/2024	3/25/2025
√ RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-18000 MHz	3/25/2024	3/25/2025
√ RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	3/25/2024	3/25/2025
□ RF Filter	Micro-Tronics	BRC17663 (001)	9.3-9.5 notch 30- 1800 MHz	3/28/2023	3/28/2025
□ RF Filter	Micro-Tronics	BRC19565 (001)	9.2-9.6 notch 30- 1800 MHz	3/28/2023	3/28/2025
□ Wave Form Generator	Keysight	33512B (MY57400128)		3/29/2022	3/25/2026
□ Weather station	Davis	6152 (A70927D44N)	N/A	7/13/2022	7/14/2024
√ Generator	Rohde & Schwarz	SMBV100A6 (101844)	20Hz-6 GHz	3/07/2024	9/17/2025

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 41 of 42

Annex C Laboratory Certificate of Accreditation

3/18/24 through 3/31/25:

United States National Institute		s and Technology
NVLAP	LAB CODE: 2	00087-0
Rogers Labs, a division	of The Con Lenexa, KS	npatibility Center LLC
is accredited by the National Voluntary listed on the	Laboratory Accred	
Electromagnetic Com	patibility &	Telecommunications
This accreditation demonstrates technical co	mpetence for a dei	zed International Standard ISO/IEC 17025:2017. Tined scope and the operation of a laboratory quality F Communique dated January 2009).
2024-03-18 through 2025-03-31 Effective Dates	STATES OF MARK	For the National Voluntary Laboratory Accreditation Program

3/16/23 through 3/31/24:

Rogers Labs, a division of The Compatibility Center LLCGarmin International, Inc.7915 Nieman RoadFCC ID: IPH-04438IC: 1792A-04438PMN: A04438Lenexa, KS 66214Test: 240304SN's: 3475527948, 3465437947, 865000094, 865000102Phone/Fax: (913) 660-0666Test to: 47CFR 15C, RSS-Gen RSS-247Date: August 12, 2024Revision 1File: A04438 DSS TstRpt 240304 r1Page 42 of 42