

FCC Test Report

FCC ID : IPH-04390

Equipment : Smart Watch

Model No. : A04390 Brand Name : GARMIN

Applicant : Garmin International, Inc.

Address : 1200 E. 151st Street Olathe, KS 66062 United

States

Standard : 47 CFR FCC Part 15.247

Received Date : Apr. 07, 2022

Tested Date : Apr. 22 ~ May 13, 2022

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Cheld/ Assistant Manager

Gary Chand / Manages

Report No.: FR240702AD Page : 1 of 22 Report Version: Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	8
1.3	Test Setup Chart	8
1.4	The Equipment List	g
1.5	Test Standards	10
1.6	Reference Guidance	10
1.7	Deviation from Test Standard and Measurement Procedure	10
1.8	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Facility	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Unwanted Emissions into Restricted Frequency Bands	12
3.2	Unwanted Emissions into Non-Restricted Frequency Bands	15
3.3	Conducted Output Power	16
3.4	Number of Hopping Frequency	17
3.5	20dB and Occupied Bandwidth	18
3.6	Channel Separation	19
3.7	Number of Dwell Time	20
3.8	AC Power Line Conducted Emissions	21
4	TEST I ABORATORY INFORMATION	22

- Appendix A. Unwanted Emissions into Restricted Frequency Bands
- **Appendix B. Unwanted Emissions into Non-Restricted Frequency Bands**
- **Appendix C. Conducted Output Power**
- **Appendix D. Number of Hopping Frequency**
- Appendix E. 20dB and Occupied Bandwidth
- **Appendix F. Channel Separation**
- Appendix G. Number of Dwell Time
- **Appendix H. AC Power Line Conducted Emissions**

Release Record

Report No.	Version	Description	Issued Date
FR240702AD	Rev. 01	Initial issue	Jun. 01, 2022

Report No.: FR240702AD Page: 3 of 22

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emission	[dBuV]: 0.788MHz 25.45 (Margin -20.55dB) - AV	Pass
15.247(d)	Unwanted Emissions	[dBuV/m at 3m]: 30.00MHz	Pass
15.209	Onwanted Emissions	33.77 (Margin -6.23dB) - PK	F 455
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: 11.47	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR240702AD Page: 4 of 22

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz) Bluetooth Ch. Frequency Channel Number Data Rate							
2400-2483.5	BR V5.0	2402-2480	0-78 [79]	1 Mbps			
2400-2483.5	EDR V5.0	2402-2480	0-78 [79]	2 Mbps			
2400-2483.5	EDR V5.0	2402-2480	0-78 [79]	3 Mbps			

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.2 Antenna Details

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)
1	Garmin	117-01806-0X	PIFA	N/A	-2.08

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Type	5Vdc from adapter
rower type	3.87Vdc from battery

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
1	Battery	Brand: Garmin Model: 361-00136-20 Power Rating: 3.87V, 205mAh				
2	USB cable	Brand: GARMIN Model: 320-01069-10 Line: 0.52m shielded without core				

Report No.: FR240702AD Page: 5 of 22

1.1.5 Channel List

	Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	20	2422	40	2442	60	2462	
1	2403	21	2423	41	2443	61	2463	
2	2404	22	2424	42	2444	62	2464	
3	2405	23	2425	43	2445	63	2465	
4	2406	24	2426	44	2446	64	2466	
5	2407	25	2427	45	2447	65	2467	
6	2408	26	2428	46	2448	66	2468	
7	2409	27	2429	47	2449	67	2469	
8	2410	28	2430	48	2450	68	2470	
9	2411	29	2431	49	2451	69	2471	
10	2412	30	2432	50	2452	70	2472	
11	2413	31	2433	51	2453	71	2473	
12	2414	32	2434	52	2454	72	2474	
13	2415	33	2435	53	2455	73	2475	
14	2416	34	2436	54	2456	74	2476	
15	2417	35	2437	55	2457	75	2477	
16	2418	36	2438	56	2458	76	2478	
17	2419	37	2439	57	2459	77	2479	
18	2420	38	2440	58	2460	78	2480	
19	2421	39	2441	59	2461			

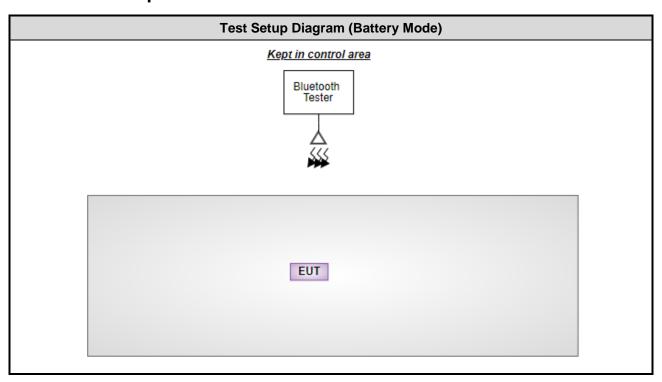
Report No.: FR240702AD Page: 6 of 22

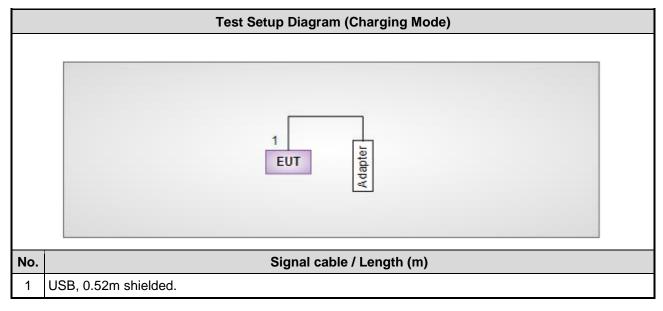
1.1.6 Test Tool and Duty Cycle

Test Tool	BT Test, Version: V8.02 Bluetooth Simulator, Brand: R&S / Model : CMW270				
Modulation Mode	Duty Cycle Of Test Signal (%) Duty Factor (dB)				
DH5	79.54%	0.99			
2DH5	79.15%	1.02			
3DH5	79.54%	0.99			

1.1.7 Power Index of Test Tool

Modulation Mode	Test Frequency (MHz)			
Modulation Mode	2402	2441	2480	
GFSK / 1Mbps	default	default	default	
π/4-DQPSK / 2Mbps	default	default	default	
8DPSK / 3Mbps	default	default	default	


Report No.: FR240702AD Page: 7 of 22



1.2 Local Support Equipment List

	Support Equipment List							
No.	No. Equipment Brand Model FCC ID Remarks							
1								
2	1 Adapter samsung ETA-U90JWS 2 Bluetooth Tester R&S CBT							

1.3 Test Setup Chart

Report No.: FR240702AD Page: 8 of 22

1.4 The Equipment List

Test Item	Conducted Emission							
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)						
Tested Date	May 09, 2022							
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until			
Receiver	R&S	ESR3	101658	Feb. 16, 2022	Feb. 15, 2023			
LISN	R&S	ENV216	101579	Apr. 21, 2022	Apr. 20, 2023			
LISN (Support Unit)	SCHWARZBECK	NSLK 8127	8127667	Jan .07, 2022	Jan .06, 2023			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 19, 2021	Oct. 18, 2022			
50 ohm terminal (Support Unit)	50 Ω4 May 25 2021 May 24 2022							
Measurement Software	AUDIX e3 6.120210k NA NA							
Note: Calibration Inter	val of instruments listed	d above is one year.						

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03CH01-WS)					
Tested Date	Apr. 22 ~ Apr. 23, 2022					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101657	Mar. 15, 2022	Mar. 14, 2023	
Spectrum Analyzer	R&S	FSV40	101498	Nov. 29, 2021	Nov. 28, 2022	
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 08, 2021	Nov. 07, 2022	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jun. 30, 2021	Jun. 29, 2022	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 03, 2021	Dec. 02, 2022	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170508	Jan. 11, 2022	Jan. 10, 2023	
Preamplifier	EMC	EMC02325	980225	Jun. 29, 2021	Jun. 28, 2022	
Preamplifier	Agilent	83017A	MY39501308	Sep. 28, 2021	Sep. 27, 2022	
Preamplifier	EMC	EMC184045B	980192	Jul. 14, 2021	Jul. 13, 2022	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 05, 2021	Oct. 04, 2022	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 05, 2021	Oct. 04, 2022	
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 05, 2021	Oct. 04, 2022	
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 05, 2021	Oct. 04, 2022	
RF Cable	EMC	EMC104-35M-35M- 8000	210920	Oct. 05, 2021	Oct. 04, 2022	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 05, 2021	Oct. 04, 2022	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Bluetooth Tester	R&S	CBT	100959	Nov. 30, 2021	Nov. 29, 2022	
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.					

Report No.: FR240702AD Page: 9 of 22

Test Item	RF Conducted							
Test Site	(TH01-WS)	(TH01-WS)						
Tested Date	May 03 ~ May 13, 202	May 03 ~ May 13, 2022						
Instrument	Brand	Brand Model No. Serial No. Calibration Date Calibration Until						
Spectrum Analyzer	R&S	FSV40	101910	Apr. 18, 2022	Apr. 17, 2023			
Power Meter	Anritsu	ML2495A	1241002	Nov. 07, 2021	Nov. 06, 2022			
Power Sensor	Anritsu	MA2411B	1207366	Nov. 07, 2021	Nov. 06, 2022			
Measurement Software	Sporton	SENSE-15247_FS	V5.10.7.11	NA	NA			
Bluetooth Tester	R&S CBT 100959 Nov. 30, 2021 Nov. 29, 2022							
Note: Calibration Inter	rval of instruments liste	d above is one year.						

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty			
Parameters	Uncertainty		
Bandwidth	±34.130 Hz		
Conducted power	±0.808 dB		
Power density	±0.583 dB		
Conducted emission	±2.715 dB		
AC conducted emission	±2.92 dB		
Unwanted Emission ≤ 1GHz	±3.41 dB		
Unwanted Emission > 1GHz	±4.59 dB		
Time	±0.1%		

Report No.: FR240702AD Page: 10 of 22

2 Test Configuration

2.1 Testing Facility

Test Laboratory International Certification Corporation		
Test Site	CO01-WS, 03CH01-WS, TH01-WS	
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)	

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
AC Power Line Conducted Emissions	Charging			1
Unwanted Emissions ≤ 1GHz	GFSK	2402	1Mbps	2
Unwanted Emissions ≤ 1GHz	Charging			1
Unwanted Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	2
Conducted Output Power	GFSK л/4 DQPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	2
Number of Hopping Channels	GFSK л/4 DQPSK 8DPSK	2402~2480 2402~2480 2402~2480	1Mbps 2Mbps 3Mbps	2
Hopping Channel Separation 20dB and Occupied bandwidth	GFSK л/4 DQPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	2
Dwell Time	GFSK л/4 DQPSK 8DPSK	2402 2402 2402	1Mbps 2Mbps 3Mbps	2

NOTE:

- The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations.

1) Configuration 1: Charging mode

2) Configuration 2: Battery mode

Report No.: FR240702AD Page: 11 of 22

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)		
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Report No.: FR240702AD Page: 12 of 22

3.1.2 Test Procedures

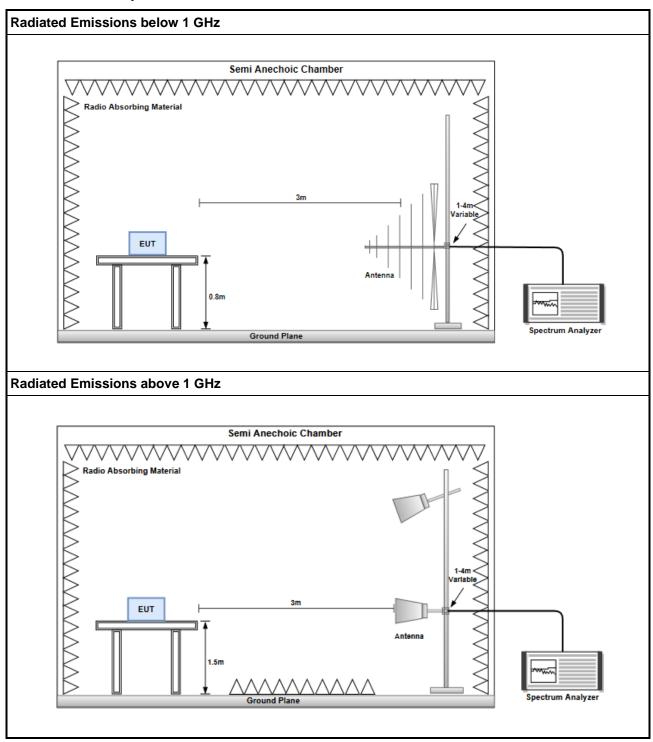
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

3.

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics
The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


20log (Duty cycle) = 20log
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz, VBW=1/T and Peak detector

Report No.: FR240702AD Page: 13 of 22

3.1.3 Test Setup

3.1.4 Test Results

Refer to Appendix A.

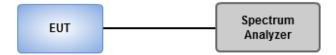
Report No.: FR240702AD Page: 14 of 22

3.2 Unwanted Emissions into Non-Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.2.2 Test Procedures


Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.2.3 Test Setup

3.2.4 Test Results

Ambient Condition 23-24°C / 64-66% Tested By Brad Wu
--

Refer to Appendix B.

Report No.: FR240702AD Page: 15 of 22

3.3 Conducted Output Power

3.3.1 Limit of Conducted Output Power

1 Watt For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.
0.125 Watt For all other frequency hopping systems in the 2400–2483.5 MHz band.
0.125 Watt For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.3.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.3.3 Test Setup

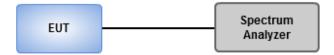
3.3.4 Test Results

Ambient Condition 23-	3-24°C / 64-66%	Tested By	Brad Wu
-----------------------	-----------------	-----------	---------

Refer to Appendix C.

Report No.: FR240702AD Page: 16 of 22

3.4 Number of Hopping Frequency


3.4.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

3.4.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.4.3 Test Setup

3.4.4 Test Results

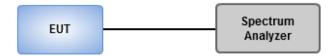
Ambient Condition	23-24°C / 64-66%	Tested By	Brad Wu

Refer to Appendix D.

Report No.: FR240702AD Page: 17 of 22

3.5 20dB and Occupied Bandwidth

3.5.1 Test Procedures


20dB Bandwidth

- Set RBW=20kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=20kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

3.5.2 Test Setup

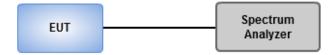
3.5.3 Test Results

Ambient Condition	23-24°C / 64-66%	Tested By	Brad Wu
-------------------	------------------	-----------	---------

Refer to Appendix E.

Report No.: FR240702AD Page: 18 of 22

3.6 Channel Separation


3.6.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.6.2 Test Procedures

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.6.3 Test Setup

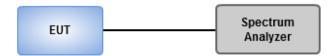
3.6.4 Test Results

Ambient Condition	23-24°C / 64-66%	Tested By	Brad Wu
-------------------	------------------	-----------	---------

Refer to Appendix F.

Report No.: FR240702AD Page: 19 of 22

3.7 Number of Dwell Time


3.7.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.7.2 Test Procedures

- 1. Set RBW=300 kHz, VBW=1 MHz, Sweep time=8 ms, Detector=Peak, Span=0 Hz, Trace max hold.
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. Set RBW=300 kHz, VBW=1 MHz, Sweep time=5 s / 2 s, Detector=Peak, Span=0 Hz,Trace max hold.
- 4. Enable gating and trigger function of spectrum analyzer to measure burst on number of transmission.
- 5 Set RBW=300 kHz, VBW=1 MHz, Sweep time=31.6 s / 8 s, Detector=Peak, Span=0 Hz,Trace max hold.
- 6 Enable gating and trigger function of spectrum analyzer to measure burst on number of transmission of entire time cycle.

3.7.3 Test Setup

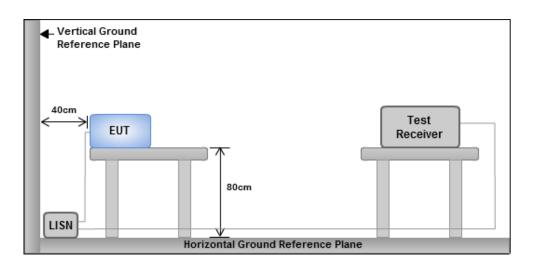
3.7.4 Test Results

Ambient Condition 23-24°C / 64-66%	Tested By	Brad Wu
------------------------------------	-----------	---------

Refer to Appendix G.

Report No.: FR240702AD Page: 20 of 22

3.8 AC Power Line Conducted Emissions


3.8.1 Limit of AC Power Line Conducted Emissions

Conducted Emissions Limit			
Frequency Emission (MHz)	Quasi-Peak	Average	
0.15-0.5	66 - 56 *	56 - 46 *	
0.5-5	56	46	
5-30	60	50	
Note 1: * Decreases with the logarithm of the frequency.			

3.8.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.8.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.8.4 Test Results

Refer to Appendix H.

Report No.: FR240702AD Page: 21 of 22

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666

No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

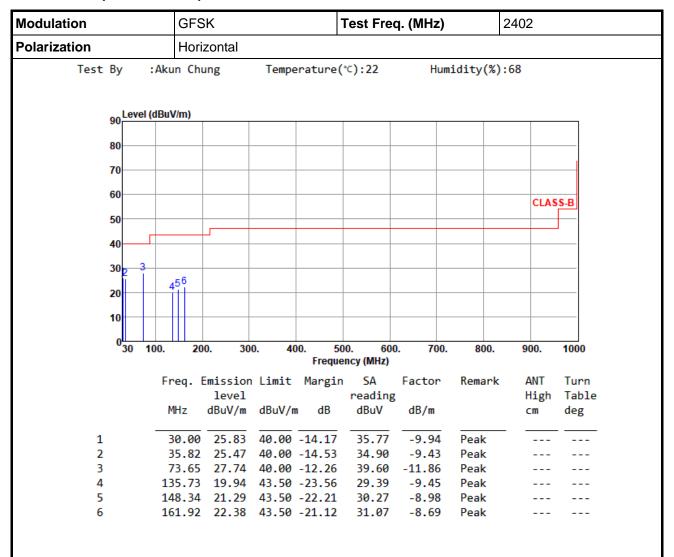
Kwei Shan Site II Tel: 886-3-271-8640

No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC_Service@icertifi.com.tw

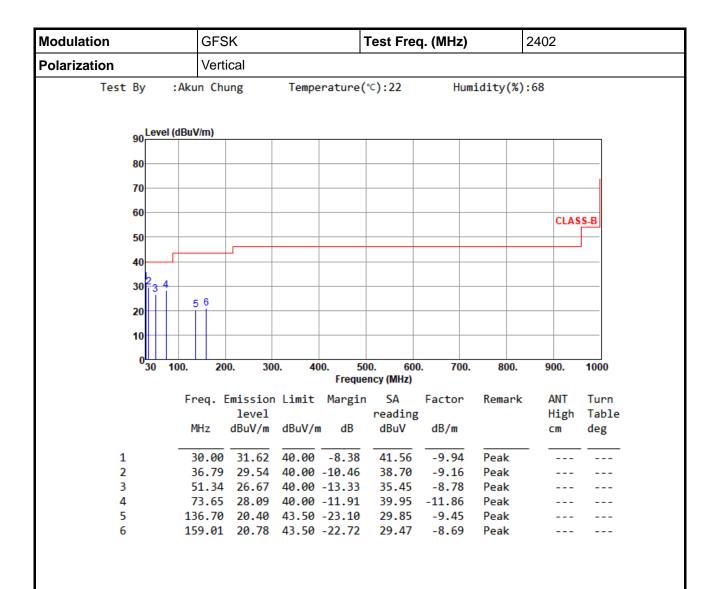

==END==

Report No.: FR240702AD Page: 22 of 22

Configuration 2: Battery mode

Emissions (Below 1GHz)

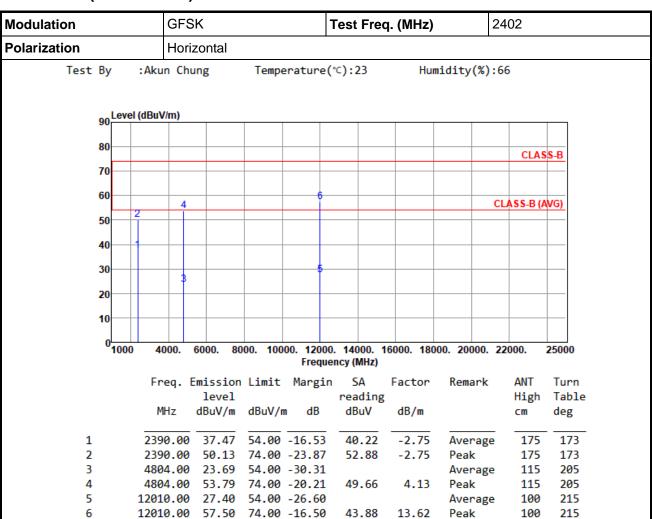
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

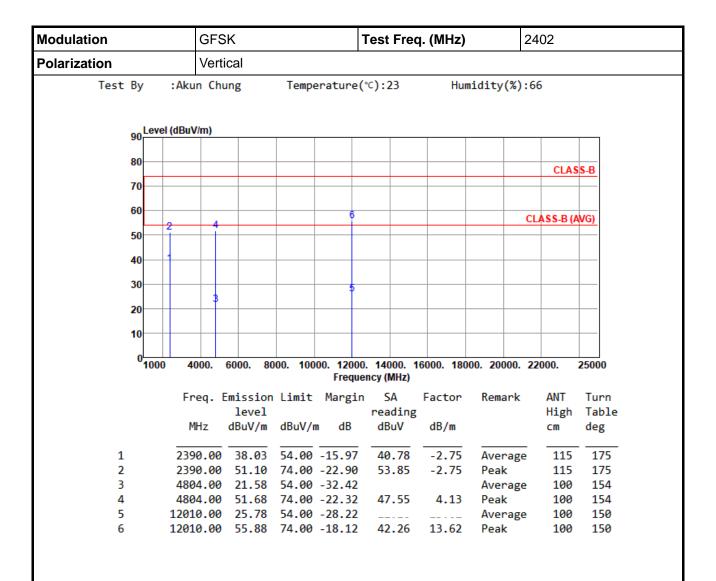
Page No. : 1 of 16


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

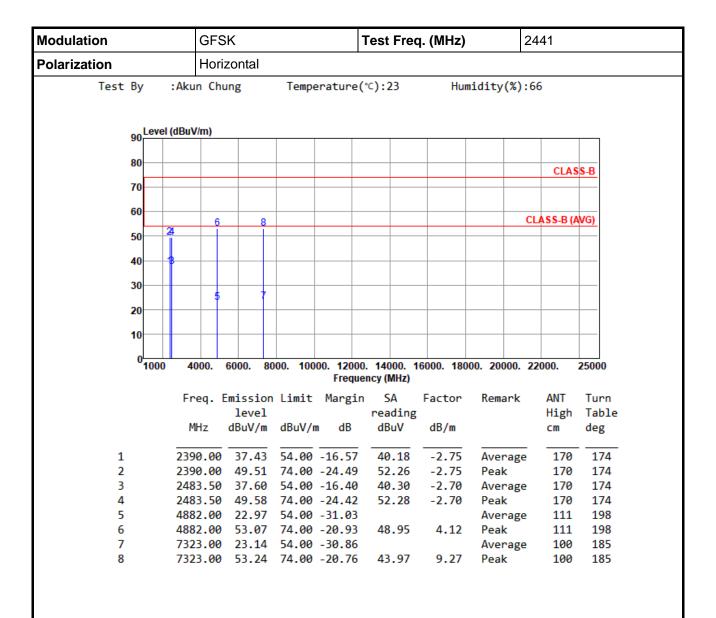
Emissions (Above 1GHz) for GFSK



Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

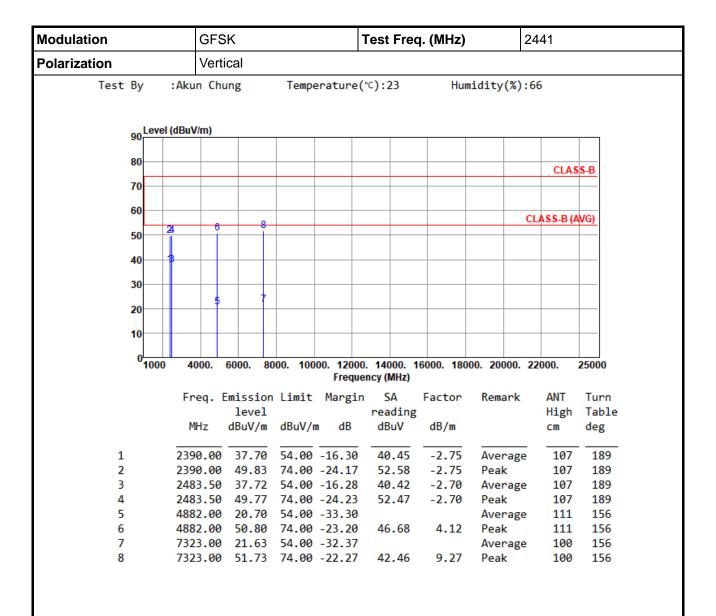
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



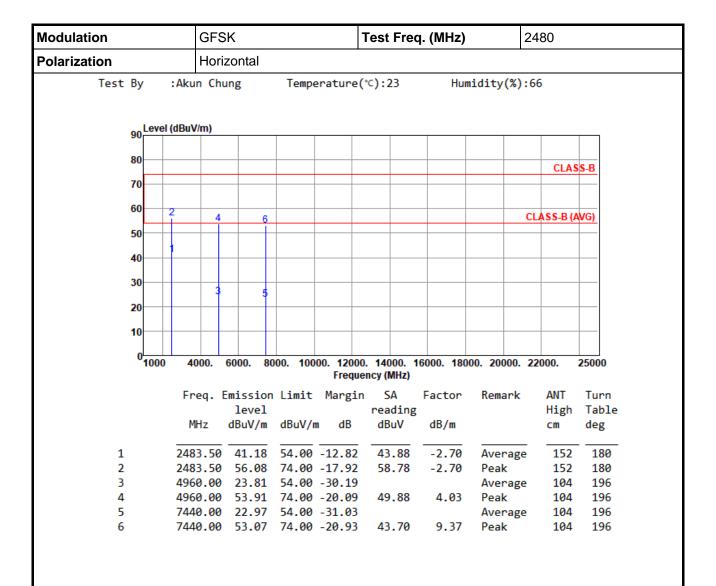
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).



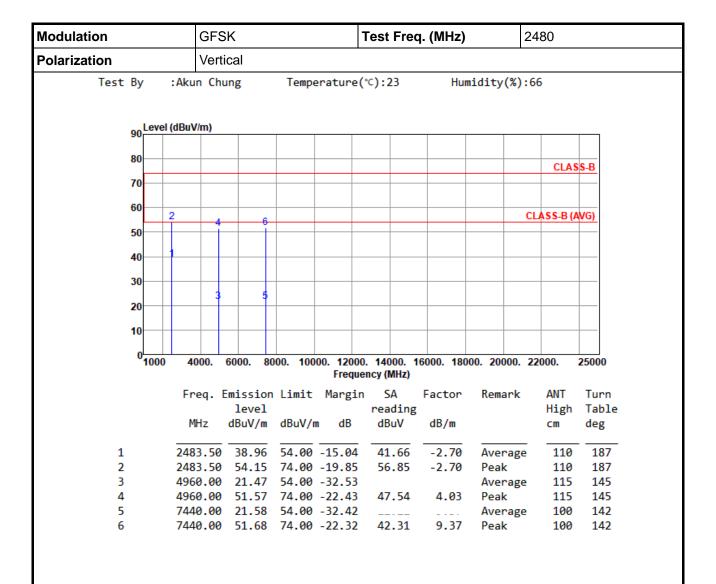
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



*Factor includes antenna factor, cable loss and amplifier gain

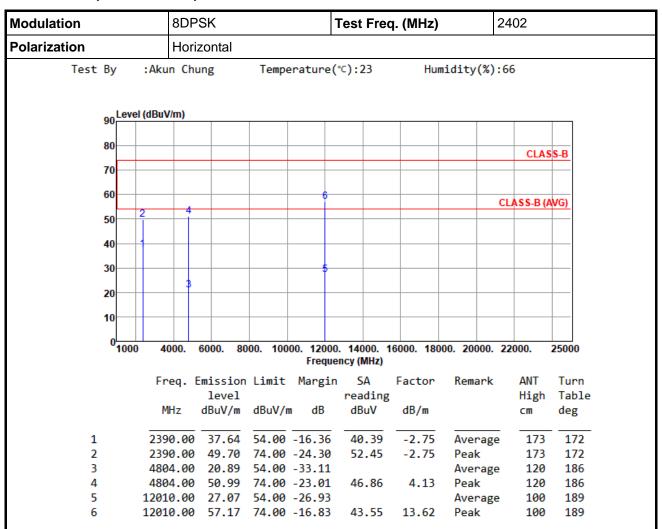
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

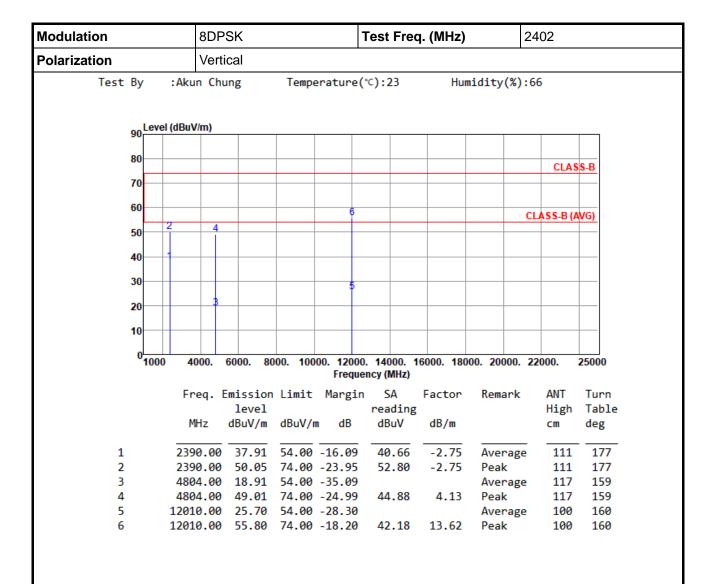
*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: When average value is calculated not measured, no SA reading and factor value are listed.

Page No. : 8 of 16

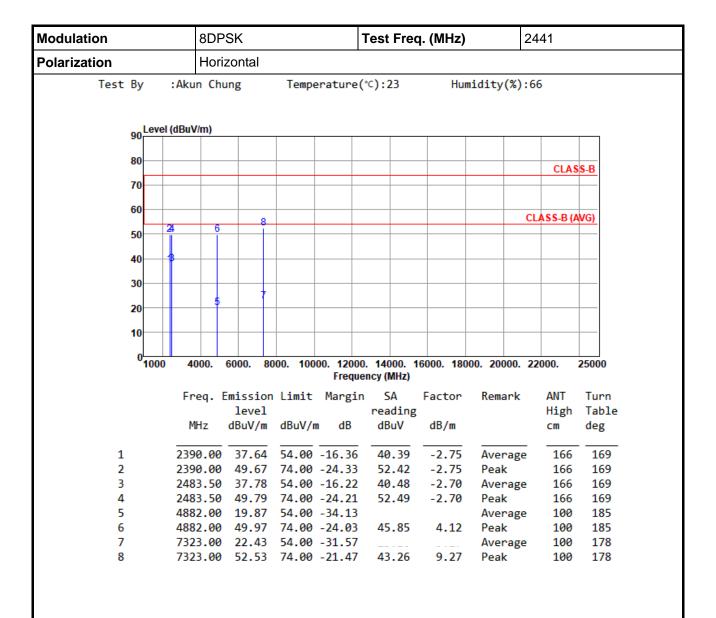
Emissions (Above 1GHz) for 8DPSK



Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

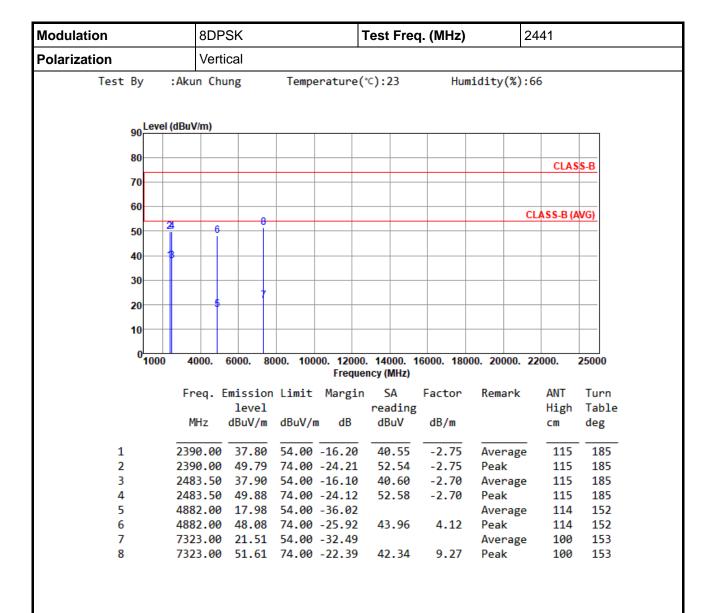
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).



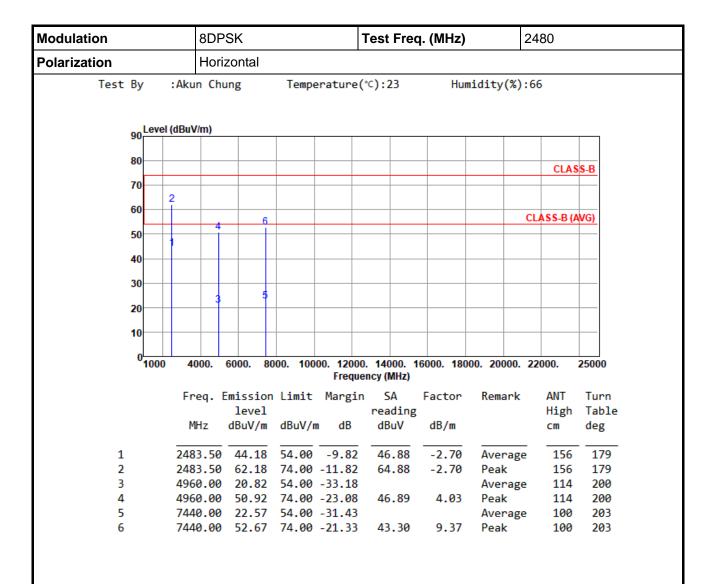
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).



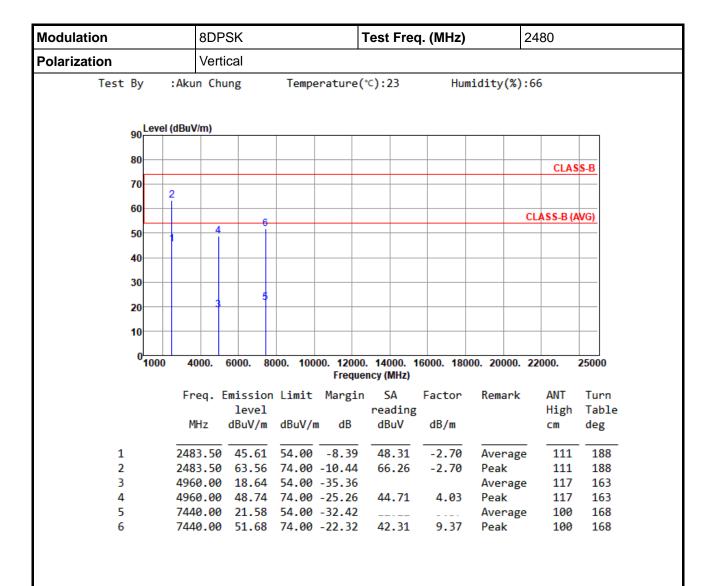
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



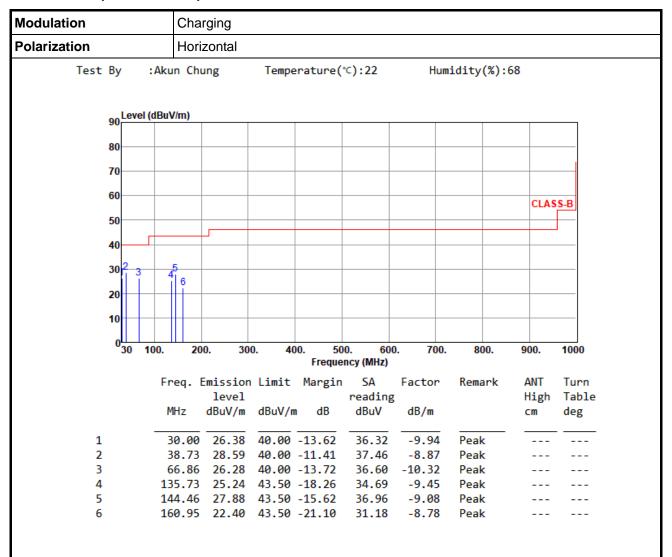
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

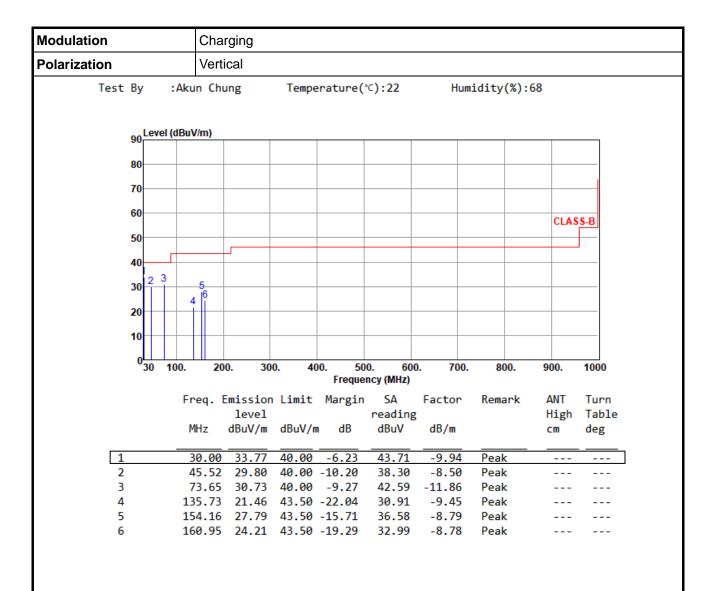

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Configuration 1: Charging mode

Emissions (Below 1GHz)

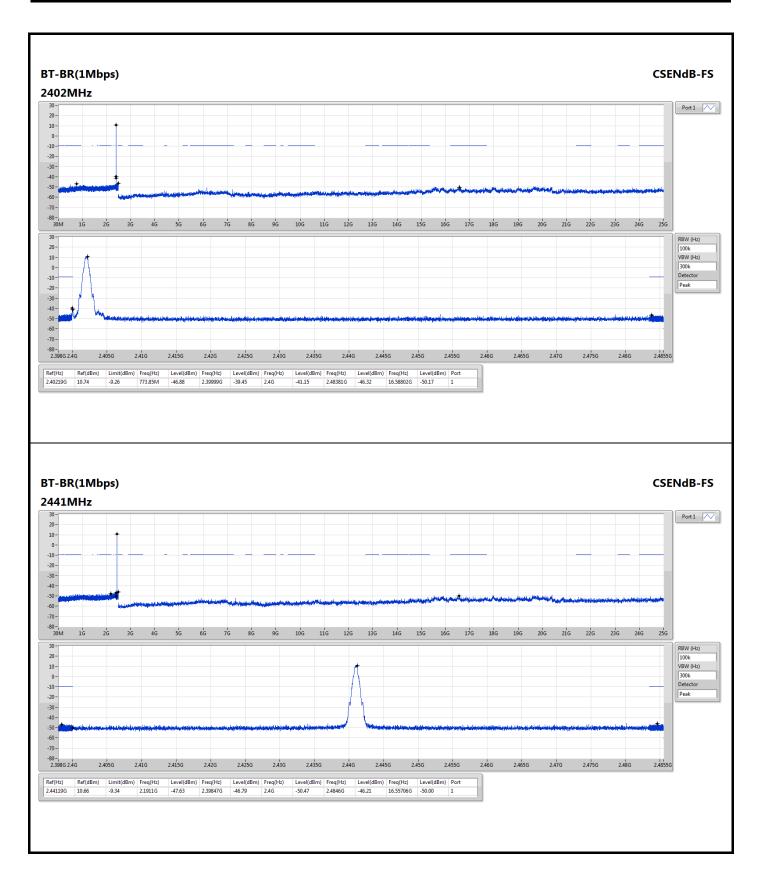
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)


*Factor includes antenna factor , cable loss and amplifier gain

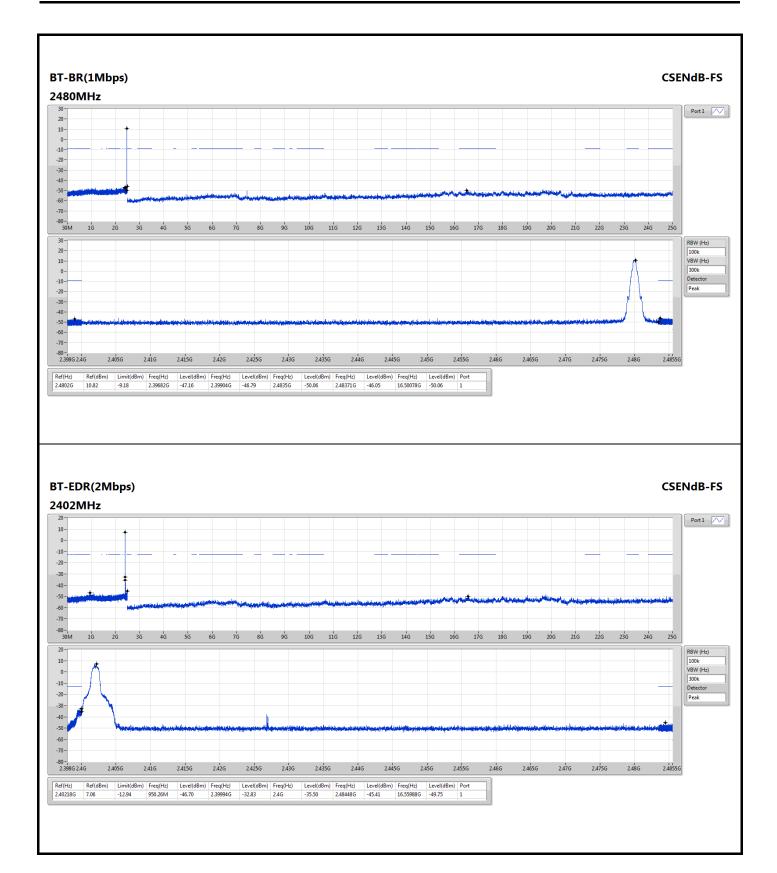
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

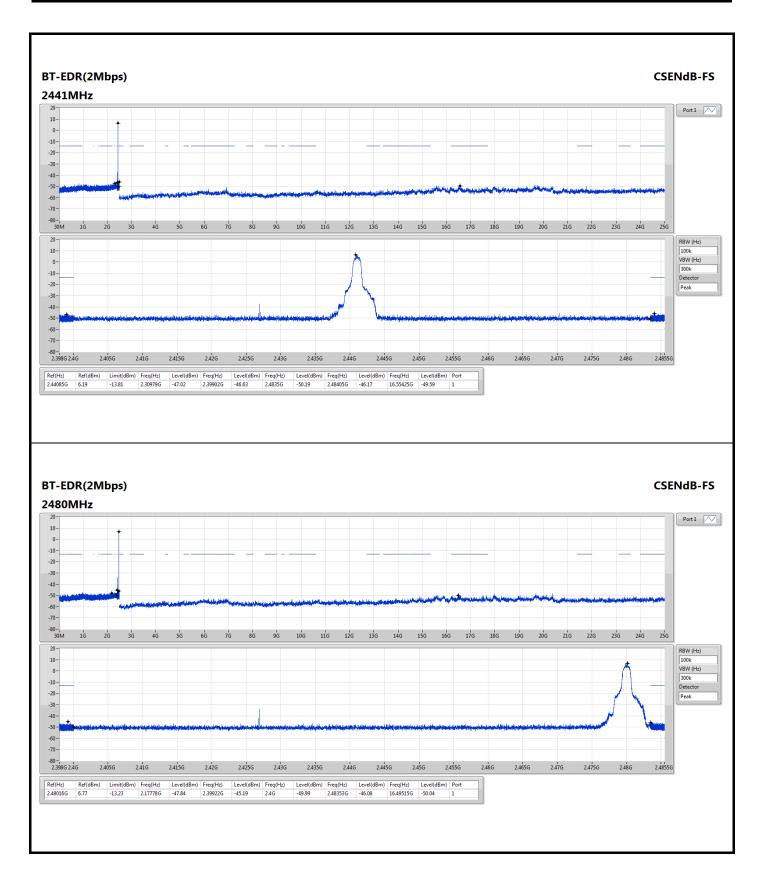
Page No. : 15 of 16

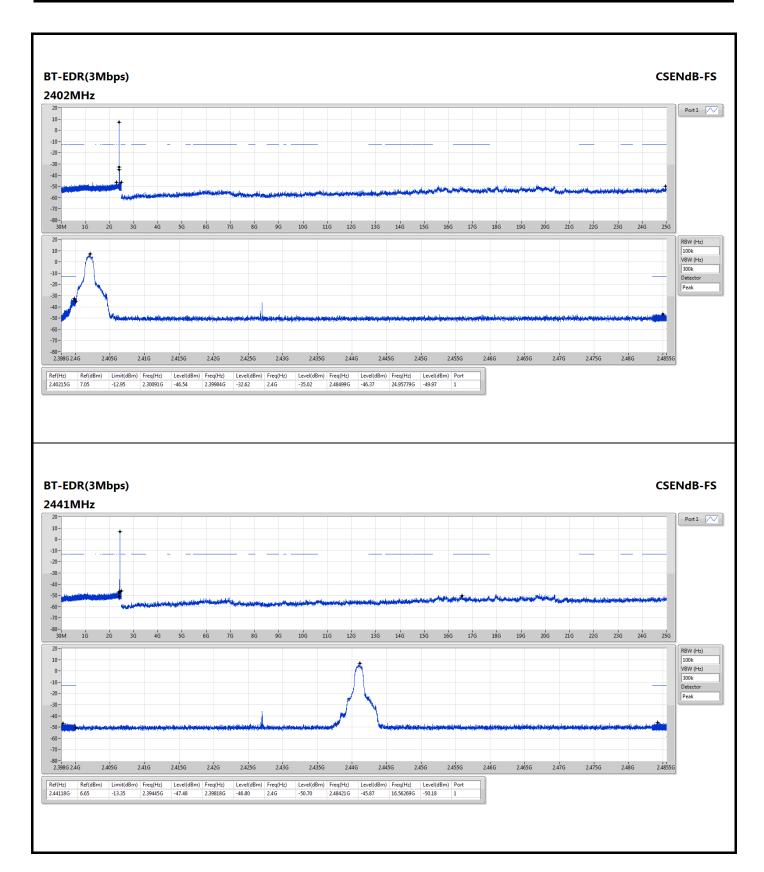

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

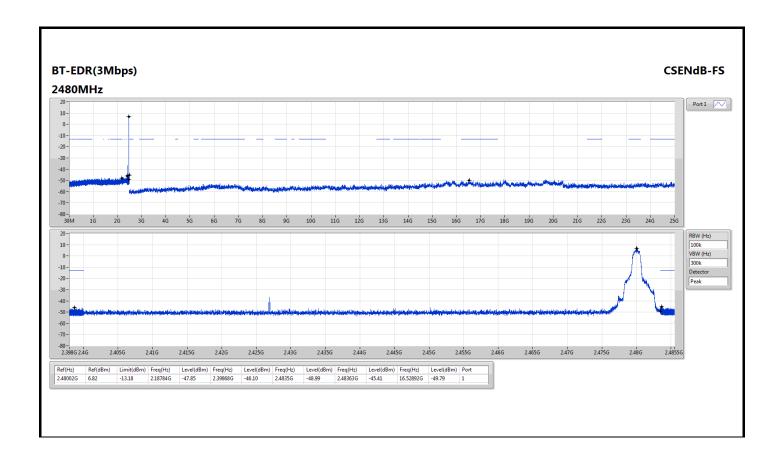
*Factor includes antenna factor, cable loss and amplifier gain

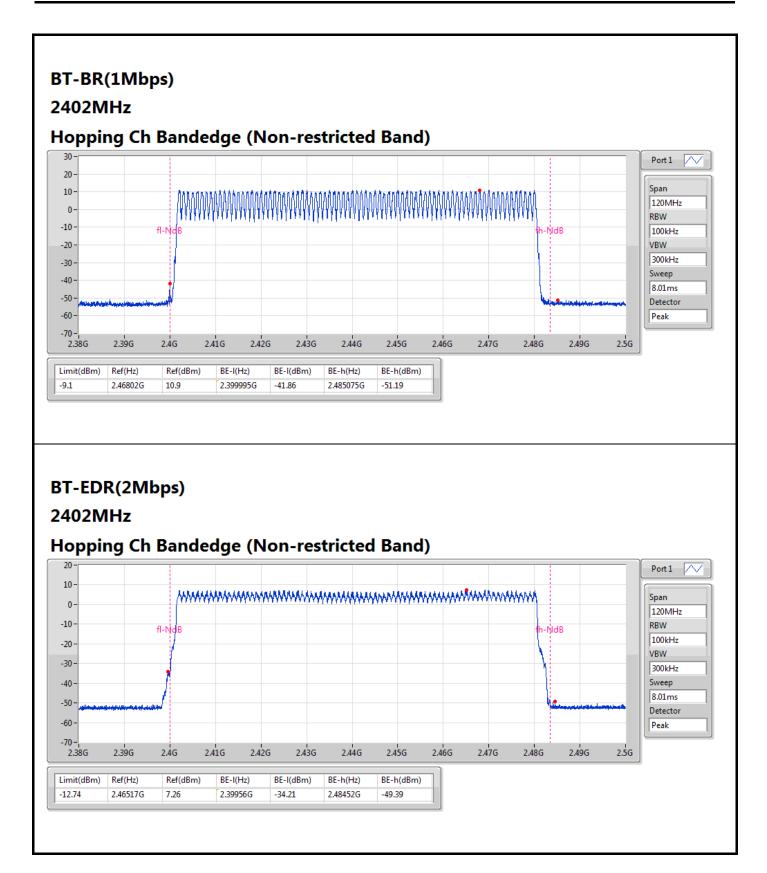

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

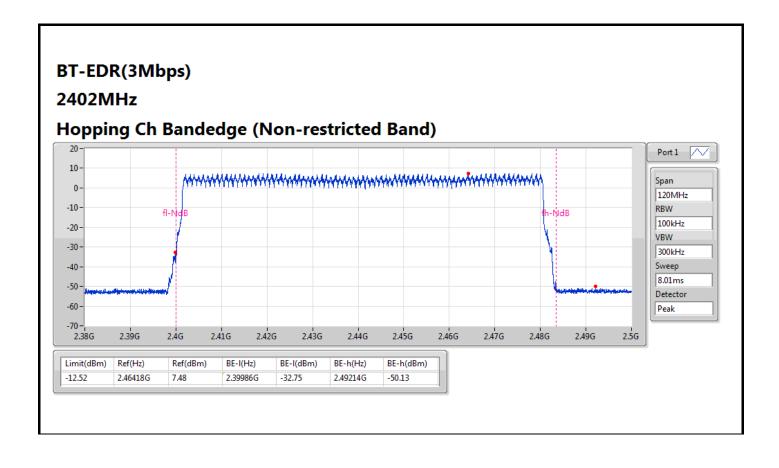
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

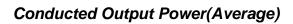












Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	11.42	0.01387
BT-EDR(2Mbps)	7.94	0.00622
BT-EDR(3Mbps)	7.96	0.00625

Result

Mode	Result	Antenna Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	-2.08	11.42	-
2441MHz	Pass	-2.08	11.32	-
2480MHz	Pass	-2.08	11.41	-
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	-2.08	7.81	-
2441MHz	Pass	-2.08	7.46	-
2480MHz	Pass	-2.08	7.94	-
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	-2.08	7.81	-
2441MHz	Pass	-2.08	7.48	-
2480MHz	Pass	-2.08	7.96	-

Note: Average power is for reference only.

Appendix C

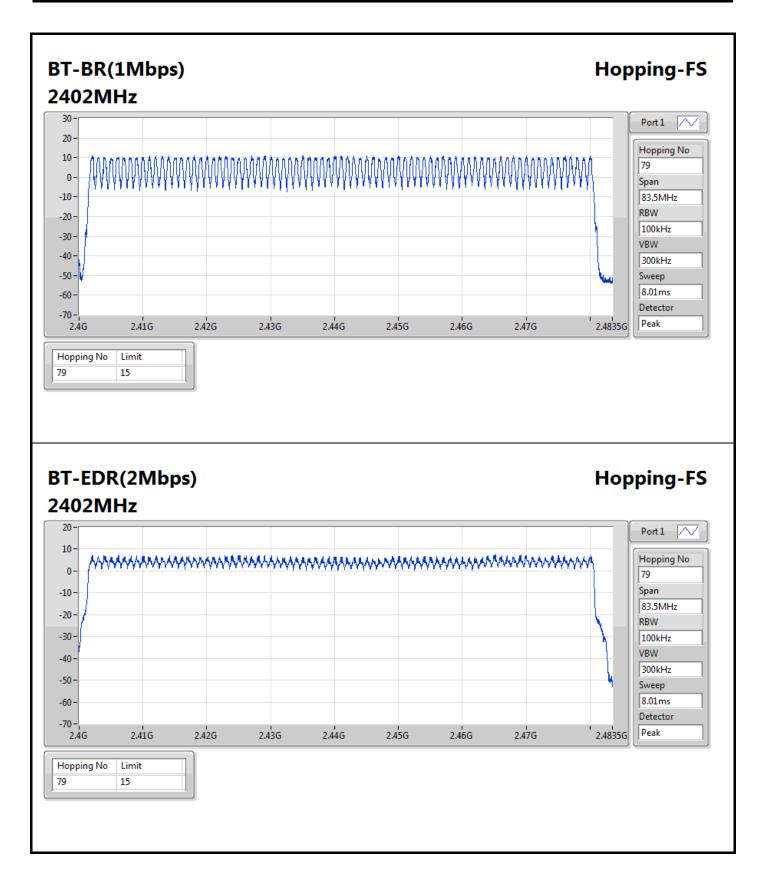
Summary

Mode	Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	11.47	0.01403
BT-EDR(2Mbps)	10.34	0.01081
BT-EDR(3Mbps)	10.53	0.01130

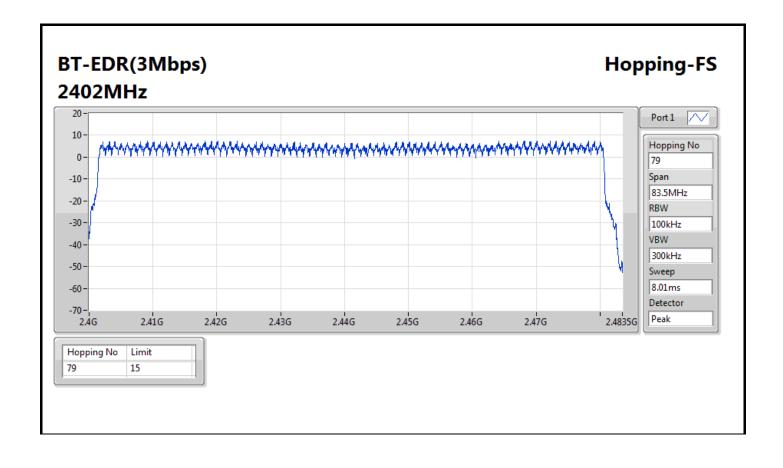
Result

Mode	Result	Antenna Gain (dBi)	Power (dBm)	Power Limit (dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	-2.08	11.47	21.00
2441MHz	Pass	-2.08	11.36	21.00
2480MHz	Pass	-2.08	11.45	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	-2.08	10.21	21.00
2441MHz	Pass	-2.08	9.93	21.00
2480MHz	Pass	-2.08	10.34	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	-2.08	10.36	21.00
2441MHz	Pass	-2.08	10.13	21.00
2480MHz	Pass	-2.08	10.53	21.00

Appendix D


Summary

Mode	Max-Hop No	
2.4-2.4835GHz	-	
BT-BR(1Mbps)	79	
BT-EDR(2Mbps)	79	
BT-EDR(3Mbps)	79	


Result

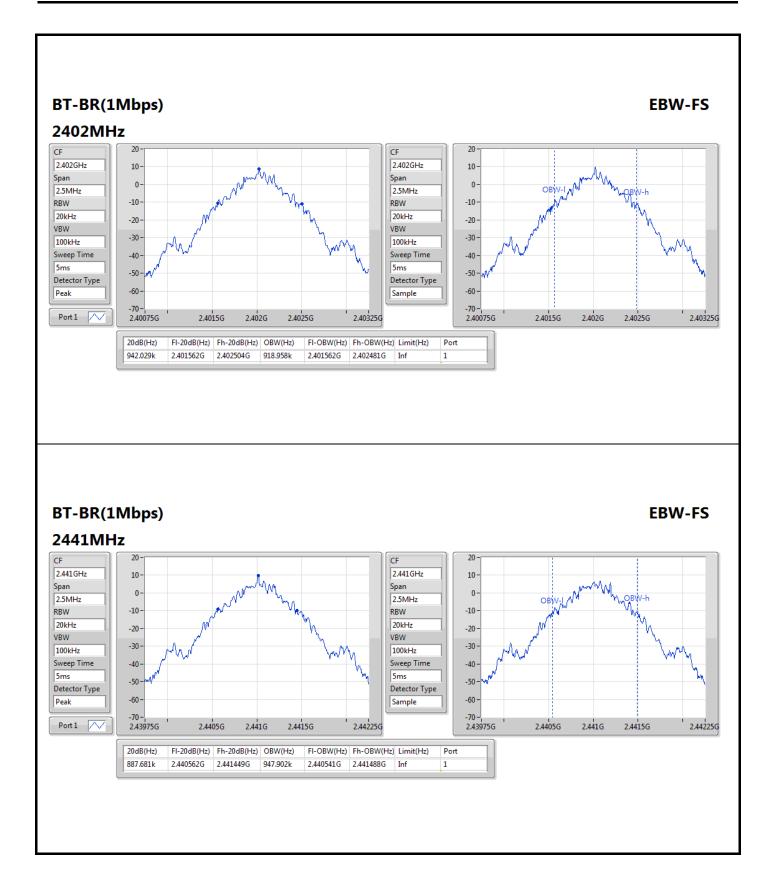
Mode	Result	Hopping No	Limit
BT-BR(1Mbps)	•	-	-
2402MHz	Pass	79	15
BT-EDR(2Mbps)	-	-	-
2402MHz	Pass	79	15
BT-EDR(3Mbps)	-	-	-
2402MHz	Pass	79	15

20dB and Occupied Bandwidth

Appendix E

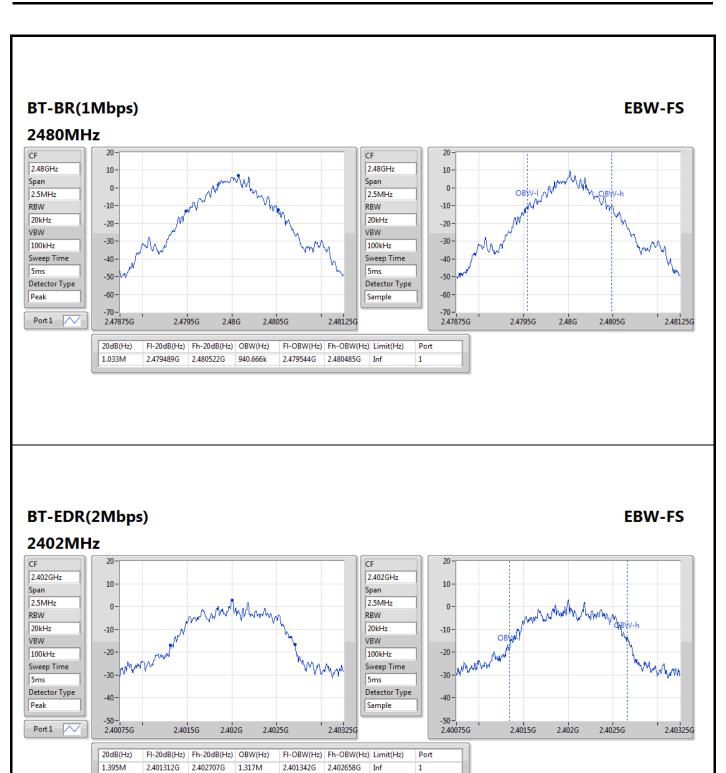
Summary

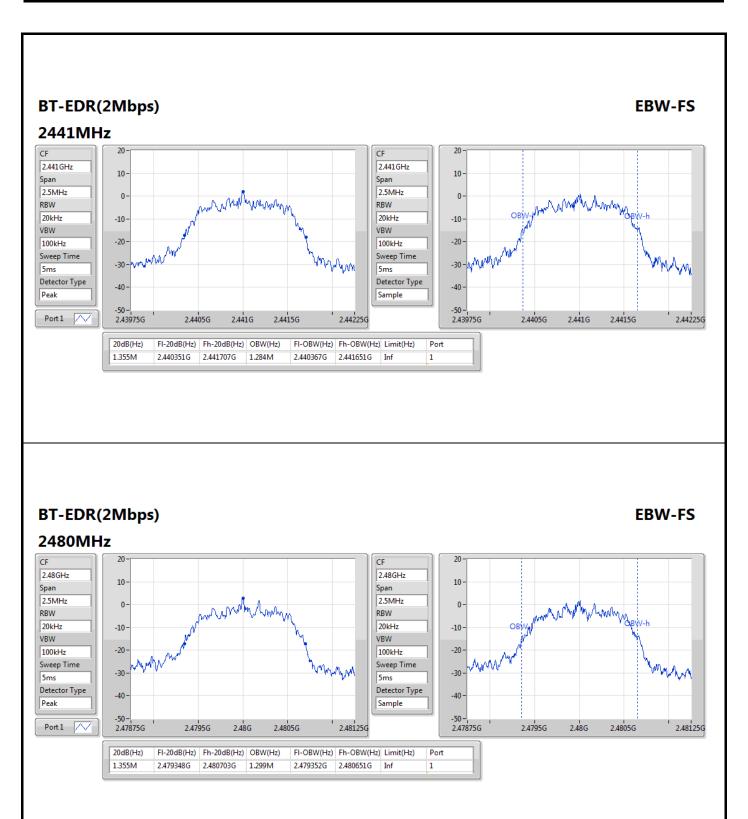
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-BR(1Mbps)	1.033M	947.902k	948KF1D	887.681k	918.958k
BT-EDR(2Mbps)	1.395M	1.317M	1M32G1D	1.355M	1.284M
BT-EDR(3Mbps)	1.377M	1.299M	1M30G1D	1.348M	1.259M


Max-N dB = Maximum 20dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 20dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth

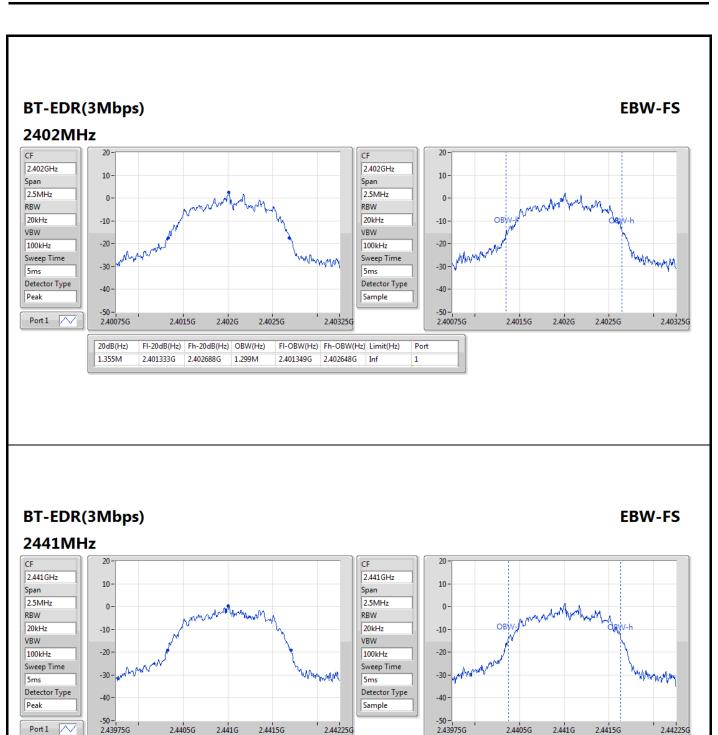
Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	Inf	942.029k	918.958k
2441MHz	Pass	Inf	887.681k	947.902k
2480MHz	Pass	Inf	1.033M	940.666k
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	Inf	1.395M	1.317M
2441MHz	Pass	Inf	1.355M	1.284M
2480MHz	Pass	Inf	1.355M	1.299M
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	Inf	1.355M	1.299M
2441MHz	Pass	Inf	1.377M	1.259M
2480MHz	Pass	Inf	1.348M	1.281M

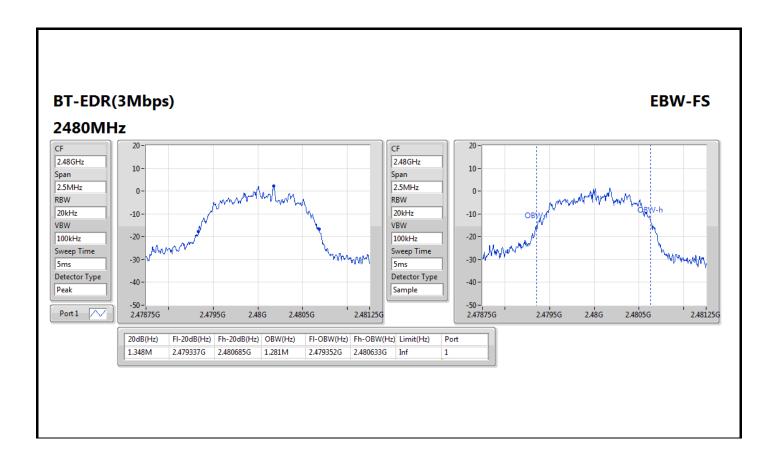

Port X-N dB = Port X 20dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth



1.395M

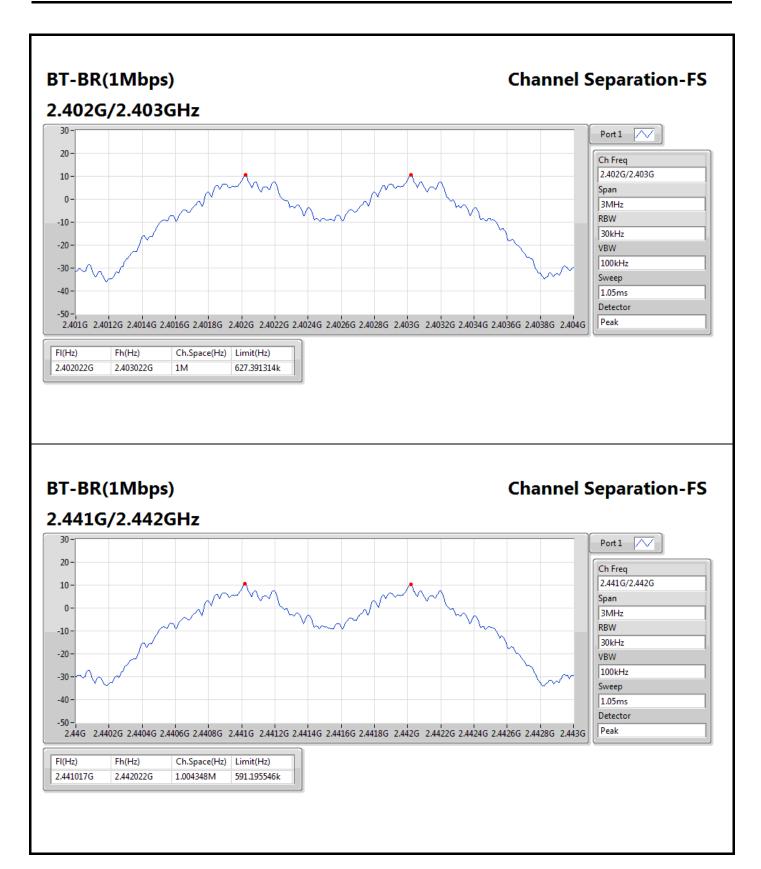

20dB(Hz)

1.377M

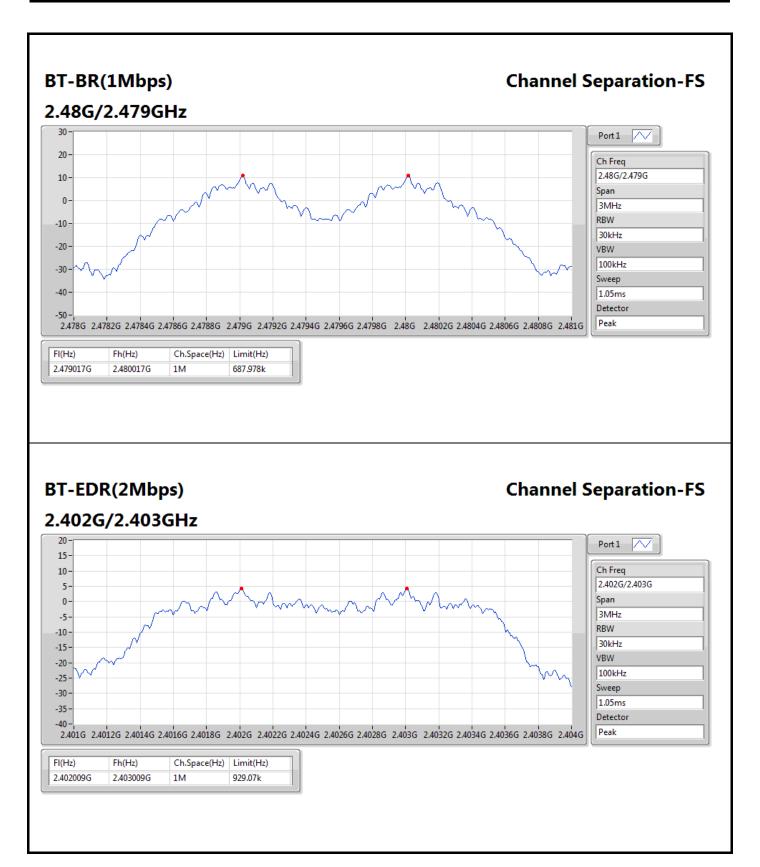

FI-20dB(Hz) | Fh-20dB(Hz) | OBW(Hz) | FI-OBW(Hz) | Fh-OBW(Hz) | Limit(Hz)

2.440374G 2.441633G Inf

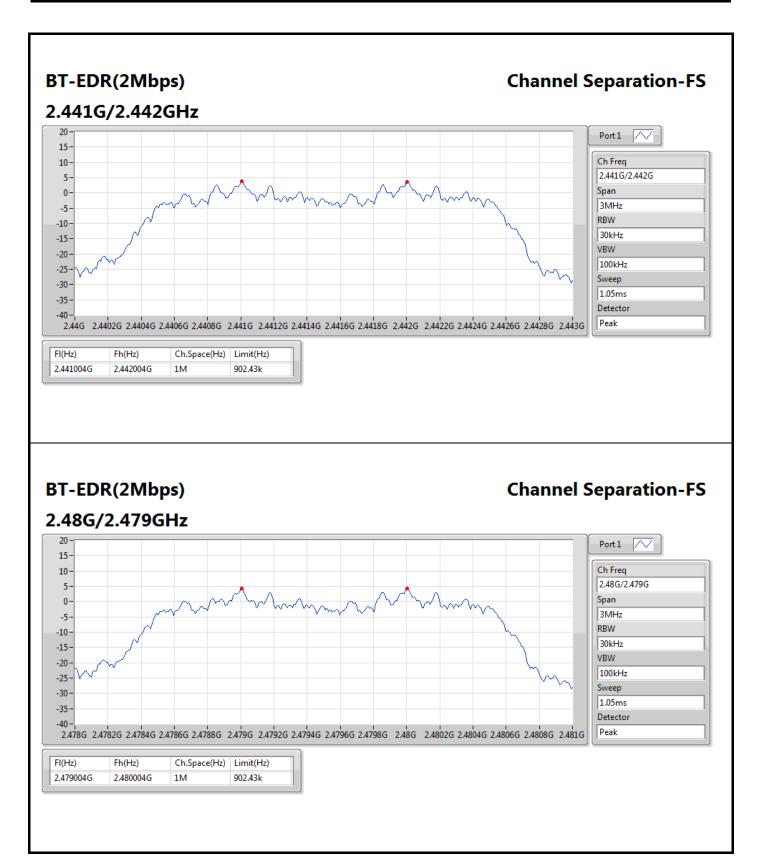
2.44033G 2.441707G 1.259M

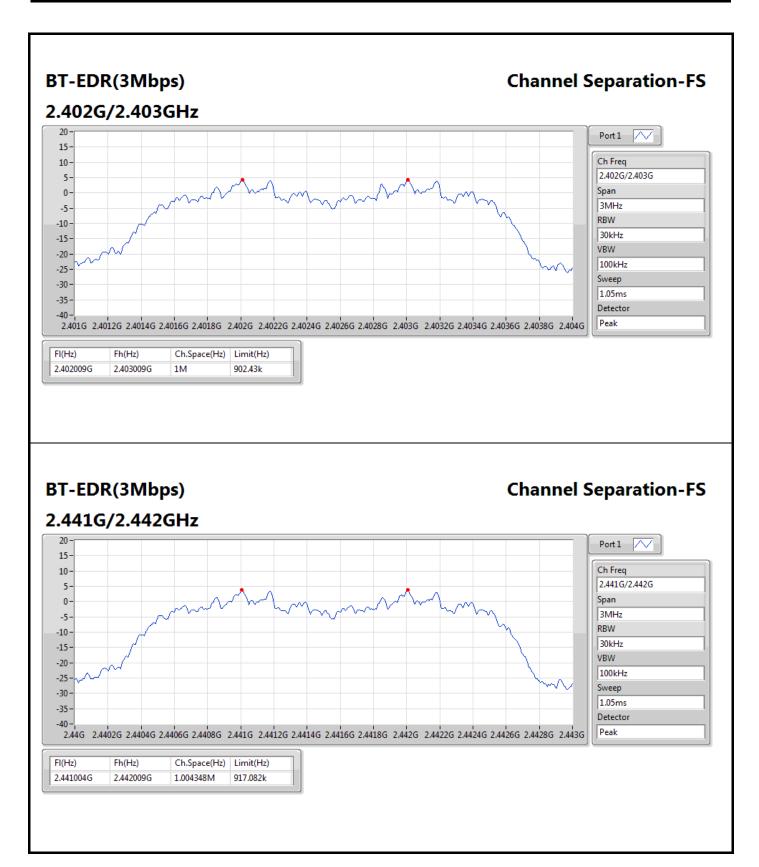

Summary

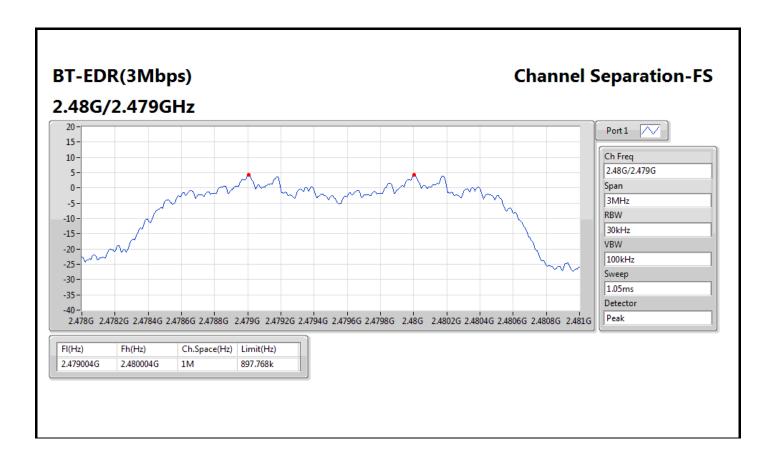
Mode	Max-Space	Min-Space
	(Hz)	(Hz)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	1.004348M	1M
BT-EDR(2Mbps)	1M	1M
BT-EDR(3Mbps)	1.004348M	1M


Result

Mode	Result	FI	Fh	Ch.Space	Limit
		(Hz)	(Hz)	(Hz)	(Hz)
BT-BR(1Mbps)	-	-	-	-	-
2402MHz	Pass	2.402022G	2.403022G	1M	627.391314k
2441MHz	Pass	2.441017G	2.442022G	1.004348M	591.195546k
2480MHz	Pass	2.479017G	2.480017G	1M	687.978k
BT-EDR(2Mbps)	-	-	-	-	-
2402MHz	Pass	2.402009G	2.403009G	1M	929.07k
2441MHz	Pass	2.441004G	2.442004G	1M	902.43k
2480MHz	Pass	2.479004G	2.480004G	1M	902.43k
BT-EDR(3Mbps)	-	-	-	-	-
2402MHz	Pass	2.402009G	2.403009G	1M	902.43k
2441MHz	Pass	2.441004G	2.442009G	1.004348M	917.082k
2480MHz	Pass	2.479004G	2.480004G	1M	897.768k







Summary

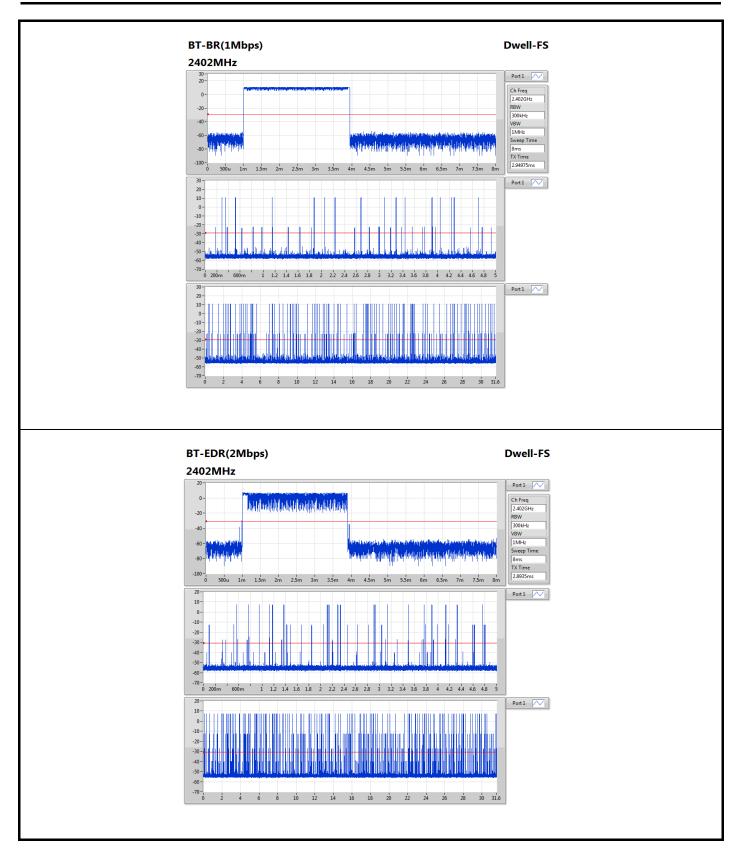
Mode	Max-Dwell
	(s)
2.4-2.4835GHz	-
BT-BR(1Mbps)	316.92114m_DH5
BT-EDR(2Mbps)	347.45148m_DH5
BT-EDR(3Mbps)	311.09252m_DH5
BT-BR-AFH(1Mbps)	295.075m_DH5-AFH
BT-EDR-AFH(2Mbps)	312.498m_DH5-AFH
BT-EDR-AFH(3Mbps)	312.714m_DH5-AFH

Result/ Non AFH mode

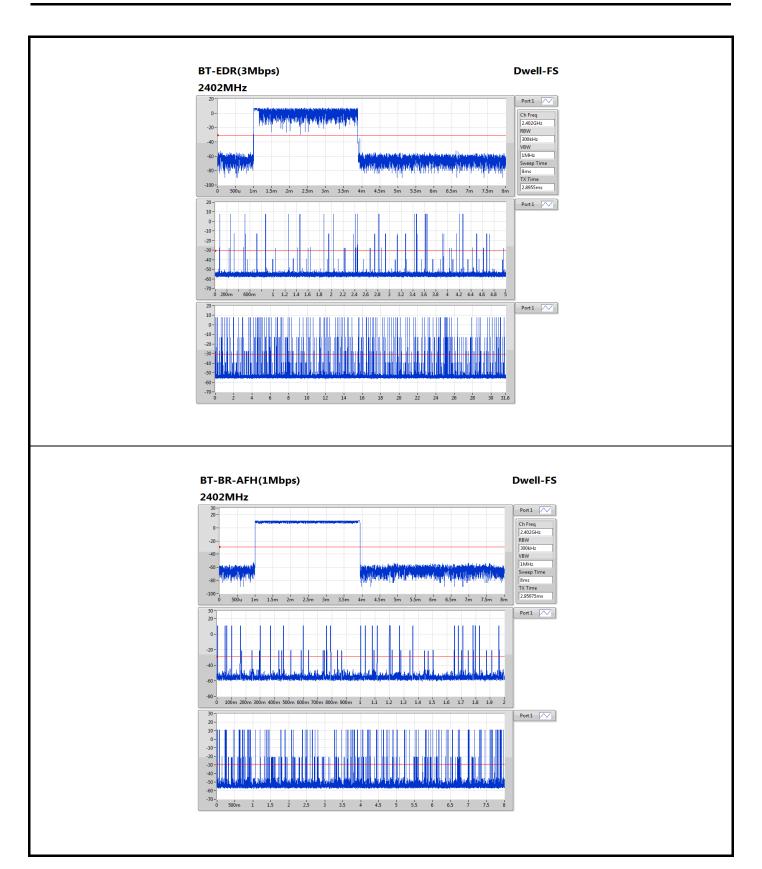
Mode	Result	Period	Dwell	Limit	Tx On	Number of
		(s)	(s)	(s)	(ms)	transmission in a 5 s
BT-BR(1Mbps)	-	-	-	-	-	-
2402MHz_DH5	PASS	31.6	0.31692	0.4	2.94975	17
BT-EDR(2Mbps)	-	-	-	-	-	-
2402MHz_DH5	PASS	31.6	0.34745	0.4	2.89350	19
BT-EDR(3Mbps)	-	-	-	-	-	-
2402MHz_DH5	PASS	31.6	0.31109	0.4	2.89550	17

Note 1: Dwell time = Number of transmission in a 5 second x Tx On Time x 6.32

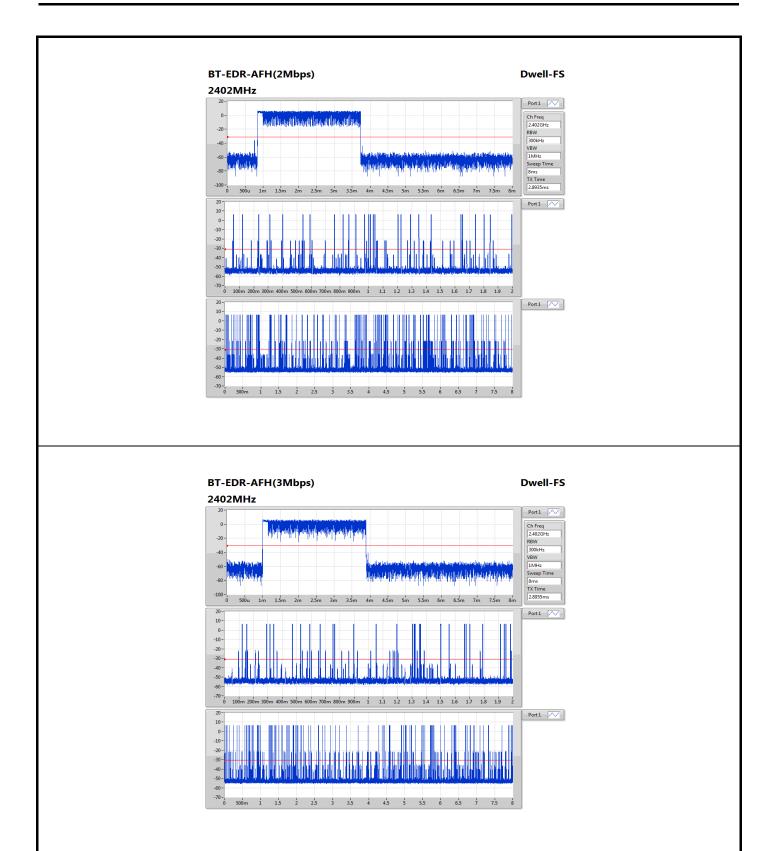
Note 2: DH5 was the worst mode.

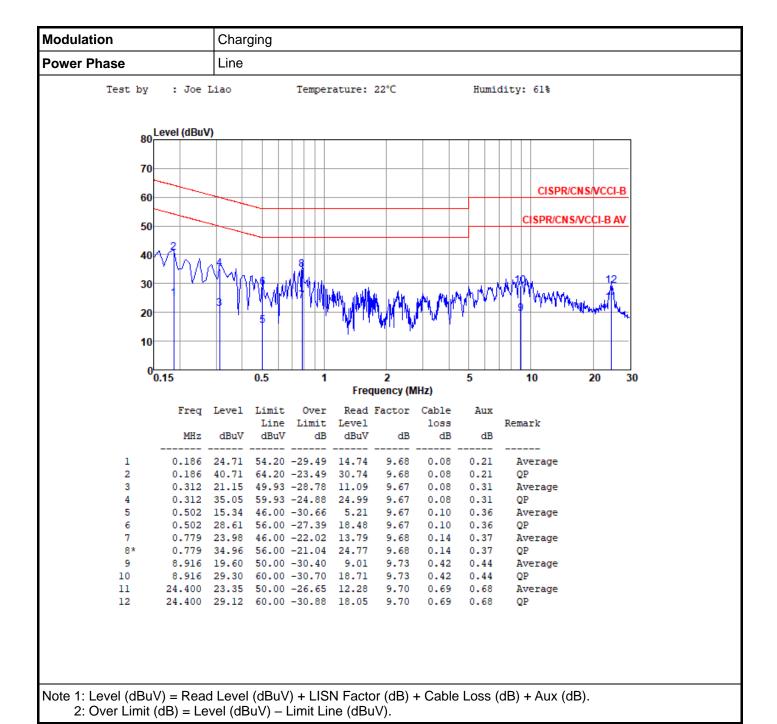

Result/ AFH mode

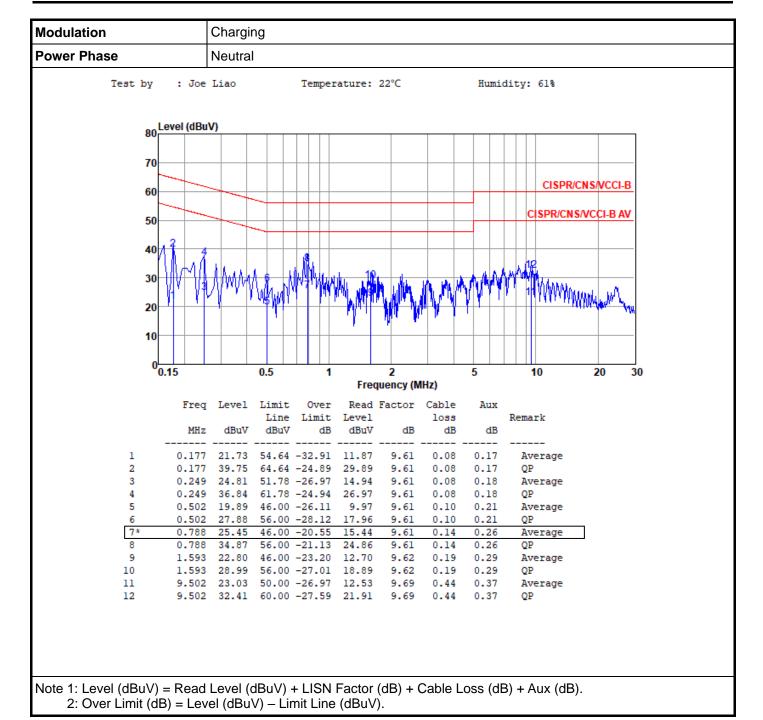
Mode	Result	Period	Dwell	Limit	Tx On	Number of
		(s)	(s)	(s)	(ms)	transmission in a 2 s
BT-BR-AFH(1Mbps)	-	-	-	-	-	-
2402MHz_DH5	PASS	8	0.29508	0.4	2.95075	25
BT-EDR-AFH(2Mbps)	-	-	-	-	-	-
2402MHz_DH5	PASS	8	0.31250	0.4	2.89350	27
BT-EDR-AFH(3Mbps)	-	-	-	-	-	-
2402MHz_DH5	PASS	8	0.31271	0.4	2.89550	27


Note 1: Dwell time = Number of transmission in a 2 second x Tx On Time x 4

Note 2: DH5 was the worst mode.







Page No. : 1 of 2

