

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC TEST REPORT

Prepared for:

Garmin International, Inc.

Address:

1200 East 151st Street Olathe, KS 66062

Product: GMN-02620

Test Report No:

R231201-00-E1B

Approved By:

l d'ane

Fox Lane, EMC Test Engineer

DATE:

August 2, 2024

31

Total Pages:

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee	Report Number:	R231201-00-E1C	Rev	C
labs	Prepared for:	Garmin International, Inc.		

REVISION PAGE

Rev. No.	Date	Description
		Issued by FLane
0	28 June 2024	Reviewed by KVepuri
		Prepared by FLane
A	9 July 2024	Updated Duty Cycle – FL
В	22 July 2024	Corrected Duty Cycle table – FL
С	2 August 2024	Added Mode Description – FL

CONTENTS

Revi	sion Pag	ge2						
1.0	.0 Summary of test results4							
2.0	EUT	Description5						
	2.1	Equipment under test5						
	2.2	Description of test modes						
	2.3	Description of support units5						
3.0	Lab	oratory description7						
	3.1	Laboratory description						
	3.2	Test Personnel						
	3.3	Test equipment						
4.0	Deta	ailed results9						
	4.1	Spurious Emissions & Emission Masks9						
	4.2	Output Power						
	4.3	Bandwidth and Modulation Characteristics						
	4.4	Frequency Stability measurements						
	4.5	Duty Cycle						
Арр	endix A	: Sample Calculation28						
Арр	endix B	- Measurement Uncertainty						
REP		ID31						

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. The EUT has been tested according to the following specifications:

APPLIED STANDARDS AND REGULATIONS						
Standard Section	Test Type	Result				
FCC Part 87.131	RE Output Dower / Emissions	Complian				
FCC Part 2.1051	RF Output Power / Emissions	Complies				
FCC Part 87.135	Bandwidth of Emissions	Complies				
FCC Part 2.1055	Bandwidth of Emissions					
FCC Part 87.139	Emission Limitations	Complian				
FCC Part 2.1057	Emission Limitations	Complies				
FCC Part 87.141	Madulation Deguinements	Osmulias				
FCC Part 2.1053	Modulation Requirements	Complies				
FCC Part 87.133	Frequency Stability	Complies				

See Section 4 for details on the test methods used for each test.

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Model	GMN-02620
FCC ID	IPH-04371
EUT Received	16 April 2024
EUT Tested	13 May 2024- 7 June 2024
Serial No.	704000106
Operating Band	1025 MHz – 1150 MHz
Device Type	Licensed Radio
Power Supply	14VDC/28VDC

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Mode	CHANNEL FREQUENCY (MHz)
Х	1025
Х	1088
Х	1150
Y	1025
Y	1088
Y	1150

See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worst-case scenario. The device was investigated on all 3 orthogonal axes, worst case was reported. The manufacturer modified the unit to transmit continuously on 6 different modes. Differences in emissions due to voltage were investigated and worst case was used for testing, 28VDC. Differences between X and Y mode is pulse spacing, Mode X, 12uS spacing. Mode Y, 36uS spacing.

2.3 DESCRIPTION OF SUPPORT UNITS

NA

ncee	Report Number:	R231201-00-E1C	Rev	С
Iabs	Prepared for:	Garmin International, Inc.		

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

All testing was performed by Fox Lane and Blake Winter of NCEE Labs. The results were reviewed by Karthik Vepuri.

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2023	July 17, 2025
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2023	July 17, 2025
SunAR RF Motion	JB1	A091418	July 27, 2023	July 26, 2024
ETS-Lindgren Red Horn Antenna	3115	218576	July 31, 2023	July 30, 2024
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026
ETS Red Preamplifier (Orange)*	3115-PA	00218576	January 22, 2024	January 22, 2026
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

4.0 DETAILED RESULTS

4.1 SPURIOUS EMISSIONS & EMISSION MASKS

Test Method: ANSI C63.26:2015: Section 5.5, "Radiated Emissions Testing"

Limits for field strength of emissions measurements: FCC Part 87.139:

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;

(2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least 43 + 10 log10 pY dB.

Test procedures:

The EUT was connected directly to a spectrum analyzer using attenuators to protect the test equipment. Analyzer measurement settings can be found in the plots below along with the corresponding power levels.

Emissions were performed using conducted method for emission mask. Radiated emissions were investigated at 3m test distance and with 500hm load on antenna port.

Deviations from test standard:

No deviation.

Test setup:

Figure 2 - Radiated Emissions Test Setup

Figure 3 - Radiated Emissions Test Setup, 1GHz – 18GHz

EUT operating conditions See Section 2.1 & 2.2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 10 of 31

Test results:

Figure 4 – Emissions Masks Plot, Mode X, 1025MHz

Figure 5 – Emissions Masks Plot, Mode X, 1088MHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 11 of 31

Figure 6 – Emissions Masks Plot, Mode X, 1150MHz

Figure 7 – Emissions Masks Plot, Mode Y, 1025MHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 12 of 31

Figure 8 – Emissions Masks Plot, Mode Y, 1088MHz

Figure 9 – Emissions Masks Plot, Mode Y, 1150MHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 13 of 31

Figure 10 – Radiated Emissions, 30MHz – 1GHz, Mode X

Freq (Max)	(QP) EMI	Limit	(QP) Margin	Twr Ht	Ttbl Ang	Pol
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg)	
38.910000	26.10	40.00	13.90	263.73	208.25	Н
42.711360	24.17	40.00	15.83	379.13	76.50	Н

EUT was investigated on all 3 orthogonal axes, and the worst case was reported. All other emissions including above 1 GHz were found to be at least 6dB below applicable limit line

4.2 OUTPUT POWER

Test Method: ANSI C63.26-2015 Section(s) 5.2.3.3

Limits of power measurements:

FCC Part 87.131

Test procedures:

All the measurements were done in spectrum analyzer mode with the resolution bandwidth greater than the occupied bandwidth. Peak detector and max hold used.

Deviations from test standard:

No deviation.

Test setup:

Figure 11 – Output Power Measurements Test Setup

EUT operating conditions:

See Section 2.1 & 2.2

Test results:

	Output Power							
Mode	CHANNEL FREQUENCY (MHz)	Duty Cycle Correction Factor (DCCF _{Power}) (dBm)	Peak Output Power (dBm)	Average Output Power (dBm)	Average Output Power (W)	Method	RESULT	
Х	1025	26.99	55.223	28.233	0.666	Conducted	PASS	
Х	1088	26.99	55.509	28.519	0.711	Conducted	PASS	
Х	1150	26.99	55.574	28.584	0.722	Conducted	PASS	
Y	1025	26.99	55.388	28.398	0.692	Conducted	PASS	
Y	1088	26.99	55.498	28.508	0.709	Conducted	PASS	
Ý	1150	26.99	55.568	28.578	0.721	Conducted	PASS	
Average Power = Peak Power Level – DCCF _{Power}								

Figure 13 - Peak Power, Mode X, 1088MHz

Figure 14 – Peak Power, Mode X, 1150MHz

Figure 15 – Peak Power, Mode Y, 1025MHz

Figure 16 – Peak Power, Mode Y, 1088MHz

Prepared for: Garmin International, Inc.

4.3 BANDWIDTH AND MODULATION CHARACTERISTICS

Test Method: ANSI C63.26, Section(s) 5.4.3, 5.4.4

Limits of bandwidth measurements:

Authorized Bandwidth is 1.0667MHz. Operating Range is 1025MHz – 1150MHz.

Limits for Modulation Characteristics: NA

Test procedures:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable and an attenuator to protect measurement equipment. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1 MHz RBW and 8 MHz VBW. The bandwidth measurements were done using the automatic bandwidth measurement.

Deviations from test standard:

No deviation

Test setup:

Figure 18 – Measurements Test Setup

EUT operating conditions: See Section 2.1 & 2.2

Test results:

02:34:44 PM Jun 06, 2024 Radio Std: None ENSE:INT ALIGN OFF Center Freq: 1.025000000 GHz Trig: Free Run Avg|Hold:>1000/1000 #Atten: 20 dB Analyzer - Occupied BV Center Freq 1.025000000 GHz Ģ #IFGain:Low Radio Device: BTS Ref 17.00 dBm 5 dB/div Span 2 MHz Sweep 18.47 ms Center 1.025 GHz #Res BW 10 kHz VBW 100 kHz **Total Power** 6.22 dBm **Occupied Bandwidth** 479.15 kHz -945 Hz Transmit Freg Error % of OBW Power 99.00 % x dB Bandwidth 855.7 kHz -26.00 dB x dB **STATUS** MSG

Figure 20 – Occupied Bandwidth, Mode X, 1088MHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 20 of 31

Figure 22 – Occupied Bandwidth, Mode Y, 1025MHz

Prepared for: Garmin International, Inc.

4.4 FREQUENCY STABILITY MEASUREMENTS

```
Test Method: ANSI C63.26,
Section(s) 5.6.3 "Procedures for frequency stability testing"
```

Limits: 47 CFR 87.133(b): 20ppm 1025MHz = 20.50kHz 1088MHz = 21.76kHz 1150MHz = 23.00kHz

Test procedures:

Radiated power was measured on a spectrum analyzer with resolution bandwidth and video bandwidth set to 27kHz and 270kHz respectively. The frequency error functionality on the receiver was used. The temperature was varied from -30°C to +55°C.

Deviations from test standard:

No deviation

Figure 25 – Measurements Test Setup

EUT operating conditions: See Section 2.1 & 2.2

Test results: Worst case is reported. Complies

Prepared for: Garmin International, Inc.

Frequency Deviation (Temperature) (kHz)							
	Nor	Nominal Frequency					
Temp [C]	1025MHz	1025MHz 1088MHz 1150MHz					
-30	-1.881	-4.412	4.785				
-20	-1.224	-4.151	5.02				
-10	-0.918	-4.738	3.99				
0	-1.464	-4.799	7.162				
10	-0.999	-3.659	3.063				
20	-1.359	-4.639	3.583				
30	2.146	-5.225	1.224				
40	1.657	-4.397	1.836				
55	1.587	3.226	5.923				

Frequency Stability (Voltage) (kHz)						
	Nominal Frequency					
Voltage	1025MHz 1088MHz 1150MH					
23.8	-2.12	-5.189	3.643			
28.0	-1.921	-5.09	3.633			
32.2	-2.369	-4.901	3.788			

4.5 DUTY CYCLE

Keysight Spectrum Analyzer - Swept SA				- 8 💌
KI RF PRESEL 50 Ω DC	SENSE:IN	T SOURCE OFF ALIG	N OFF	10:12:47 AM Jun 28, 2024
Marker 4 Δ 6.99999 μs	PNO: Fast +++ Trig: IFGain:Low #Atte	: Free Run /	Avg Type: Voltage Avg Hold: 20/20	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN
Ref Offset 30.6 dB 10 dB/div Ref 60.60 dBm				ΔMkr4 7.000 μs -56.841 dB
50.6 3∆1				
40.6				
30.6				
20.6				
10.6				
0.600				
-9.40 more show and the show the	where we wanted and the second	MAN MANA MANA	manufacture	warmen warden and a start
-19.4				
-29.4				
Center 1.150000000 GHz Res BW (CISPR) 1 MHz	VBW 50 M	IHz	Sweep	Span 0 Hz 1.000 ms (1001 pts)
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION	N WIDTH FL	INCTION VALUE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μs <u>41.120 dBm</u> μs (Δ) _56 179 dB			
$3 \Delta 1 1 t (\Delta)$ 12.00	μs (Δ) -0.019 dB			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μs (Δ) -56.841 dB			
6				
9				
11 <				×
MSG			STATUS	

Figure 26 – Duty Cycle, Mode X

Figure 27 – Duty Cycle, Mode Y

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 25 of 31

🔤 Keysight Spectrum Analyzer - Swept SA								- # ×
Marker 3 A 6 67280 ms			SENSE:INT SOUR	-200.0 us	ALIGN OFF	: Voltage	11:17:10 TR	AM Jul 15, 2024
	NFE	PNO: Fast 🔸	Trig: Video				1	
		-Gain:Low	#Atten: 40	ав				0.070
								0.6/3 ms _0.00 d⊡
10 dB/div Ref 30.00 dBn		N 1		242				-0.05 uB
20.0				342				
10.0								
0.00								
-10.0								
-20.0								
30.0								TRIG LVL
40.0								
50.0 a drawler word that have likely	و بر ال روان و ال	ا م ما ما ما	Land the base task	a sha ka			س بابا م	والمراجع والمراجع
-50.0 West of realization to the section and the section of the se	en de la compañía de La compañía de la comp	en and an ingeniet in presentation Eta anti-lata i contra traditat	reconcerning and the former of	restantin nalise. Kalat	allellek anter generale generale Allellek die kale andere andere	en en ante en appresses appres All de la tata data a tatan cat	na ipina manganga perimakan Al-Albana dalah di dari di d	internet and provide the
Center 1.025000000 GHz								Span 0 Hz
#Res BW (CISPR) 1 MHz		VBV	/ 50 MHz			Sweep	25.33 ms (10001 pts)
MKR MODE TRC SCL	x	Y	FUN	CTION FUNC	TION WIDTH	FI	JNCTION VALUE	^
1 N 1 t 2 A1 1 t (A)	<u>195.1 µs</u>	21.18	dBm 25 dB					
$3 \Delta 2 1 t (\Delta)$	6.673 ms	(Δ) -0.0)9 dB					
4 5								
6								
8								
9								
11								~
<					0.000			>
					SIATUS			

Figure 28 – Period, Mode X

Keysight Spectrum Analyzer - Swept SA RF PRESEL 50 Ω D		S	ENSE:INT SOURCE			Voltage	11:18:13 AM Ju	il 15, 2024
Marker 5 & 0.09015 ms	NFE F	PNO: Fast ↔ FGain:Low	Trig: Video #Atten: 40 dE	,	Arg type.	Tonage	TYPE DET	2 N N N N
10 dB/div Ref 30.00 dBn	n						ΔMkr3 6.6 2.	98 m 14 dl
20.0 0 1	<u>^2/</u>	1		3∆2				
10.0								
10.0								
20.0								TRIG LV
-40.0								
50.0 - you doo to joint to do the body of		dahar dahar da si ke dara Antalahar asi kasar dara		ang <mark>alain</mark> ik anala na akina ata	doni plani tershi Mini alitika tersh	a di karang dan baharan dan sa Talam tang tan baharan sana	ander generaling dat side Matter af Constantion af in	della di di terto
		a hout and table				11-11-01-00		
Res BW (CISPR) 1 MHz		VBW	50 MHz			Sweep	25.33 ms (100	101 pt
MKR MODE TRC SCL	х 195.1 µs	Y 16.91	FUNCTI	DN FUNC	TION WIDTH	FL	INCTION VALUE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>6.698 ms</u> 6.698 ms	(Δ) <u>3.8</u> (Δ) 2.1	7 dB 4 dB					
7								
10 10 10 10 10 10 10 10 1								
r								>

Figure 29 – Period, Mode Y

Modulation	ON Time (uS)	Period (uS)	DCCF For Emissions	DCCF For Power
Mode X	14	6673	53.98	26.99
Mode Y	14	6698	53.98	26.99

DC = ON Time / Period DCCF For Emissions = 20*log(1/DC) DCCF For Power = 10*log(1/DC)

Mode X:

DC = 14/6673 = 0.002 DCCF For Emissions = 20*log(1/0.002) = 53.98 DCCF For Power = 10*log(1/0.002) = 26.99

Mode Y:

DC = 14/6698 = 0.002 DCCF For Emissions = 20*log(1/0.002) = 53.98 DCCF For Power = 10*log(1/0.002) = 26.99

С

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF - (-CF + AG) + AV

FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier GainAV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee.	Report Number:	R231201-00-E1C	Rev	С
. labs	Prepared for:	Garmin International, Inc.		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000 Voltage (dBµV) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dBµV/m) / 20] / 10^6 Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS [0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ $10log(10^9)$ is the conversion from micro to milli

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08

Expanded uncertainty values are calculated to a confidence level of 95%.

REPORT END