	Model:	4277	Test Number:	220405D				
MDE C. L. L.								
MPE Calculator			TX power added to the antenna gai	n in dBi.				
	dBi = dB gain compared to a							
	S = power density in mW/cm	12 Insmitter Output power (mW)	2					
		ransmitter Output power (mw						
Output Power for 100%	duty Cycle operation (Watts)	100			Antenna Gain (dBi)	4.7		
	Output Power for 0.417%	duty Cycle operation (Watts)	0.0022	Ant	enna Gain (Numeric)	2.95		
Tx Frequency (MHz)	2402	Calcualtion power (Watts)	0.0022	dBd + 2.17 = dBi	dBi to dBd	2.2		
		* ` '			Antenna Gain (dBd)	2.53		
Cable Loss (dB)	0.0	Adjusted Power (dBm	3.50	Anter	na minus cable (dBi)			
. ,		,			enna Gain (Numeric)			
	Calculated ERP (mw) 4.009			EIRP = Po(dBM) + Gain (dB) Radiated (EIRP) dBm ERP = EIRP - 2.17				
	Calculated EIRP (mw) 6.607							
		EIRP		1	Radiated (ERP) dBm			
	Power density (S) mW/s				Laddica (Era) abii	0.050		
		4 p r^2						
	r (cm) EIRP (mW)							
	Occupational Limit	FCC radio	frequency radiation exposure limits p	per 1.1310				
8.006666667		Frequency (MHz)	Occupational Limit (mW/cm²)	Public Limit (mW/cm²)	ĺ			
80	_	30-300	1	0.2	i			
	General Public Limit	300-1,500	f/300	f/1500	í			
1.601333333		1,500-10,000	5	1				
16								
0.5	Occupational Limit	YO U C	P. 2 P. 5	Pag 102				
$0.6455 f^{0.5}$			quency radiation exposure limits per					
39.4		Frequency (MHz)	Occupational Limit (W/m²)	Public Limit (W/m ²)				
0.6924	General Public Limit	100-6,000	$0.6455 f^{0.5}$					
$0.02619f^{0.6834}$		6,000-15,000	50	1.001				
5.4	W/m ²	48-300		1.291				
		300-6,000 6,000-15,000	50	$0.02619f^{0.6834}$ 10				
		6,000-13,000	30	10				
f = Transmit Frequecny (MHz	(1)			f (MHz) =	2402	MHz		
P _T = Power Input to Antenna				P _T (mW) =				
Duty cycle (percentage of op-	eration)			% =	100	%		
P _A = Adjusted Power due to I	Outy cycle or Cable Loss (mW)			$P_A(mW) =$	2.24	mW		
G _N = Numeric Gain of the Ant				GN (numeric) =		numeric		
S ₂₀ = Power Density of device			$S_{20}=(P_AG_N)/(4\pi R_{20})^2$	$S_{20} (mW/m^2) =$		mW/m ²		
S ₂₀ = Power Density of device			$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$S_{20} (W/m^2) =$		W/m ²		
S _L = Power Density Limit (W/			,	$S_L (W/m^2)=$		W/m ²		
	Radiating Element for Compliance		$R_C = \sqrt{(P_A G_N / 4\pi s_i)}$	R _C (cm) =		cm		
	vice at the Compliance Distance R _C	(W/m ²)	$S_C = (P_A G_N)/(4\pi R_C)^2$	$S_C(W/m^2) =$		W/m ²		
R ₂₀ = 20cm				R20=	20	cm		
	For Complaince with Can	ada General Population Limit	s, User Manual must indicate a minir	num seneration distance of	1.0	cm		
			la General Population Limits, a minir			Meters		
	E Calculations and Summary	m.n. 2001	D 77 11 777		2 2.	2 2.	D	a a 2
Band 1, (MHz)	Tx Duty Cycle (%)	Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (numeric)	S _L (W/m ²)	S ₂₀ (W/m ²)	R _C (cm)	S _C (W/m ²)
2400-2483.5	100	2402	2.24	2.95	5.351	0.01	1.0	5.35
Band 2, (MHz)	Tx Duty Cycle (%)	Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (dBi)	SL (W/m2)	S20 (W/m2)	RC (cm)	SC (W/m2)
2400-2483.5	100	2402	3.48	1.00	5.412	0.01	0.7	5.41
Band 3, (MHz) 2400-2483.5	Tx Duty Cycle (%)	Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (dBi)	SL (W/m2)	S20 (W/m2)	RC (cm)	SC (W/m2)
2400-2483.3	100	2412	3.48	1.00	5.412	0.01	0.7	5.41
Band 4, (MHz)	Tx Duty Cycle (%)	Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (dBi)	SL (W/m2)	S20 (W/m2)	RC (cm)	SC (W/m2)
		/	, ,	` ′	, , , , , , , , , , , , , , , , , , ,			
		Simlutaneous MPE Calcula	ation					
	Transmitter 1	Transmitter 2	Transmitter 3	Transmitter 4				
Tx Frequeny (MHz)	2402	2402	2412					
S ₂₀ (W/m ²)	0.01	0.07						
$S_L (W/m^2)$	5.351	16.013						
Power Ratio (S _L / S ₂₀)	0.002	0.004						
	Sum of Power Ratios a	t 20cm (0.002 + 0.004+0.00		0.012	Than-Card 1 1	- i- E '		
		Requirement = .	Σ of MPE Ratio ≤ 1		Therefore the design	ı is exempt		

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Garmin International, Inc.

FCC ID: IPH-04277 PMN: A04277, B04277, C04277, D04277 IC: 1792A-04277

Test: 230404 SN's: 85Y000013 /85W000016 /3438712904 Test to: 47CFR 15.249, RSS-210 Date: August 30, 2023

Page 1 of 3 File: 04277 RFExp

	HVIN:	42	77 Test Number	230405D				
MPE Calculator			on TX power added to the antenna ga					
	dBi = dB gain compared to a		g.					
	S = power density in mW/cm							
	Tra	nnsmitter Output power (mV	V) 17.7					
		ransmitter Output power (V						
Output Power for 100%	duty Cycle operation (Watts)		0.010		Antenna Gain (dBi)	5.7		
	Output Power for 100%	duty Cycle operation (Wat	0.010	Ante	enna Gain (Numeric)	3.72		
Tx Frequency (MHz)	2402	Calculation power (Wat	0.010	dBd + 2.17 = dBi		2.17		
					Antenna Gain (dBd)	3.53		
Cable Loss (dB)	0.0	Adjusted Power (dB	n) 9.79		ina minus cable (dBi)	5.70		
	Calculated ERP (mw)	21.470			enna Gain (Numeric)	3.72		
	Calculated ERP (mw)				o(dBm) + Gain (dB) adiated (EIRP) dBm	15.490		
	Calculated EIKF (IIIW)	33.400			ERP = EIRP - 2.17			
		EIRP			Radiated (ERP) dBm	13.320		
	Power density (S) mW/	4 p r^2			, , , , , , , , , , , , , , , , , , ,			
		4 pr 2						
	r (cm) EIRP (mW)							
				<u> </u>				
	Occupational Limit		frequency radiation exposure limits p	_				
8.006666667		Frequency (MHz)	Occupational Limit (mW/cm ²)	Public Limit (mW/cm ²)				
80.1	W/m ²	30-300	1	0.2				
	General Public Limit	300-1,500	f/300	f/1500				
1.601333333	mW/cm ²	1,500-10,000	5	1				
16.0	W/m ²							
	Occupational Limit							
$0.6455 f^{0.5}$	W/m ²	IC radio f	requency radiation exposure limits per	r RSS-102				
31.6	W/m ²	Frequency (MHz)	Occupational Limit (W/m²)	Public Limit (W/m ²)	ĺ			
	General Public Limit	100-6,000	$0.6455 f^{0.5}$					
$0.02619f^{0.6834}$		6,000-15,000	50					
			30	1.291				
5.35	W/m ²	48-300						
		300-6,000		$0.02619f^{0.6834}$				
		6,000-15,000	50	10				
e m in am				COMI	General Public	Occupational) ett	
f = Transmit Frequency (MHz)				f (MHz) =	2402	2402	MHz	
							337	
P _T = Power Input to Antenna (mW)				P _T (mW) =	9.5280	9.5280		
Duty cycle (percentage of operation	n)			%=	100	100	%	
Duty cycle (percentage of operation P _A = Adjusted Power due to Duty of	n)			% = P _A (mW) =	100 9.53	100 9.53	% mW	
Duty cycle (percentage of operation $P_A = A$ djusted Power due to Duty of $G_N = N$ umeric Gain of the Antenna	n) cycle or Cable Loss (mW)			% = P _A (mW) = GN (numeric) =	100 9.53 3.72	100 9.53 3.72	% mW numeric	
Duty cycle (percentage of operation $P_A = Adjusted$ Power due to Duty of $G_N = Numeric$ Gain of the Antenna $S_{20} = Power$ Density of device at 20	n) cycle or Cable Loss (mW) chem (mW/m²)		$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$\% = P_{A} (mW) = GN (numeric) = S_{20} (mW/m^{2}) =$	100 9.53 3.72 0.01	100 9.53 3.72 0.01	% mW numeric mW/m ²	
Duty cycle (percentage of operation $P_A = Adjusted$ Power due to Duty of $G_N = Numeric$ Gain of the Antenna $S_{20} = Power$ Density of device at 20 $S_{20} = Power$ Density Of Density De	n) cycle or Cable Loss (mW)		$\begin{split} S_{20} = & (P_A G_N) / (4 \pi R_{20})^2 \\ S_{20} = & (P_A G_N) / (4 \pi R_{20})^2 \end{split}$	$\% = P_A (mW) = GN (numeric) = S_{20} (mW/m^2) = S_{20} (W/m^2) = S_{20} $	100 9.53 3.72 0.01 0.07	9.53 3.72 0.01 0.07	% mW numeric mW/m ² W/m ²	
Duty cycle (percentage of operation $P_A = Adjusted$ Power due to Duty of $G_N = Numeric$ Gain of the Antenna $S_{20} = Power$ Density of device at 20	n) cycle or Cable Loss (mW)			$\% = P_{A} (mW) = GN (numeric) = S_{20} (mW/m^{2}) =$	100 9.53 3.72 0.01 0.07	100 9.53 3.72 0.01	% mW numeric mW/m ² W/m ²	
Duty cycle (percentage of operation $P_A = Adjusted$ Power due to Duty of $G_N = Numeric$ Gain of the Antenna $S_{20} = Power$ Density of device at 20 $S_{20} = Power$ Density Of Density De	n) cycle or Cable Loss (mW) cycle or (Table Loss (mW) chem (mW/m²) chem (W/m²)			$\% = P_A (mW) = GN (numeric) = S_{20} (mW/m^2) = S_{20} (W/m^2) = S_{20} $	100 9.53 3.72 0.01 0.07	9.53 3.72 0.01 0.07	% mW numeric mW/m² W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted$ Power due to Duty of $G_N = Numeric$ Gain of the Antenna $S_{20} = Power$ Density of device at 20 $S_{20} = Power$ Density of device at 20 $S_L = Power$ Density Limit (W/m^2) Fig.	n) pycle or Cable Loss (mW) kene (mW/m²) cm (W/m²) CC anada	FCC		$\% =$ $P_A (mW) =$ $GN (numeric) =$ $S_{20} (mW/m^2) =$ $S_{20} (W/m^2) =$ $S_L (W/m^2) =$	100 9.53 3.72 0.01 0.07 16.013	100 9.53 3.72 0.01 0.07 80.067 31.636	% mW numeric mW/m² W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted$ Power due to Duty c $G_R = Numeric$ Gain of the Antenna $S_{20} = Power$ Density of device at 20 $S_{10} = Power$ Density of device at 20 $S_{1} = Power$ Density Limit (W/m^2) $F_1 = Power$ Density Limit (W/m^2) $F_2 = Power$ Density Limit (W/m^2) $F_3 = Power$ Density Limit (W/m^2) $F_4 = Power$ Density Limit $F_5 = Power$ Density Limit $F_6 = Power$ Density	n) cycle or Cable Loss (mW) chem (mW/m²) ccc anada ating Element for Compliance (cm)		$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$\% = $P_A(mW) = $GN (numeric) = $S_{20} (mW/m^2) = $S_{20} (W/m^2) = $S_L (W/m^2$	100 9.53 3.72 0.01 0.07 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636	% mW numeric mW/m² W/m² W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_R = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_L = Power Density of device at 20 S_L = Power Density Limit (W/m^2) Fig. 2 S_L = Power Density Limit (W/m^2) Constant of S_L = Power Density Constant of S_L = Power Density Constant of S_L = Power Density Constant of Constant of S_L = Power Density Constant of Consta$	n) cycle or Cable Loss (mW) clem (mW/m²) ccc anada ating Element for Compliance (cm) ating Element for Compliance (cm)	Canada	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ \\ R_C = & \sqrt{(P_A G_N / 4\pi \epsilon_k)} \\ R_C = & \sqrt{(P_A G_N / 4\pi \epsilon_k)} \end{split}$	$\label{eq:partial_state} \begin{split} \% &= & P_A(mW) = \\ & GN\left(numerc\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{2}\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & S_L\left(w/m^2\right) = \\ & R_C\left(cm\right) = \\ & R_C\left(cm\right) = \end{split}$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6	% mW numeric mW/m² W/m² W/m² cm cm	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_R = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_{20} = Power Density of device at 20 S_L = Power Density Limit (W/m^2) F S_L = Power Density Limit (W/m^2) F S_L = Power Density Limit F F F F F F F F F F$	n) cycle or Cable Loss (mW) chm (mW/m²) CCC anada ating Element for Compliance (cm) at the Compliance Distance Rc (W/r	Canada n ²) FCC	$\begin{split} S_{20} = & (P_A G_N)/(4\pi R_{20})^2 \\ \\ R_C = & \sqrt{(P_A G_N/4\pi \epsilon_n)} \\ R_C = & \sqrt{(P_A G_N/4\pi \epsilon_n)} \\ S_C = & (P_A G_N)/(4\pi R_C)^2 \end{split}$	$\label{eq:problem} \begin{split} \% &= \\ P_A(mW) &= \\ GN\left(numerc\right) &= \\ S_{20}\left(mW/m^2\right) &= \\ S_{20}\left(W/m^2\right) &= \\ S_L\left(W/m^2\right) &= \\ S_L\left(W/m^2\right) &= \\ R_C\left(cm\right) &= \\ R_C\left(cm\right) &= \\ S_C\left(W/m^2\right) &= \\ S_C\left(W/m^2\right) &= \\ \end{split}$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9	% mW numeric mW/m² W/m² W/m² cm cm W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_8 = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_{20} = Power Density of the device at 20 S_L = Power Density Limit (W/m^2) FG S_L = Power Density Limit (W/m^2) of S_L = P0 minimum distance to the Radi S_L = P0 mer Density of the device at S_L = P0 wer Density of the device at S_L = P0 wer Density of the device at$	n) cycle or Cable Loss (mW) chm (mW/m²) CCC anada ating Element for Compliance (cm) at the Compliance Distance Rc (W/r	Canada n ²) FCC	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ \\ R_C = & \sqrt{(P_A G_N / 4\pi \epsilon_k)} \\ R_C = & \sqrt{(P_A G_N / 4\pi \epsilon_k)} \end{split}$	$\% = P_A(mW) = GN(mumeric) = S_{20}(mW/m^2) = S_{20}(mW/m^2) = S_L(W/m^2) = S_L(W/m^2) = S_L(W/m^2) = R_C(cm) = R_C(cm) = S_C(W/m^2) =$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64	% mW numeric mW/m² W/m² W/m² cm cm W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty c G_N = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_0 = Power Density of device at 20 S_1 = Power Density Limit (W/m²) Fig. = Power Density Limit (W/m²) C_1 = Power Density Limit (W/m²) C_2 = Power Density Limit (W/m²) C_3 = Power Density (W/m²) C_3 = Power Density (W/m²) C_3 = Power Density (W/m²$	n) cycle or Cable Loss (mW) chm (mW/m²) CCC anada ating Element for Compliance (cm) at the Compliance Distance Rc (W/r	Canada n ²) FCC	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ \\ R_C = & \sqrt{(P_A G_N / 4\pi \kappa_1)} \\ R_C = & \sqrt{(P_A G_N / 4\pi \kappa_1)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \end{split}$	$\label{eq:problem} \begin{split} \% &= \\ P_A(mW) &= \\ GN\left(numerc\right) &= \\ S_{20}\left(mW/m^2\right) &= \\ S_{20}\left(W/m^2\right) &= \\ S_L\left(W/m^2\right) &= \\ S_L\left(W/m^2\right) &= \\ R_C\left(cm\right) &= \\ R_C\left(cm\right) &= \\ S_C\left(W/m^2\right) &= \\ S_C\left(W/m^2\right) &= \\ \end{split}$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64	% mW numeric mW/m² W/m² W/m² cm cm W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_R = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_{20} = Power Density of the view at 20 S_{11} = Power Density Limit (W/m^2) FI S_{12} = Power Density Limit (W/m^2) GI = Power Density Limit (W/m^2) GI = Power Density Limit (W/m^2) GI = Minimum distance to the Radi G_C = Minimum distance to the Radi G_C = Power Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at$	n) cycle or Cable Loss (mW) lem(mW/m²) cem (mW/m²) cec anada ating Element for Compliance (cm) ating Element for Compliance (cm) t the Compliance Distance R _c (W/t	Canada m²) FCC m²) Canada	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_A / 4\pi g_A)} \\ R_C = & \sqrt{(P_A G_A / 4\pi g_A)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \end{split}$	$\label{eq:problem} \begin{split} &\%_{6} = \\ &P_{A}\left(mW\right) = \\ &GN\left(numerk\right) = \\ &S_{20}\left(mW/m^{2}\right) = \\ &S_{20}\left(W/m^{2}\right) = \\ &S_{L}\left(W/m^{2}\right) = \\ &S_{L}\left(W/m^{2}\right) = \\ &R_{C}\left(cm\right) = \\ &R_{C}\left(cm\right) = \\ &S_{C}\left(W/m^{2}\right) = \\ &S_{C}\left(W/m^{2}\right) = \\ &R_{C}0 $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64	% mW numeric mW/m² W/m² W/m² cm cm W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_8 = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_{20} = Power Density of the device at 20 S_L = Power Density Limit (W/m^2) FG S_L = Power Density Limit (W/m^2) of S_L = P0 minimum distance to the Radi S_L = P0 mer Density of the device at S_L = P0 wer Density of the device at S_L = P0 wer Density of the device at$	ccc anada ating Element for Compliance (cm) t the Compliance Distance R _C (W/r	Canada n ²) FCC n ²) Canada ada General Population Lin	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N / 4\pi g_A)} \\ R_C = & \sqrt{(P_A G_N / 4\pi g_A)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \end{split}$ its, User Manual must indicate a mini	$\label{eq:problem} \begin{split} \% &= & P_A(mW) = \\ & P_A(mW) = \\ & GN\left(numcrc\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{2}\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & R_C\left(cm\right) = \\ & R_C\left(w\right) = \\ & S_C\left(W/m^2\right) = \\ & S_C\left(W/m^2\right) = \\ & R_C = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20	% mW numeric mW/m² W/m² W/m² cm cm W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_R = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_{20} = Power Density of the view at 20 S_{11} = Power Density Limit (W/m^2) FI S_{12} = Power Density Limit (W/m^2) GI = Power Density Limit (W/m^2) GI = Power Density Limit (W/m^2) GI = Minimum distance to the Radi G_C = Minimum distance to the Radi G_C = Power Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at$	ccc anada ating Element for Compliance (cm) t the Compliance Distance R _C (W/r	Canada n ²) FCC n ²) Canada ada General Population Lin	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_A / 4\pi g_A)} \\ R_C = & \sqrt{(P_A G_A / 4\pi g_A)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \end{split}$	$\label{eq:problem} \begin{split} \% &= & P_A(mW) = \\ & P_A(mW) = \\ & GN\left(numcrc\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{2}\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & R_C\left(cm\right) = \\ & R_C\left(w\right) = \\ & S_C\left(W/m^2\right) = \\ & S_C\left(W/m^2\right) = \\ & R_C = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64	% mW numeric mW/m² W/m² W/m² cm cm W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_R = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_{20} = Power Density of the view at 20 S_{11} = Power Density Limit (W/m^2) FI S_{12} = Power Density Limit (W/m^2) GI = Power Density Limit (W/m^2) GI = Power Density Limit (W/m^2) GI = Minimum distance to the Radi G_C = Minimum distance to the Radi G_C = Power Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at G_C = P ower Density of the device at$	cycle or Cable Loss (mW) chem (mW/m²) chem (mW/m²) ccc anada ating Element for Compliance (cm) at the Compliance Distance Rc (W/r t the Compliance Distance Rc (W/r The Compliance Distance With Can Or in Mete	Canada n ²) FCC n ²) Canada ada General Population Lin	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N / 4\pi g_A)} \\ R_C = & \sqrt{(P_A G_N / 4\pi g_A)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \end{split}$ its, User Manual must indicate a mini	$\label{eq:problem} \begin{split} \% &= & P_A(mW) = \\ & P_A(mW) = \\ & GN\left(numcrc\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{2}\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & R_C\left(cm\right) = \\ & R_C\left(w\right) = \\ & S_C\left(W/m^2\right) = \\ & S_C\left(W/m^2\right) = \\ & R_C = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20	% mW numeric mW/m² W/m² W/m² cm cm W/m² W/m²	
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty c G_N = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_L = Power Density of Idevice at 20 S_L = Power Density Limit (W/m²) FI S_L = Power Density Limit (W/m²) CR_C = Minimum distance to the Radi R_C = Minimum distance to the Radi S_C = Power Density of the device at S_C = Power Density of the Density of the device at S_C = Power Density of the Dens$	cycle or Cable Loss (mW) chem (mW/m²) chem (mW/m²) ccc anada ating Element for Compliance (cm) at the Compliance Distance Rc (W/r t the Compliance Distance Rc (W/r The Compliance Distance With Can Or in Mete	Canada n ²) FCC n ²) Canada ada General Population Lin	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N / 4\pi g_A)} \\ R_C = & \sqrt{(P_A G_N / 4\pi g_A)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \end{split}$ its, User Manual must indicate a mini	$\label{eq:problem} \begin{split} \% &= & P_A(mW) = \\ & P_A(mW) = \\ & GN\left(numcrc\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{2}\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & S_L\left(W/m^2\right) = \\ & R_C\left(cm\right) = \\ & R_C\left(w\right) = \\ & S_C\left(W/m^2\right) = \\ & S_C\left(W/m^2\right) = \\ & R_C = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20	% mW numeric mw/m² W/m² W/m² w/m² cm cm w/m² w/m² cm	S _C (W/m²)
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty c G_N = Numeric Gain of the Antenna S_{20} = Power Density of device at 20 S_L = Power Density of Idevice at 20 S_L = Power Density Limit (W/m²) FI S_L = Power Density Limit (W/m²) CR_C = Minimum distance to the Radi R_C = Minimum distance to the Radi S_C = Power Density of the device at S_C = Power Density of the Density of the device at S_C = Power Density of the Dens$	n) cycle or Cable Loss (mW) cycle or Cable Loss (mW) cycle or Cable Loss (mW) chem (mW/m²) chem (W/m²) cc anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r t the Compliance Distance Rc (W/r for Compliance with Can Or in Mete	Canada n²) FCC n²) Canada ada General Population Lin rs for Compliance with Can	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_A / 4\pi g_A)} \\ R_C = & \sqrt{(P_A G_A / 4\pi g_A)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ \end{split}$ wits, User Manual must indicate a minimal denoral Population Limits, a minimal must indicate a minimal denoral Population Limits, a minimal must indicate a minimal denoral Population Limits, a minimal must indicate a minimal denoral Population Limits, a minimal must indicate a minimal denoral Population Limits, a minimal must indicate a minimal denoral Population Limits, a minimal must indicate a minima	$\begin{tabular}{ll} $\%$ &=& $P_A(mW) = \\ $GN(numerk) = \\ $GN(numerk) = \\ $S_{20}(mW/n^2) = \\ $S_{20}(W/m^2) = \\ $S_L(W/m^2) = \\ $S_L(W/m^2) = \\ $R_C(cm) = \\ $R_C(cm) = \\ $S_C(W/m^2) = \\ $S_C(W/m^2) = \\ $R_C(cm) = \\ $S_C(w/m^2) = \\ $R_C(cm) = \\ $S_C(w/m^2) = \\ $S_C(w/m$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm	% mW numeric mW/m² W/m² W/m² W/m² cm cm W/m² W/m² Cm Public	S _C (W/m ²)
Duty cycle (percentage of operation $P_A = Adjusted Power due to Duty of G_R = Numeric Cain of the Antenna S_{20} = Power Density of device at 20 SL = Power Density of Index (W/m²) Pi SL = Power Density Limit (W/m²) Pi SL = Power Density Limit (W/m²) CL = Minimum distance to the Radi SC = Minimum distance to the Radi SC = Power Density of the device at SC =$	compliance Distance Rc (W/r For Compliance with Can Or in Mete	Canada n²) FCC n²) Canada ada General Population Lin rs for Compliance with Can Tx Frequency (MHz)	$\begin{split} S_{20} = & (P_A G_N)'(4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N / 4\pi \kappa_1)} \\ R_C = & \sqrt{(P_A G_N / 4\pi \kappa)} \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ \end{split}$ its, User Manual must indicate a minial and General Population Limits, a minial power Total (mW)	$\label{eq:problem} \begin{split} &\%=\\ &P_A(mW)=\\ &GN\left(numerc)=\\ &S_{20}\left(mW/m^2\right)=\\ &S_{20}\left(W/m^2\right)=\\ &S_L\left(W/m^2\right)=\\ &S_L\left(W/m^2\right)=\\ &R_C\left(cm\right)=\\ &R_C\left(cm\right)=\\ &S_C\left(W/m^2\right)=\\ &S_C\left(W/m^2\right)=\\ &R_C(m)=\\ &S_C\left(m^2\right)=\\ &R_C(m)=\\ &S_C\left(m^2\right)=\\ &R_C(m)=\\ &R_C($	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²)	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters	% mW numeric mW/m² W/m² W/m² W/m² cm cm W/m² W/m² Cm Public R _C (cm)	
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	n) pycle or Cable Loss (mW) locm (mW/m²) locm (w/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r the Compliance Distance Rc (W/r the Compliance with Can Or in Mete- loculations and Summary Tx Duty Cycle (%)	Canada n²) FCC n²) Canada ada General Population Lin rs for Compliance with Can Tx Frequency (MHz) 2402	$\begin{split} S_{20} = & (P_A G_N)'(4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N/4\pi g_1)} \\ R_C = & \sqrt{(P_A G_N/4\pi g_1)} \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ sits, User Manual must indicate a miniada General Population Limits, a miniada General Population Limits General Population Copulation Copulation$	$\label{eq:problem} \begin{array}{c} 9_6 = \\ P_A(mW) = \\ GN(numeric) = \\ S_{20}(mW/m^2) = \\ S_{20}(W/m^2) = \\ S_L(W/m^2) = \\ S_L(W/m^2) = \\ R_C(cm) = \\ R_C(cm) = \\ S_C(W/m^2) = \\ S_C$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 Public Limit S _L (W/m²) 16.013	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	n) pycle or Cable Loss (mW) locm (mW/m²) locm (w/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r the Compliance Distance Rc (W/r the Compliance with Can Or in Mete- loculations and Summary Tx Duty Cycle (%)	Canada n²) FCC n²) Canada ada General Population Lin rs for Compliance with Can Tx Frequency (MHz) 2402	$\begin{split} S_{20} = & (P_A G_N)'(4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N/4\pi g_1)} \\ R_C = & \sqrt{(P_A G_N/4\pi g_1)} \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ sits, User Manual must indicate a miniada General Population Limits, a miniada General Population Limits General Population Copulation Copulation$	$\label{eq:problem} \begin{array}{c} 9_6 = \\ P_A(mW) = \\ GN(numeric) = \\ S_{20}(mW/m^2) = \\ S_{20}(W/m^2) = \\ S_L(W/m^2) = \\ S_L(W/m^2) = \\ R_C(cm) = \\ R_C(cm) = \\ S_C(W/m^2) = \\ S_C$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 Public Limit S _L (W/m²) 16.013	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	n) pycle or Cable Loss (mW) locm (mW/m²) locm (w/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r the Compliance Distance Rc (W/r the Compliance with Can Or in Mete- loculations and Summary Tx Duty Cycle (%)	Canada n²) FCC n²) Canada ada General Population Lin rs for Compliance with Can Tx Frequency (MHz) 2402	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N / 4\pi g_0)} \\ R_C = & \sqrt{(P_A G_N / 4\pi g_0)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ \text{wits, User Manual must indicate a minimal and General Population Limits, a minimal Power Total (mW) \\ & 10 \\ & 10 \end{split}$	$\begin{tabular}{lll} $ \% = $ & $P_A(mW) = $ & $P_A(mW) = $ & $GN (numeric) = $ & $S_{20} (mW/n^2) = $ & $S_{20} (w/m^2) = $ & $S_L (w/m^2) = $ & $S_L (w/m^2) = $ & $S_C (w/m^2) = $ &$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	pycle or Cable Loss (mW) learn (mW/m²) learn (mW/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) at the Compliance Distance Rc (W/r the Compliance Distance with Can Or in Mete leulations and Summary Tx Duty Cycle (%) 100 100 FCC (cm)	Canada n²) FCC n²) Canada ada General Population Lins for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N / 4\pi R_0)} \\ R_C = & \sqrt{(P_A G_N / 4\pi R_0)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ wits, User Manual must indicate a minimal ada General Population Limits, a minimal data General Population $	$\begin{tabular}{lll} $ \% = $ & $P_A(mW) = $ & $P_A(mW) = $ & $GN (numeric) = $ & $S_{20} (mW/n^2) = $ & $S_{20} (w/m^2) = $ & $S_L (w/m^2) = $ & $S_L (w/m^2) = $ & $S_C (w/m^2) = $ &$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	mycle or Cable Loss (mW) lem (mW/m²) lem (mW/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r t the Compliance Distance With Can Or in Mete leculations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches)	Canada ar²) FCC ar²) Canada ada General Population Linrs for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3 1.0	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N) (4\pi R_2)} \\ R_C = & \sqrt{(P_A G_N / 4\pi R_1)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ \end{split}$ its, User Manual must indicate a minial and General Population Limits, a minimal power Total (mW)	$\begin{tabular}{lll} $ \% = $ & $P_A(mW) = $ & $P_A(mW) = $ & $GN (numeric) = $ & $S_{20} (mW/n^2) = $ & $S_{20} (w/m^2) = $ & $S_L (w/m^2) = $ & $S_L (w/m^2) = $ & $S_C (w/m^2) = $ &$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	n) pycle or Cable Loss (mW) locm (mW/m²) locm (w/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r the Compliance Distance Rc (W/r the Compliance Distance With Can Or in Mete- loculations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches) Canada (cm)	Canada ard FCC rd Canada ada General Population Lins for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3 1.0 2.3	$\begin{split} S_{20} = & (P_A G_N)'(4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N/4\pi R_3)} \\ R_C = & \sqrt{(P_A G_N/4\pi R_3)} \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ aits, User Manual must indicate a minimal da General Population Limits, a minimal da General Population Limits, a minimal defense of the second o$	$\begin{tabular}{lll} $ \% = $ & $P_A(mW) = $ & $P_A(mW) = $ & $GN (numeric) = $ & $S_{20} (mW/n^2) = $ & $S_{20} (w/m^2) = $ & $S_L (w/m^2) = $ & $S_L (w/m^2) = $ & $S_C (w/m^2) = $ &$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty of Color Numeric Cain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density Limit (W/m²) FI SL = Power Density Limit (W/m²) CR = Minimum distance to the Radit Rc = Minimum distance to the Radit Sc = Power Density of the device at Sc = Power Density of the device at Sc = Power Density of the device at R20 = 20cm	mycle or Cable Loss (mW) lem (mW/m²) lem (mW/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r t the Compliance Distance With Can Or in Mete leculations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches)	Canada ar²) FCC ar²) Canada ada General Population Linrs for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3 1.0	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N) (4\pi R_2)} \\ R_C = & \sqrt{(P_A G_N / 4\pi R_1)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ \end{split}$ its, User Manual must indicate a minial and General Population Limits, a minimal power Total (mW)	$\begin{tabular}{lll} $ \% = $ & $P_A(mW) = $ & $P_A(mW) = $ & $GN (numeric) = $ & $S_{20} (mW/n^2) = $ & $S_{20} (w/m^2) = $ & $S_L (w/m^2) = $ & $S_L (w/m^2) = $ & $S_C (w/m^2) = $ &$	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA = Adjusted Power due to Duty c GR = Numeric Gain of the Antenna S20 = Power Density of device at 20 St. = Power Density of device at 20 St. = Power Density Limit (W/m²) Ft St. = Power Density Limit (W/m²) CR C = Minimum distance to the Radi RC = Minimum distance to the Radi SC = Power Density of the device at SC = Power Density of the device at R20 = 20cm Summary: Standalone MPE Ca	pycle or Cable Loss (mW) lem (mW/m²) lem (mW/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) to the Compliance Distance Rc (W/r to the Compliance Distance With Can Or in Mete leukations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches) Canada (cm) Canada (inches)	Canada ard FCC rd Canada ada General Population Lins for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3 1.0 2.3	$\begin{split} S_{20} = & (P_A G_N)'(4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N)'(4\pi R_2)} \\ R_C = & \sqrt{(P_A G_N 4\pi a_1)} \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ \end{split}$ its, User Manual must indicate a minial and General Population Limits, a minial and General Population Limits, a minial power Total (mW) 10 10 10 10 10 10 10 10 10 10 10 10 10	$\label{eq:problem} \begin{split} & \% = \\ & P_A\left(mW\right) = \\ & GN\left(numerk\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{20}\left(w/m^2\right) = \\ & S_L\left(w/m^2\right) = \\ & S_L\left(w/m^2\right) = \\ & R_C\left(cm\right) = \\ & S_C\left(w/m^2\right) = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA, = Adjusted Power due to Duty c GN = Numeric Gain of the Antenna S20 = Power Density of device at 20 S20 = Power Density of device at 20 S20 = Power Density of the Unit (W/m²) Fi S1. = Power Density Limit (W/m²) Fi S2. = Power Density Limit (W/m²) CR = Mnimum distance to the Radi R2 = Mnimum distance to the Radi S2. = Power Density of the device at S2. = Power Density of the device at S2. = Power Density of the device at R20 = 20 cm	n) pycle or Cable Loss (mW) lean (mW/m²) lean (w/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) the Compliance Distance Rc (W/r the Compliance Distance Rc (W/r the Compliance Distance With Can Or in Mete- leculations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches) Canada (inches) m Limit Public	Canada ard FCC rd Canada ada General Population Lins for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3 1.0 2.3	$\begin{split} S_{20} = & (P_A G_N) / (4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N) / (4\pi R_2)} \\ R_C = & \sqrt{(P_A G_N / 4\pi R_1)} \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ S_C = & (P_A G_N) / (4\pi R_C)^2 \\ \end{split}$ its, User Manual must indicate a miniate and General Population Limits, a miniate and General Population Limits, a miniate and General Population Limit $ \begin{array}{c} Power \ Total \ (mW) \\ 10 \\ 10 \\ \\ Limit \\ \hline \\ Occupational \\ 0.6 \\ 1.0 \\ 0.9 \\ 1.0 \\ \\ \hline \\ Overall Minumu Limit \\ \hline \\ Overall Minumu Limit \\ \hline \end{array}$	$\begin{array}{c} 9_6 = \\ P_A (mW) = \\ GN (numeric) = \\ S_{20} (mW/m^2) = \\ S_{20} (W/m^2) = \\ S_L (W/m^2) = \\ S_L (W/m^2) = \\ R_C (cm) = \\ R_C (cm) = \\ S_C (W/m^2) = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	16.01
Duty cycle (percentage of operation PA = Adjusted Power due to Duty c GN = Numeric Cain of the Antenna Sign = Power Density of device at 20 Sign = Power Density of device at 20 Sign = Power Density of device at 20 Sign = Power Density Limit (W/m²) Fi Sign = Power Density Limit (W/m²) CN = Minimum distance to the Radi Sign = Minimum distance to the Radi Sign = Minimum distance to the Addi Sign = Minimum distance to the Addi Sign = Power Density of the device at Sign = 20cm Summary: Standalone MPE Ca FCC Canada Overall Minimum Overall Minimum Overall Minimum 3	pycle or Cable Loss (mW) lem (mW/m²) lem (mW/m²) CC anada ating Element for Compliance (cm) ating Element for Compliance (cm) to the Compliance Distance Rc (W/r to the Compliance Distance With Can Or in Mete leukations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches) Canada (cm) Canada (inches)	Canada ard FCC rd Canada ada General Population Lins for Compliance with Can Tx Frequency (MHz) 2402 2402 Public 1.3 1.0 2.3	$\begin{split} S_{20} = & (P_A G_N)'(4\pi R_{20})^2 \\ R_C = & \sqrt{(P_A G_N/4\pi R_3)} \\ R_C = & \sqrt{(P_A G_N/4\pi R_3)} \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ S_C = & (P_A G_N)'(4\pi R_C)^2 \\ aits, User Manual must indicate a minitate a General Population Limits, a minitate a General Population Limits, a minitate a General Population Limit, a minitate a General Population Limit Occupational 0.6 $	$\label{eq:problem} \begin{split} & \% = \\ & P_A\left(mW\right) = \\ & GN\left(numerk\right) = \\ & S_{20}\left(mW/m^2\right) = \\ & S_{20}\left(w/m^2\right) = \\ & S_L\left(w/m^2\right) = \\ & S_L\left(w/m^2\right) = \\ & R_C\left(cm\right) = \\ & S_C\left(w/m^2\right) = \\ $	100 9.53 3.72 0.01 0.07 16.013 5.351 1.3 2.3 16.01 5.35 20 2.3 0.02 Public Limit S _L (W/m²) 16.013 5.351	100 9.53 3.72 0.01 0.07 80.067 31.636 0.6 0.9 80.07 31.64 20 cm Meters S ₂₀ (W/m²) 0.07 0.07	% mW mumeric mumeric wW/m² W/m² W/m² W/m² cm cm W/m² W/m² cm Public Rc (cm) 1.3	

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Garmin International, Inc.

PMN: A04277, B04277, C04277, D04277 IC: 1792A-04277

Test: 230404 SN's: 85Y000013 /85W000016 /3438712904 Test to: 47CFR 15.249, RSS-210 Date: August 30, 2023

FCC ID: IPH-04277

File: 04277 RFExp Page 2 of 3

	HVIN:	427	7 Test Number	230405D				
MPE Calculator			n TX power added to the antenna ga					
	dBi = dB gain compared to a							
	S = power density in mW/cn	r^2						
	Tra	nsmitter Output power (mW	7) 17.7					
		ransmitter Output power (W	0.037					
Output Power for %	duty Cycle operation (Watts)	10			Antenna Gain (dBi)	0.9		
	Output Power for 100%	duty Cycle operation (Watt	0.037	Ante	enna Gain (Numeric)	1.23		
Tx Frequency (MHz)	2412	Calculation power (Watt	0.037	dBd + 2.17 = dBi	dBi to dBd	2.17		
					Antenna Gain (dBd)	-1.27		
Cable Loss (dB)	0.0	Adjusted Power (dBn	1) 15.67		ına minus cable (dBi)	0.90		
	G.I. I. IEDD ()	25.542			enna Gain (Numeric)	1.23		
	Calculated ERP (mw)				o(dBm) + Gain (dB)	16.570		
	Calculated EIRP (mw)	43.374			adiated (EIRP) dBm ERP = EIRP - 2.17			
		EIRP			Radiated (ERP) dBm			
	Power density (S) mW/				unumen (Era) abiii	111100		
		4 p r^2						
	r (cm) EIRP (mW)							
	Occupational Limit		frequency radiation exposure limits p	_				
8.04	mW/cm ²	Frequency (MHz)	Occupational Limit (mW/cm ²)	Public Limit (mW/cm ²)				
80.4	W/m ²	30-300	1	0.2				
	General Public Limit	300-1,500	f/300	f/1500				
1.608	mW/cm ²	1,500-10,000	5	1				
16.1								
	Occupational Limit							
$0.6455f^{0.5}$	W/m ²	IC radio fr	equency radiation exposure limits per	RSS-102				
31.7	W/m ²	Frequency (MHz)	Occupational Limit (W/m²)	Public Limit (W/m ²)				
	General Public Limit	100-6,000	0.6455 f ^{0.5}	T done Limit (Will)				
$0.02619f^{0.6834}$		6,000-15,000	50					
7			30	1.201				
5.37	W/m ²	48-300		1.291				
		300-6,000		$0.02619f^{0.6834}$				
		6,000-15,000	50	10				
					General Public	Occupational		
f = Transmit Frequency (MHz)				f (MHz) =	2412		MHz	
P _T = Power Input to Antenna (mW)				P_{T} (mW) =	36.8978	36.8978		
Duty cycle (percentage of operation				% =	100	100	•	
P _A = Adjusted Power due to Duty of	ycle or Cable Loss (mW)			$P_A(mW) =$	36.90	36.90		
G _N = Numeric Gain of the Antenna			2	GN (numeric) =	1.23		numeric	
S ₂₀ = Power Density of device at 20	cm (mW/m ²)		$S_{20}=(P_AG_N)/(4\pi R_{20})^2$	$S_{20} (mW/m^2) =$	0.01	0.01	mW/m ²	
S ₂₀ = Power Density of device at 20	cm (W/m ²)		$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$S_{20} (W/m^2) =$	0.09	0.09	W/m ²	
S _L = Power Density Limit (W/m ²) Fe	CC			$S_L (W/m^2)=$	16.080	80.400	W/m ²	
$S_L = Power Density Limit (W/m^2) C$	anada			$S_L (W/m^2) =$	5.366	31.702	W/m ²	
R _C = Minimum distance to the Radi		FCC	$R_C = \sqrt{(P_A G_N / 4\pi s_c)}$	R _C (cm) =	1.5		cm	
R _C = Minimum distance to the Radi			$R_C = \sqrt{(P_A G_N / 4\pi s_i)}$	R_{C} (cm) =			cm	
			$S_C = (P_A G_N)/(4\pi R_C)^2$	$S_C(W/m^2) =$	16.08		W/m ²	
S _C = Power Density of the device at								
$S_C = Power Density of the device at$	tne Compliance Distance R _C (W/r	n) Canada	$S_C = (P_A G_N)/(4\pi R_C)^2$	$S_C(W/m^2) =$		31.70		
$R_{20} = 20cm$				R20=	20	20	cm	
						om		
	For Compliance with Con	ada Canaral Danulation Lim	to Hear Manual must indicate a mini	mum conception distance of	2.6			
			ts, User Manual must indicate a minii					
			ts, User Manual must indicate a mini da General Population Limits, a mini			Meters		
Summary: Standalone MPF Ca	Or in Mete				0.03		Public	
Summary: Standalone MPE Ca	Or in Mete	rs for Compliance with Cana	da General Population Limits, a mini	mum separation distance of	0.03 Public Limit	Meters	Public Re (cm)	So (W/m²)
•	Or in Mete	rs for Compliance with Cana Tx Frequency (MHz)	da General Population Limits, a mini Power Total (mW)	Antenna Gain (numeric)	0.03 Public Limit S _L (W/m ²)	Meters S ₂₀ (W/m ²)	R _C (cm)	- (
FCC	Or in Mete- lculations and Summary Tx Duty Cycle (%) 100	rs for Compliance with Cana Tx Frequency (MHz) 2412	da General Population Limits, a mini Power Total (mW) 37	Antenna Gain (numeric)	0.03 Public Limit S _L (W/m²) 16.080	Meters S ₂₀ (W/m ²) 0.09	R _C (cm)	16.08
•	Or in Mete	rs for Compliance with Cana Tx Frequency (MHz)	da General Population Limits, a mini Power Total (mW)	Antenna Gain (numeric)	0.03 Public Limit S _L (W/m ²)	Meters S ₂₀ (W/m ²)	R _C (cm)	- (/
FCC	Or in Mete- lculations and Summary Tx Duty Cycle (%) 100	rs for Compliance with Cana Tx Frequency (MHz) 2412	da General Population Limits, a mini Power Total (mW) 37	Antenna Gain (numeric)	0.03 Public Limit S _L (W/m²) 16.080	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC	Or in Mete- lculations and Summary Tx Duty Cycle (%) 100	rs for Compliance with Cana Tx Frequency (MHz) 2412	da General Population Limits, a mini Power Total (mW) 37 37	Antenna Gain (numeric) 1.23 1.23	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC	Or in Mete- lculations and Summary Tx Duty Cycle (%) 100	Tx Frequency (MHz) 2412 2412	da General Population Limits, a mini Power Total (mW) 37 37 Limit	Antenna Gain (numeric) 1.23 1.23	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC	Or in Mete leukations and Summary Tx Duty Cycle (%) 100 100	Tx Frequency (MHz) 2412 2412 Public	da General Population Limits, a mini Power Total (mW) 37 37 Limit Occupational	Antenna Gain (numeric) 1.23 1.23	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC	Or in Mete leulations and Summary Tx Duty Cycle (%) 100 100 FCC (cm)	Tx Frequency (MHz) 2412 2412 Public 1.5	da General Population Limits, a mini Power Total (mW) 37 37 Limit Occupational 0.7	Antenna Gain (numeric) 1.23 1.23	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC	Or in Mete leulations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches)	Tx Frequency (MHz) 2412 2412 Public 1.5 1.0	Power Total (mW) Power Total (mW) 37 37 Limit Occupational 0.7 1.0	Antenna Gain (numeric) 1.23 1.23	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC Canada	Or in Mete leulations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches) Canada (cm) Canada (inches)	Tx Frequency (MHz) 2412 2412 Public 1.5 1.0 2.6	da General Population Limits, a mini Power Total (mW) 37 37 Limit Occupational 0.7 1.0 1.1	Antenna Gain (numeric) 1.23 1.23 Overall Minimum (cm)	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC Canada Overall Minimu	Or in Mete Column	Tx Frequency (MHz) 2412 2412 Public 1.5 1.0 2.6	Power Total (mW) 37 37 Limit Occupational 0.7 1.0 1.1 1.0 Overall Minumu Limit	Antenna Gain (numeric) 1.23 1.23 Overall Minimum (cm) Occuppational	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	16.08
FCC Canada Overall Minimu	Or in Mete leulations and Summary Tx Duty Cycle (%) 100 100 FCC (cm) FCC (inches) Canada (cm) Canada (inches)	Tx Frequency (MHz) 2412 2412 Public 1.5 1.0 2.6	da General Population Limits, a mini Power Total (mW) 37 37 Limit Occupational 0.7 1.0 1.1 1.0 Overall Minumu Limit	Antenna Gain (numeric) 1.23 1.23 Overall Minimum (cm)	0.03 Public Limit S _L (W/m²) 16.080 5.366	Meters S ₂₀ (W/m ²) 0.09 0.09	R _C (cm)	

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Garmin International, Inc.

FCC ID: IPH-04277 PMN: A04277, B04277, C04277, D04277 IC: 1792A-04277

Test: 230404 SN's: 85Y000013 /85W000016 /3438712904 Test to: 47CFR 15.249, RSS-210 Date: August 30, 2023

Page 3 of 3 File: 04277 RFExp