

Test Report Serial Number: Test Report Date: Project Number: 45461691 R3.0 3 February 2022 1557

EMC Test Report - New Certification						
Applicant:						
Garmin International Inc. 1200 East 151 St Olathe, KS, 66062						
USA FCC ID:	IC Registration Number					
IPH-04247	1792A-04247					
Product Model Number / HVIN	Product Marketing Name / PMN					
A04247	A04247					

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.249), Part 15 Subpart B

Part 15 Low Power Communication Device Transmitter (DXX)

RSS-Gen, RSS-210 Issue 10

Licence-Exempt Radio Apparatus: Category I Equipment

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2022 Celltech Labs Inc,

Table of Contents

1.0 DOCUMENT CONTROL	
2.0 CLIENT AND DUT INFORMATION	5
3.0 SCOPE	6
4.0 TEST RESULT SUMMARY	7
5.0 NORMATIVE REFERENCES	
6.0 FACILITIES AND ACCREDITATIONS	
7.0 OCCUPIED BANDWIDTH	
8.0 FIELD STRENGTH	
9.0 20DB BW	
10.0 RADIATED SPURIOUS EMISSIONS – RESTRICTED BANDS	
11.0 RADIATED RX SPURIOUS EMISSIONS	
12.0 POWER LINE CONDUCTED EMISSIONS	
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
END OF REPORT	
APPENDIX H – RADIATED TX AND RX MEASUREMENT PLOTS	
APPENDIX I – FIELD STRENGTH MEASUREMENT PLOTS	

Table of Plots

Plot 7.1 – Occupied Bandwidth, ANT, CH 2	11
Plot 7.2 – Occupied Bandwidth, ANT, CH 41	
Plot 7.3 – Occupied Bandwidth, ANT, CH 80	
Plot 7.4 – Occupied Bandwidth, 24GHz Radar, 24MHz BW, Channel Lo	
Plot 7.5 – Occupied Bandwidth, 24GHz Radar, 24MHz BW, Channel Mid	
Plot 7.6 – Occupied Bandwidth, 24GHz Radar, 24MHz BW, Channel Hi	17
Plot 7.7 – Occupied Bandwidth, 24GHz Radar, 48MHz BW, Channel Lo	
Plot 7.8 – Occupied Bandwidth, 24GHz Radar, 48MHz BW, Channel Mid	19
Plot 7.9 – Occupied Bandwidth, 24GHz Radar, 48MHz BW, Channel Hi	
Plot 9.1 – 20dB BW, ANT, Ch 2	
Plot 9.2 – 20dB BW, ANT, Ch 41	
Plot 9.3 – 20dB BW, ANT, Ch 80	
Plot 9.4 – 20dB BW, 24GHz Radar, 24MHz BW, Channel Lo	30
Plot 9.5 – 20dB BW, 24GHz Radar, 24MHz BW, Channel Hi	31
Plot 9.6 – 20dB BW, 24GHz Radar, 48MHz BW, Channel Lo	32
Plot 9.7 – 20dB BW, 24GHz Radar, 24MHz BW, Channel Hi	33
Plot 12.1 – Power Line Conducted Emissions, Line 1	42
Plot 12.2 – Power Line Conducted Emissions, Line 2	43

Table of Tables

Table 7.1 - Summary of Occupied Bandwidth Measurements, ANT	
Table 7.2 - Summary of Occupied Bandwidth Measurements, 24GHz Radar	21
Table 8.1 - Summary of Field Strength Measurements, ANT	
Table 8.2 - Summary of Field Strength Measurements, Radar	24
Table 9.1 - Summary of 20dB BW Measurements, ANT	
Table 9.2 - Summary of 20dB BW Measurements, 24GHz Radar	34
Table 10.1 – Summary of Radiated Emissions, Restricted Band, ANT + WiFi + Radar	
Table 10.2 – Summary of Radiated Emissions, Restricted Band, ANT + BLE + Radar	
Table 10.3 – Summary of Radiated Emissions, Restricted Band, Radar	
Table 11.1 – Summary of Radiated Rx Emissions	40
Table 12.1 – Summary of Power Line Conducted Emissions – L1	44
Table 12.1 – Summary of Power Line Conducted Emissions – L2	45
Table A.1 – Setup - Conducted Measurements Equipment List	
Table A.2 – Setup - Radiated Emissions Equipment List	

Table of Figures

Figure A.1 – Test Setup Conducted Measurements	. 46
Figure A.2 – Test Setup Radiated Emissions Measurements Below 30MHz	
Figure A.3 – Test Setup Radiated Emissions Measurements 30 – 1000MHz	. 48
Figure A.4 – Test Setup Radiated Emissions Measurements 30 – 1000MHz Signal Substitution	. 49
Figure A.5 – Test Setup Radiated Emissions Measurements 1 – 18GHz.	. 49
Figure A.6 – Test Setup Radiated Emissions Measurements Above 18 GHz	

1.0 DOCUMENT CONTROL

	Revision History							
Sar	nples Tested By:	Art Voss, P.Eng.	Dat	e(s) of Evaluation:	1 Oct - 1 Dec, 2021			
Report Prepared By:		Art Voss, P.Eng.	Report Reviewed By:		Ben Hewson			
Report		ription of Revision	Revised	Revised	Revision Date			
Revision	Desc		Section	Ву	Revision Date			
0.1		Draft Release		Art Voss	4 December, 2022			
1.0	Initial Release		n/a	Art Voss	25 January, 2022			
2.0	Revised Plot Headings		12.0	Art Voss	2 February, 2022			
3.0	Revised Scope		3.0	Art Voss	3 February, 2022			

2.0 CLIENT AND DUT INFORMATION

Client Information					
Applicant Name Garmin International Inc.					
	1200 East 151 St				
Applicant Address	Olathe, KS, 66062				
	USA				
	DUT In	formation			
Device Identifier(s):	FCC ID: IPH-	04247			
Device identifier (5).	ISED ID: 179	2A-04247			
Device Model(s) / HVIN:	A04247				
Device Marketing Name / PMN:	A04247				
Test Sample Serial No.:	Conducted: 338	3564979, 3383564988 OTA: 3383564975, 3383565083			
Device Type:	Radar Device				
FCC Equipment Class:	Digital Transmis	sion System (DTS)			
ISED Equipment Class:	Wireless Local Area Network Device				
	WiFi (DTS): 2412-2462MHz				
Transmit Frequency Range:	BLE/ANT: 2402-2480MHz				
	Radar: 24.0236GHz- 24.2176GHz				
	WiFi - Digital Transmission System (DTS): 6.42dBm				
Manuf. Max. Rated Output Power:	ANT - Low Power Communication Device Transmitter (DXX): 6.51dBm				
Manul. Max. Rated Output Power.	BLE - Low Power Communication Device Transmitter (DXX): 1.56dBm				
	Radar: -11dBm EIRP				
Antenna Type and Gain:*	BLE/WiFi: -0.4dE	3i, ANT: -0.5dBi, Radar: 10.5dBi			
Modulation:	WiFi: DSSS, OFDM, CCK, MCS0-7				
Modulation:	BLE: GMSK				
Modulation:	ANT: GFSK				
DUT Power Source:	3.8VDC Rechargeable Li-lon				
DUT Dimensions [LxWxH]		m x40mm x38mm			
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

* Information on antenna gain provided by applicant.

3.0 SCOPE

Preface:

This Certification Report was prepared on behalf of: Garmin International Inc.

,(the '*Applicant*"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the '*Rules*'). The scope of this investigation was limited to only the equipment, devices and accessories (the '*Equipment*') supplied by the *Applicant*. The tests and measurements performed on this *Equipment* were only those set forth in the applicable *Rules* and/or the Test and Measurement Standards they reference. The *Rules* applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable *Rules* were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Device:

The Garmin Model/HVIN: A04247 is a radar device consisting of a WiFi, BlueTooth Low Energy (BLE), Adaptive Network Topology (ANT) and 24GHz radar transmitters/transceivers. The BLE and WiFi transceivers share the same antenna and cannot simultaneously transmit.

Requirement:

The transceivers of this *equipment* are subject to emissions evaluation in accordance with FCC: 47 CFR 2, 15C, ISED: RSS-Gen, RSS-210 and RSS-247. As per FCC 47 CFR §2.1093 and Health Canada Safety Code 6, an RF Exposure (SAR) evaluation is required for this *Equipment* and the results of the RF Exposure (SAR) evaluation appear in a separate report.

Application:

This is an application for a New Certification.

Scope:

The scope of this investigation is limited to the evaluation and reporting of the wanted and spurious emissions in accordance with the rule parts cited in Normative References section of this report.

4.0 TEST RESULT SUMMARY

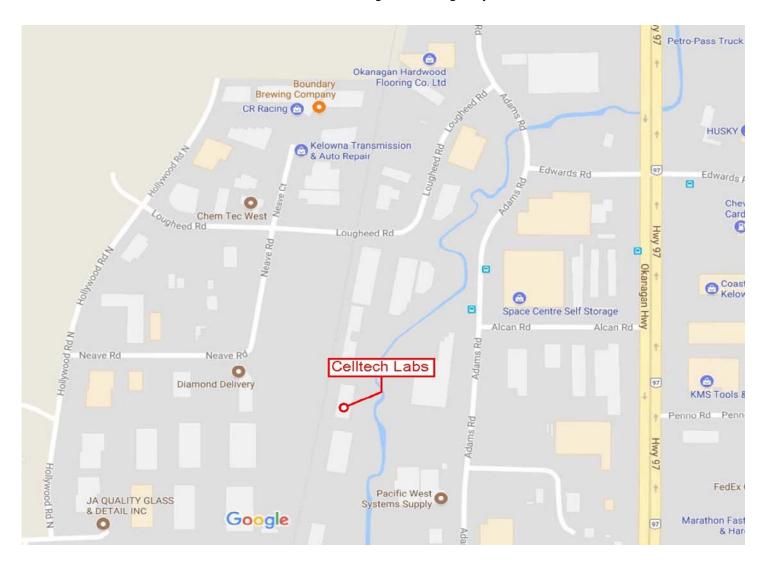
	TEST SUMMARY							
Section	Description of Test	Procedure Applicable Rule		Applicable Rule Test		Result		
	Description of rest	Reference	Part(s) FCC	Part(s) ISED	Date	Tusun		
7.0	Occupied Bandwidth	ANSI C63.10-2013	§2.1049	RSS-Gen (6.7)	27 Nov 2021	Pass		
7.0		KDB 558074 D01v05	32.1045		22 Nov 2021			
8.0	Field Strength (Fundamental)	ANSI C63.10-2013	§15.249(a)(e)	RSS-Gen (6.12)	29 Nov 2021	Pass		
0.0	ned Strength (Fundamental)	KDB 558074 D01v05	310.249(a)(e)	RSS-210 (B.10)		1 455		
9.0	20dB BW	ANSI C63.10-2013	§15.249(a)(e)	RSS-Gen (6.12)	17 Nov 2021	Pass		
9.0		KDB 558074 D01v05	§15.249(a)(e)	RSS-210 (B.10)	22 Nov 2021			
10.0	Destricted Devide	ANSI C63.10-2013	§15.249(d)(e)	RSS-Gen (8.10)	29 Nov 2021	Pass		
10.0	Restricted Bands	KDB 558074 D01v05	§15.209	R33-Gell (0.10)	29 1100 2021			
11.0	Radiated Rx Emissions	ANSI C63.10-2013	§15.249(d)(e)	RSS-Gen (8.10)	00.11 000.4	Pass		
11.0		KDB 558074 D01v05	§15.209	100-Gen (0.10)	29 Nov 2021	rass		
12.0 Pow er Line Conducted Emissions		ANSI C63.4-2014	§15.107	ICES-003(6.1)	1 Oct 2021	Pass		

Test Station Day Log							
	Ambient Relative Barometric Test Tests						
Date	Temp	Humidity	Pressure	Station	Performed		
	(°C)	(%)	(kPa)		Section(s)		
1 Oct 2021	22.8	15	102.6	LISN	12		
17 Nov 2021	21.0	17	103.2	EMC	8, 9		
22 Nov 2021	23.5	17	101.6	EMC	7, 9		
23 Nov 2021	23.5	17	101.6	EMC	8		
29 Nov 2021	10.0	90	102.2	OATS	9, 10, 11		
EMC - EMC Te	est Bench		SAC - Semi-Ar	nechoic Cl	hamber		
OATS - Open	OATS - Open Area Test Site TC - Temperature Chamber						
LISN - LISN Test Area ESD - ESD Test Bench							
IMM - Immunit	y Test Area	l	RI - Radiated I	mmunity (Chamber		

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025. Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

> 4 January 2022 Date

5.0 NORMATIVE REFERENCES


		Normative References
ISO/	IEC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANS	I C63.4-2014	American National Standard of Procedures for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz
ANS	I C63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Sub Part C (15.249)	Intentional Radiators
ISED)	Innovation, Science and Economic Development Canada
	RSS-Gen Issue 5A1:	Spectrum Management and Telecommunications Radio Standards Specification
	March 2019	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED)	Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-210 Issue 10A1:	Licence-Exempt Radio Apparatus:
	December 2029	Category I Equipment
FCC	KDB	OET Major Guidance Publications, Knowledge Data Base
	558074 D01v05r02	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247

6.0 FACILITIES AND ACCREDITATIONS

Facility and Accreditation:

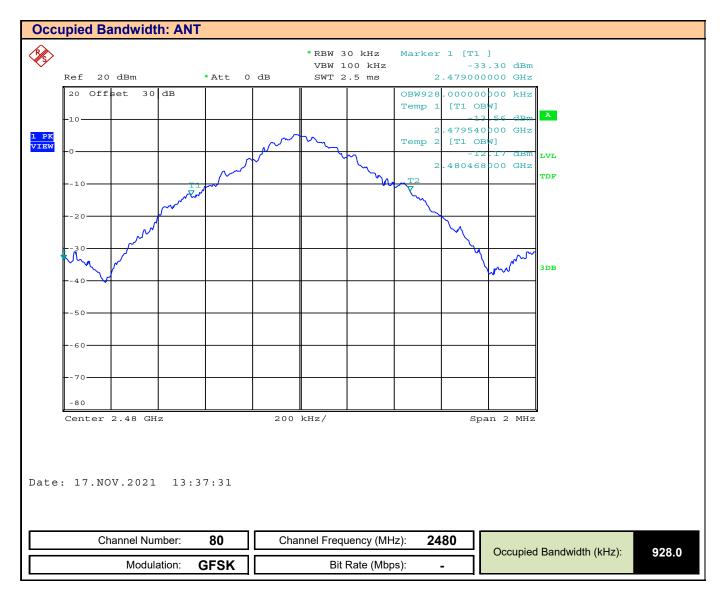
The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874A-1 and Industry Canada under Test Site File Number IC 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

7.0 OCCUPIED BANDWIDTH

Normative	FCC 47 CFR §2.1046, RSS-Gen (6.1.2)				
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)				
General Procedure					
C63.10 (6.9.3)	 6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBV b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding th maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is giver in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) 				
	shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.				
Test Setup	Appendix A - Figure A.1				
Measurement Procedure					

The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The 99% Occupied Bandwidth was measured and recorded.

Plot 7.1 – Occupied Bandwidth, ANT, CH 2



Plot 7.2 – Occupied Bandwidth, ANT, CH 41

Plot 7.3 – Occupied Bandwidth, ANT, CH 80

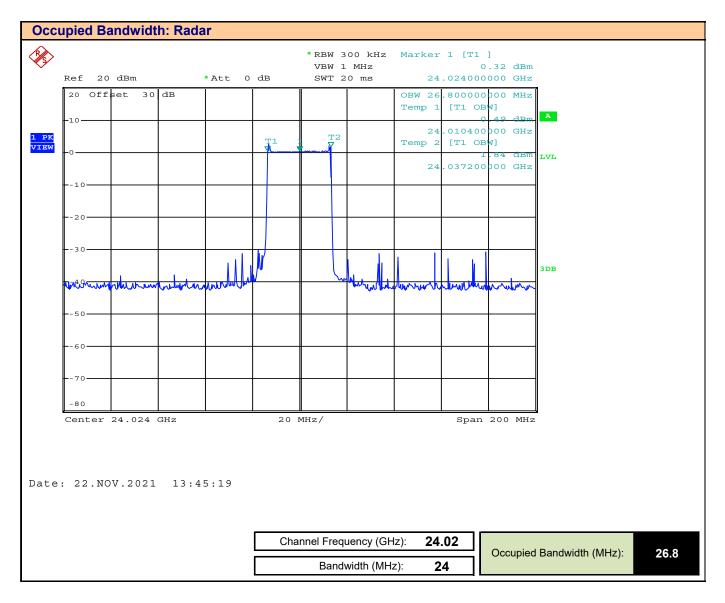
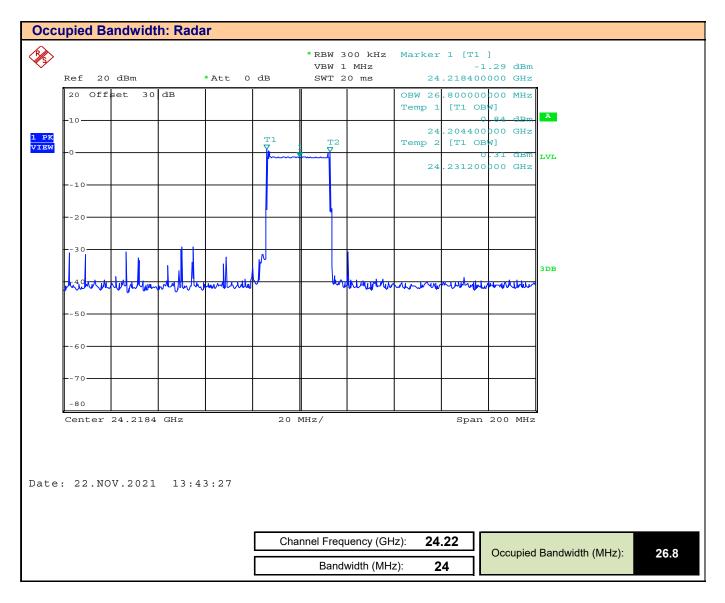


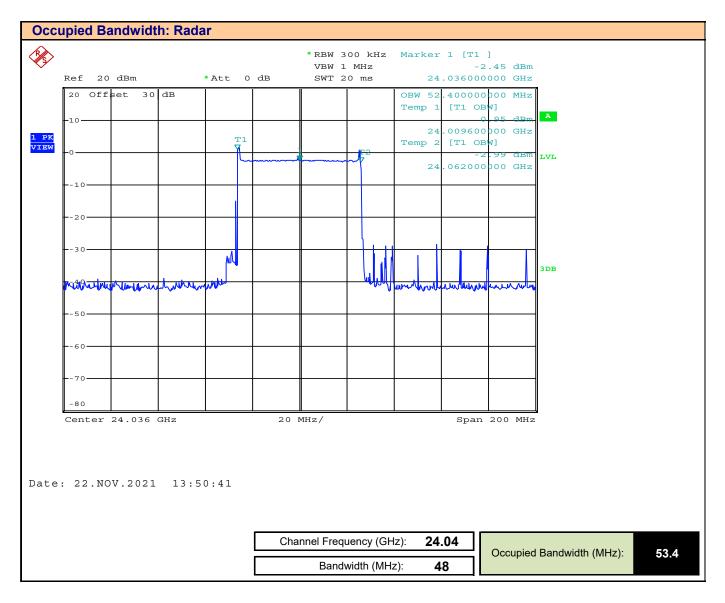
Table 7.1 - Summary of Occupied Bandwidth Measurements, ANT

Occupied Bandwidth Measurement Results: ANT								
	Channel	Channel		Bit	Measured			
Mode	Number	Frequency Modulation Rate Occupied Bandwidth		Emission				
		(MHz)		(Mbps)	(kHz)	Designator		
	2	2402	GFSK -	GFSK -			916.0	916KD1D
ANT	41	2441			-	924.0	924KD1D	
	80	2480			928.0	928KD1D		
	Result: Complies							

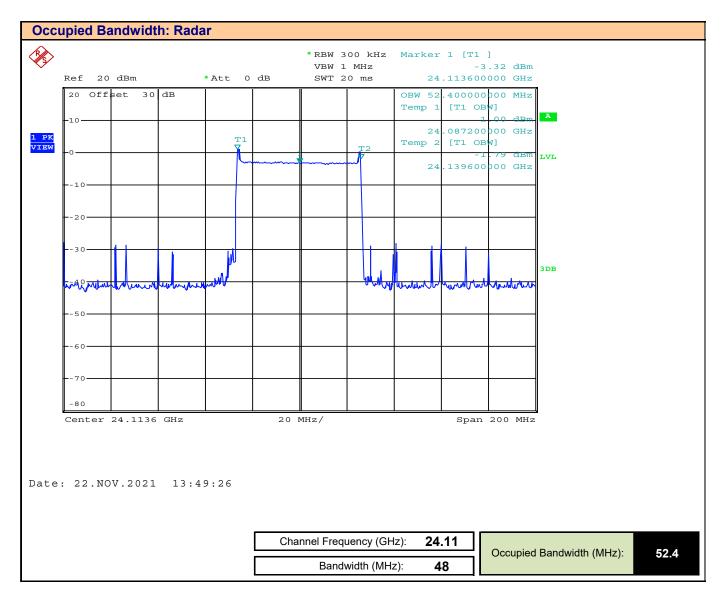
Plot 7.4 – Occupied Bandwidth, 24GHz Radar, 24MHz BW, Channel Lo



Plot 7.5 - Occupied Bandwidth, 24GHz Radar, 24MHz BW, Channel Mid



Plot 7.6 - Occupied Bandwidth, 24GHz Radar, 24MHz BW, Channel Hi



Plot 7.7 – Occupied Bandwidth, 24GHz Radar, 48MHz BW, Channel Lo

Plot 7.8 – Occupied Bandwidth, 24GHz Radar, 48MHz BW, Channel Mid

Plot 7.9 - Occupied Bandwidth, 24GHz Radar, 48MHz BW, Channel Hi

Table 7.2 - Summary of Occupied Bandwidth Measurements, 24GHz Radar

Occupied B	andwidth M	easurement	Results: R	adar	
	Channel		Measured		
Mode	Frequency	Bandwidth	Occupied	Emission	
			Bandwidth	Designator	
	(GHz)	(MHz)	(MHz)	Designator	
	24.02		26.8	26M8P1D	
	24.14	24	27.2	27M2P1D	
Radar	24.22		26.8	26M8P1D	
Tauai	24.04		53.4	53M4P1D	
	24.11	48	52.4	52M4P1D	
	24.19		52.8	52M8P1D	
			Result:	Complies	

8.0 FIELD STRENGTH

Normative Reference	FCC 47 CFR §2.1046, §15.249, RSS-210
	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.6)
Limits	
§15.249(a)	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.
	(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:
	2400-2483.5MHz, Fundamental Field Strength: 50mV/m, Harmonic: 500uV/m
	24.0-24.25GHz, Fundamental Field Strength: 250mV/m, Harmonic: 2500uV/m
RSS-210 B.10(F.1)	Bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz and 24-24.25 GHz
	(a) The field strength of fundamental and harmonic emissions measured at 3 m shall not exceed the limits in table B2.
	2400-2483.5MHz, Fundamental Field Strength: 50mV/m, Harmonic: 500uV/m
	2400-2483.5MHz, Fundamental Field Strength: 2500mV/m, Harmonic: 25mV/m
General Procedure	
C63.10 (6.5.4)	6.5.4 Final radiated emission tests
	Using the orientation and equipment arrangement of the EUT, and based on the measurement results found during the exploratory measurement in 6.5.3, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. The final measurement shall follow all the procedures in 6.3 with the EUT operating on frequencies per 5.6. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable) and the frequency and amplitude of the six highest spurious emissions relative to the limit; emissions more than 20 dB below the limit do not need to be reported.
	Measurements are performed with the EUT rotated from 0° to 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for bot the horizontal and vertical antenna polarizations. Variations in cable or wire placement shall be explored to maximize the measured emissions.
Test Setup	Appendix A Figure A.2
Measurement Proced	ure
measurement antenna.	m high turntable on an Open Area Test Site (OATS) at a distance of 3m from the The DUT was set to transmit at maximum power and duty cycle. The DUT was rotated 360 ith the receive antenna elevated from 1 to 4m. The emissions were measured and recorded.

See Appendix I for Measurement Plots

Table 8.1 - Summary of Field Strength Measurements, ANT

Frequency	DUT	Instrument	Receive Antenna	Measured FS	Receive ACF	Cable Loss	Corrected FS	Limit	Margin
	Modulation	Detector	Polarity	[FS _{Meas}]	[ACF]	[L _c]	[FS _{corr}]	[FS _{Limit}]	-
(MHz)	Woodaation	Detector		(dBuV)	(dB)	(dB)	(dBuV/m@3m)	(dBuV/m)	(dB)
2402.00			Horizontal	61.27	28.281	2.97	92.52		1.5
2402.00			Vertical	50.95	28.281	2.97	82.20	94	11.8
2441.00		RMS	Horizontal	60.52	28.222	2.97	91.71		2.3
2441.00		TAMO	Vertical	50.60	28.222	2.97	81.79		12.2
2480.00			Horizontal	60.36	28.172	2.97	91.50		2.5
2480.00	GFSK		Vertical	49.56	28.172	2.97	80.70		13.3
2402.00	Gron		Horizontal	61.62	28.281	2.97	92.87		21.1
2402.00			Vertical	51.43	28.281	2.97	82.68		31.3
2441.00		Peak	Horizontal	61.43	28.222	2.97	92.62	114	21.4
2441.00		i eak	Vertical	51.63	28.222	2.97	82.82	114	31.2
2480.00			Horizontal	60.76	28.172	2.97	91.90		22.1
2480.00			Vertical	50.77	28.172	2.97	81.91		32.1
								Result:	Complies

 $\begin{array}{l} \mbox{Corrected Field Strength [FSC_{orr}] = Measured FS [FS_{Meas}] + ACF [ACF] + Cable Los [L_{C}] \\ \mbox{Margin = Limit [FS_{Limit}] - Corrected Field Strength [FS_{Corr}] } \end{array}$

See Appendix I for Measurement Plots

Table 8.2 - Summary of Field Strength Measurements, Radar

			Receive	Measured Receive		Cable	Corrected	Limit	
Frequency	Channel	Instrument	Antenna	FS			FS		Margin
	Bandwidth		Polarity	[FS _{Meas}]	[ACF]	Loss [L _c]	[FS _{Corr}]	[FS _{Limit}]	
(GHz)	(MHz)	Detector		(dBuV)	(dB)	(dB)	(dBuV/m@3m)	(dBuV/m)	(dB)
24.14	24.00	RMS	Horizontal*	34.10	42.8	2.39	79.29		28.7
24.02				43.02	42.8	2.39	88.21		19.8
24.14	24.00			48.12	42.8	2.39	93.31	108	14.7
24.22		RMS		48.91	42.8	2.39	94.10		13.9
24.04		RIVIS		48.17	42.8	2.39	93.36		14.6
24.11	48.00			48.32	42.8	2.39	93.51		14.5
24.19			Vertical	46.33	42.8	2.39	91.52		16.5
24.02			ventical	60.83	42.8	2.39	106.02		22.0
24.14	24.00		Peak	58.21	42.8	2.39	103.40	128	24.6
24.22		Deek		59.75	42.8	2.39	104.94		23.1
24.04		reak		60.14	42.8	2.39	105.33		22.7
24.11	48.00			60.24	42.8	2.39	105.43		22.6
24.19				59.02	42.8	2.39	104.21		23.8

Corrected Field Strength [FSC_{orr}] = Measured FS [FS_{Meas}] + ACF [ACF] + Cable Los [L_C]

Margin = Limit [FS_{Limit}] - Corrected Field Strength [FS_{Corr}]

*Due to the highly polarized nature of radar, field strength measurements in the Horizontal Polarization were non-existent.

9.0 20DB BW

Test Procedure									
Normative Reference	FCC 47 CFR §2.1051, §15.215								
Normative Reference	ANSI C63.10 (6.10.3)								
Limits									
§15.215(c)	Additional provisions to the general radiated emission limitations.								
	(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the								
	equipment is operated.								
General Procedure									
C63.10 (6.3.10)	6.10.3 Unlicensed wireless device operational configuration								
	Set the EUT to operate at 100% duty cycle or equivalent "normal mode of operation." ⁵⁴ Testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band. ⁵⁵ Testing shall be performed for each frequency with every applicable unlicensed wireless device configuration. If more than one power output level is available, then testing shall be done with the appropriate maximum power output for each antenna combination or modulation, as recorded in the unlicensed wireless device conducted power measurement results. The highest gain of each antenna type shall be used for this test.								
	ss devices unable to be configured for 100% duty cycle even in test mode, configure the uration duty cycle supported.								
outside the band permitt	g, for example, in the 2.4 GHz band, have hardware capability to operate at frequencies ed by the regulatory authority. Testing shall only be done at the lowest and highest lowed frequency band (see Annex A for examples of regulatory requirements and frequency								
Test Setup	Appendix A Figure A.1								
Measurement Proced	ure								
	to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DLIT's antenna port								

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. The output power of the DUT was set to the manufacturer's highest output power setting at the Low and High frequency channels as permitted by the device. The unwanted band edge emissions were measured and recorded.

Plot 9.1 – 20dB BW, ANT, Ch 2

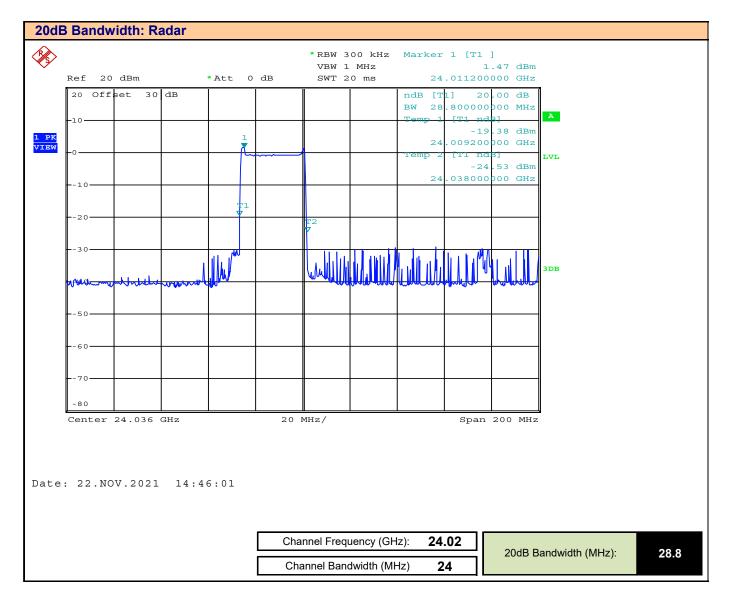
Plot 9.2 - 20dB BW, ANT, Ch 41

Plot 9.3 - 20dB BW, ANT, Ch 80

Table 9.1 - Summary of 20dB BW Measurements, ANT

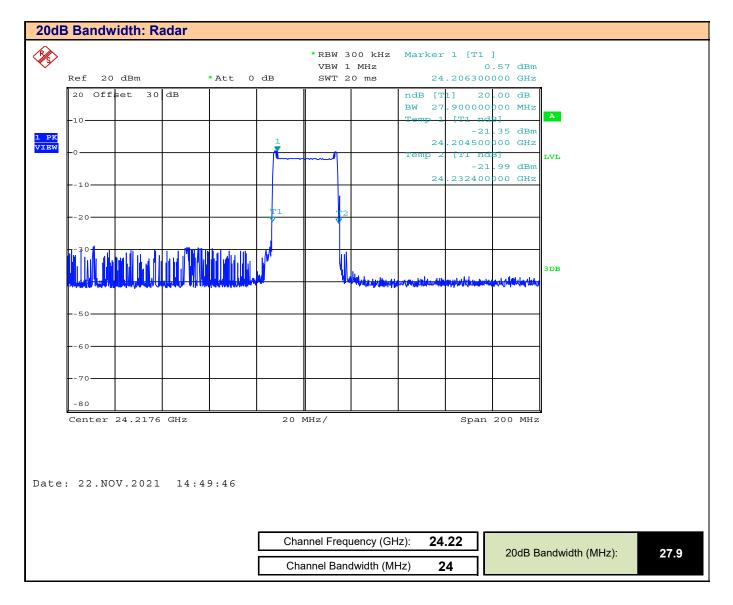
20dB BW Bandwidth Measurement Results										
Mode	Channel	Channel		Bit	Measured					
	Number		Modulation	Rate	20dB Bandwidth					
		(MHz)		(Mbps)	(MHz)					
	2	2402		-	1.124					
ANT	2 41	2402 2441	GFSK	-	1.124 1.144					
ANT	-	-	GFSK	-						

Compliance to §15.215(c):

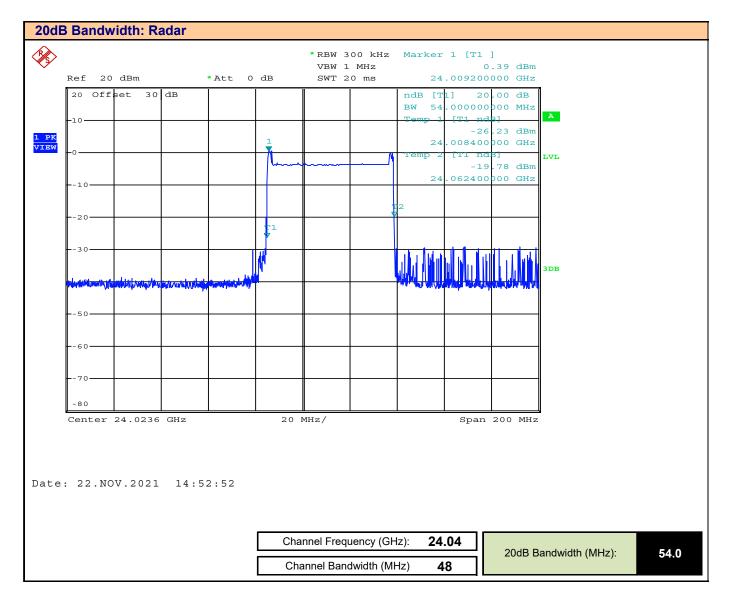

Largest Measured 20dB BW < 1.15MHz, 50% BW < 0.575MHz

LBE = 2402MHz - 0.575MHz = 2401.4MHz > 2400MHz

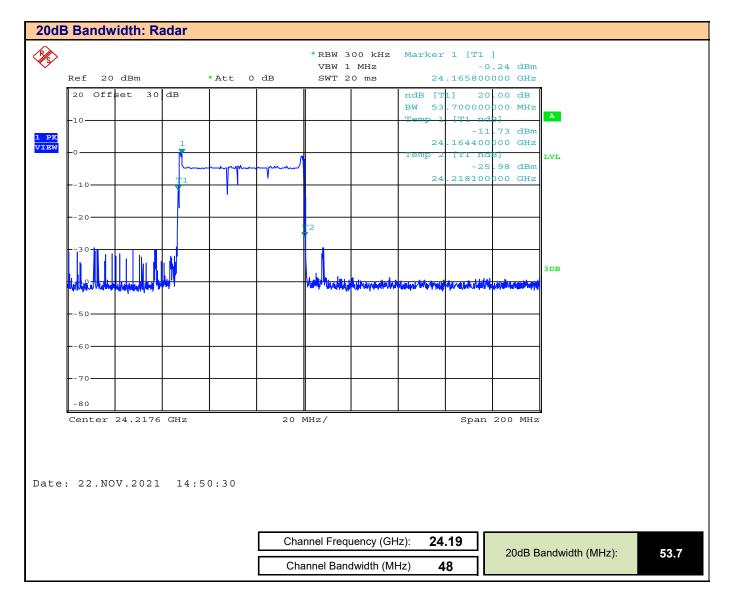
UBE = 2480MHz + 0.575MHz = 2480.6MHz < 2483.5MHz



Plot 9.4 – 20dB BW, 24GHz Radar, 24MHz BW, Channel Lo



Plot 9.5 – 20dB BW, 24GHz Radar, 24MHz BW, Channel Hi



Plot 9.6 – 20dB BW, 24GHz Radar, 48MHz BW, Channel Lo

Plot 9.7 – 20dB BW, 24GHz Radar, 24MHz BW, Channel Hi

Table 9.2 - Summary of 20dB BW Measurements, 24GHz Radar

20dB BW Bandwidth Measurement Results								
	Channel		Channel	Measured				
Mode	Frequency	Modulation	Bandwidth	20dB Bandwidth				
	Frequency	Modulation	Banuwiuth					
	(GHz)		(MHz)	(MHz)				
	24.02		24	28.800				
Radar	24.22		24	27.900				
Tauai	24.04	-	48	54.000				
	24.19	48		53.700				
Result:	Result: Complies							

Compliance to §15.215(c):

Largest Measured 20dB BW = 54MHz, 50% BW = 27MHz (0.027GHz)

LBE = 24.04GHz - 0.027GHzMHz = 24.013GHz > 24.00GHz

UBE = 24.19GHz + 0.027GHz = 24.217GHz < 24.25GHz

10.0 RADIATED SPURIOUS EMISSIONS – RESTRICTED BANDS

Test Procedure						
Normative Reference	FCC 47 CFR §2.1051, §	15.247(d), §15.205(a), §15.205(c), §15.209(a)				
Normative Reference	KDB 558074 (8.6), ANS	I C63.10 (11.12)				
Limits						
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based either an RF conducted or a radiated measurement, provided the transmitter demonstr compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as per under paragraph (b)(3) of this section, the attenuation required under this paragraph sh 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is required. In addition, radiated emissions which fall in the restricted bands, as defined i §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) §15.205(c)).					
47 CFR §15.209(a)	(a) Except as provided e	ssion limits; general requirements. Isewhere in this subpart, the emissions from an intentional radiator d strength levels specified in the following table:				
	Frequency (MHz)	Field Strength (microvolts/meter)				
	0.009 - 0.490	2400/F (kHz) @300m				
	0.490 - 1.705	24000/F (kHz) @30m				
	1.705 - 30	30 @ 30m				
	30 - 88	100 @3m				
	88 - 216	150 @3m				
	216 - 960	200 @3m				
	Above 960	500 @3m				

See Appendix H for Measurement Plots

Table 10.1 – Summary of Radiated Emissions, Restricted Band, ANT + WiFi + Radar

Summary of Radiated Simultaneous Tx Emissions WiFi + ANT + Radar											
Measured Frequency	Antenna	Emission	Measur Emissio	on	Antenna ACF	Cable Loss	Amplifier Gain	Correc Emissi	ion	Limit	Margin
Range (MHz)	Polarization	Frequency	[E _{Meas} (dBuV		[ACF] (dB)	[L _c] (dB)	[G _A] (dB)	[E _{cori} (dBuV/	-	(dBuV)	(dB)
30-1000MHz	Horizontal	ND	ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	46.0	n/a
30-1000MHz	Vertical	ND	ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	43.5	n/a
1 - 3GHz	Horizontal	ND	ND	(1)	27.40	4.58	0.00 (3)	ND		54.0	n/a
1 - 3GHz	Vertical	ND	ND	(1)	27.40	4.58	0.00 (3)	ND		54.0	n/a
3-13GHz	Horizontal	ND	ND	(1)	36.76	9.86	0.00 (3)	ND		54.0	n/a
3-13GHz	Vertical	ND	ND	(1)	36.76	9.86	0.00 (3)	ND		54.0	n/a
13-18GHz	Horizontal	ND	ND	(1)	38.75	16.54	0.00 (3)	ND		54.0	n/a
13-18GHz	Vertical	ND	ND	(1)	38.75	16.54	0.00 (3)	ND		54.0	n/a
18-22GHz	Horizontal	ND	ND	(1)	43.05	18.83	0.00 (3)	ND		54.0	n/a
18-22GHz	Vertical	ND	ND	(1)	43.05	18.83	0.00 (3)	ND		54.0	n/a
22 -25GHz	Horizontal	ND	ND	(1)	42.96	21.86	0.00 (3)	ND		54.0	n/a
22-25GHz	Vertical	ND	ND	(1)	42.96	21.86	0.00 (3)	ND		54.0	n/a
Results:								Com	plies		

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $E_{Corr} = E_{Meas} + ACF + L_C - G_A$

See Appendix H for Measurement Plots

Table 10.2 – Summary of Radiated Emissions, Restricted Band, ANT + BLE + Radar

Summary o	of Radiated	Simultane	eous Tx	Emis	ssions B	LE + /	ANT + Ra	dar			
Measured Frequency Range	Antenna Polarization	Emission Frequency	Measur Emissie [E _{Meas}	on	Antenna ACF [ACF]	Cable Loss [L _c]	Amplifier Gain [G _A]	Correct Emissi [E _{corr}	on	Limit	Margin
(MHz)		Trequency	(dBuV		(dB)	(dB)	(dB)	(dBuV/		(dBuV)	(dB)
30-1000MHz	Horizontal	ND	ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	46.0	n/a
30-1000MHz	Vertical	ND	ND	(1)	0.00	0.00	0.00 (3)	ND	(2)	43.5	n/a
1 - 3GHz	Horizontal	ND	ND	(1)	27.40	4.58	0.00 (3)	ND		54.0	n/a
1 - 3GHz	Vertical	ND	ND	(1)	27.40	4.58	0.00 (3)	ND		54.0	n/a
3-13GHz	Horizontal	ND	ND	(1)	36.76	9.86	0.00 (3)	ND		54.0	n/a
3-13GHz	Vertical	ND	ND	(1)	36.76	9.86	0.00 (3)	ND		54.0	n/a
13-18GHz	Horizontal	ND	ND	(1)	38.75	16.54	0.00 (3)	ND		54.0	n/a
13-18GHz	Vertical	ND	ND	(1)	38.75	16.54	0.00 (3)	ND		54.0	n/a
18-22GHz	Horizontal	ND	ND	(1)	43.05	18.83	0.00 (3)	ND		54.0	n/a
18-22GHz	Vertical	ND	ND	(1)	43.05	18.83	0.00 (3)	ND		54.0	n/a
22 -25GHz	Horizontal	ND	ND	(1)	42.96	21.86	0.00 (3)	ND		54.0	n/a
22-25GHz	Vertical	ND	ND	(1)	42.96	21.86	0.00 (3)	ND		54.0	n/a
								Res	ults:	Com	plies

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $E_{Corr} = E_{Meas} + ACF + L_C - G_A$

Table 10.3 – Summary of Radiated Emissions, Restricted Band, Radar

Channel	Channel	Antenna*	Emission	Measured Emission	Antenna ACF	Cable Loss	Conversion Loss	Corrected Emission	Limit	Margin
Frequency	Bandwidth	Polarization	Frequency	[E _{Meas}]	[ACF]	[L _c]	[CL]	[E _{Corr}]		
(GHz)	(MHz)		(GHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV)	(dB)
24.02		Vertical	48.04	-37.56	43.82	2.50	23.00	31.8	67.96	36.2
24.14		Vertical	48.28	-32.96	43.82	2.50	23.00	36.4	67.96	31.6
24.22		Vertical	48.44	-32.26	43.82	2.50	23.00	37.1	67.96	30.9
24.02		Vertical	72.06	-33.09	47.35	2.50	35.00	51.8	67.96	16.2
24.14	24.0	Vertical	72.42	-32.69	47.35	2.50	35.00	52.2	67.96	15.8
24.22		Vertical	72.66	-31.99	47.35	2.50	35.00	52.9	67.96	15.1
24.02		Vertical	96.08	-36.79	49.85	2.50	39.80	55.4	67.96	12.6
24.14		Vertical	96.56	-36.09	49.85	2.50	39.80	56.1	67.96	11.9
24.22		Vertical	96.88	-35.69	49.85	2.50	39.80	56.5	67.96	11.5
24.04		Vertical	48.08	-35.16	43.82	2.50	23.00	34.2	67.96	33.8
24.11		Vertical	48.22	-34.26	43.82	2.50	23.00	35.1	67.96	32.9
24.19		Vertical	48.38	-33.76	43.82	2.50	23.00	35.6	67.96	32.4
24.04		Vertical	72.12	-31.69	47.35	2.50	35.00	53.2	67.96	14.8
24.11	48.0	Vertical	72.33	-31.99	47.35	2.50	35.00	52.9	67.96	15.1
24.19		Vertical	72.57	-31.59	47.35	2.50	35.00	53.3	67.96	14.7
24.04		Vertical	96.16	-34.39	49.85	2.50	39.80	57.8	67.96	10.2
24.11		Vertical	96.44	-34.29	49.85	2.50	39.80	57.9	67.96	10.1
24.19		Vertical	96.76	-34.09	49.85	2.50	39.80	58.1	67.96	9.9
	-	•			-	-		Results:	Com	plies

*Due to the highly polarized nature of radar, field strength measurements in the Horizontal Pol $E_{Corr} = E_{Meas} + ACF + L_C - C_L$

Margin = Limit - E_{Corr}

11.0 RADIATED RX SPURIOUS EMISSIONS

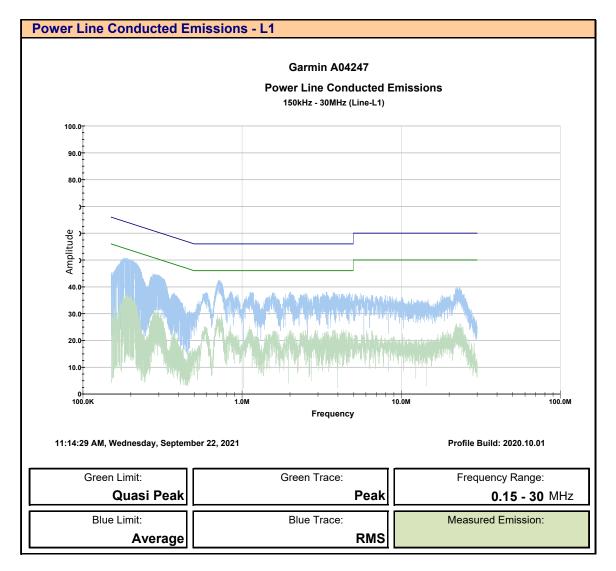
Normative Reference	ECC 47 CER 82 1046
Normative Reference	
	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.6)
General Procedure	
C63.10 (6.5.4)	6.5.4 Final radiated emission tests
	Using the orientation and equipment arrangement of the EUT, and based on the measurement results found during the exploratory measurement in 6.5.3, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. The final measurement shall follow all the procedures in 6.3 with the EUT operating on frequencies per 5.6. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable) and the frequency and amplitude of the six highest spurious emissions relative to the limit; emissions more than 20 dB below the limit do not need to be reported.
	Measurements are performed with the EUT rotated from 0° to 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for bot the horizontal and vertical antenna polarizations. Variations in cable or wire placement shall be explored to maximize the measured emissions.
Test Setup	Appendix A Figure A.2
Measurement Proced	ure
measurement antenna.	m high turntable on an Open Area Test Site (OATS) at a distance of 3m from the The DUT was set to transmit at maximum power and duty cycle. The DUT was rotated 360 ith the receive antenna elevated from 1 to 4m. The emissions were measured and recorded.

Table 11.1 – Summary of Radiated Rx Emissions

See Appendix H for Measurement Plots

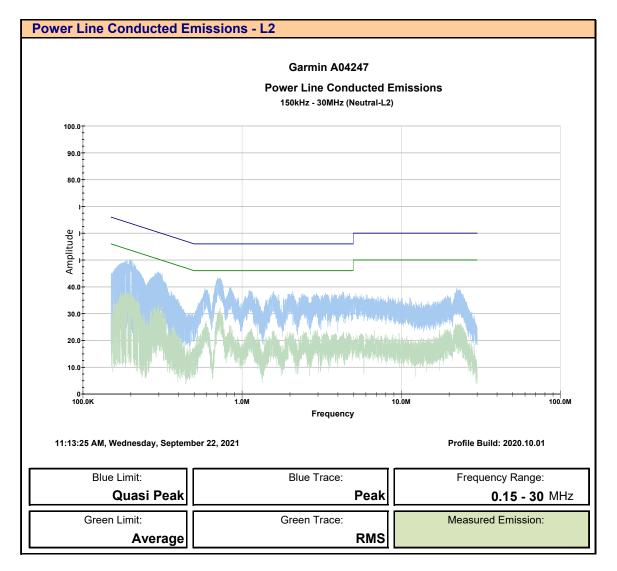
Measurement	Results			
Frequency	Antenna	Measured	Limit	
		Emission	e.r.p./e.r.i.p.	Margin
Range	Polarization	[E _{Meas}]	[A∟]	
		(dBm)	(dBuV/m)	(dB)
30-1000MHz	Horizontal	ND	-	n/a
1 - 18GHz	TIONZONIA	ND	-	n/a
30-1000MHz	Vertical	ND	-	n/a
1 - 18GHz	vertical	ND	-	n/a
		Results:	Compl	ies

ND: No emissions detected above ambient or within 20dB of the limit



12.0 POWER LINE CONDUCTED EMISSIONS

Test Procedure	
Normative Reference	FCC 47 CFR §15.107, ICES-003(6.1)
	ANSI C63.4-2014
Limits	
47 CFR §15.107	(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line or any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges. 0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the frequency
	0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average
	5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average
ICES-003(6.1)	6.1 - AC Power Line Conducted Emissions Limits
	Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 2.
	0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the
	0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average
	5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average
Test Setup	Appendix A Figure A.7



Plot 12.1 – Power Line Conducted Emissions, Line 1

Plot 12.2 – Power Line Conducted Emissions, Line 2

Table 12.1 – Summary of Power Line Conducted Emissions – L1

Measured	Channel	LISN	Emissio	on	Measured		Insertion	Cable	Amplifier	Correcte	d		
Frequency	Channel	LISN	Frequen	су	Emission	Detector*	Loss	Loss	Gain	Emissio	n	Limit	Margin
Range	Frequency	Port	[f _{Emm}]		[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]			
(MHz)	(MHz)				(dBuV)		(dB)	(dB)	(dB)	(dBuV)		(dBuV)	(dB)
			658.90	kHz	45.95		0.40	0.25		46.6	(2)	56.0	9.4
			1.38	MHz	38.16	Peak	0.30	0.26		38.7	(2)	56.0	17.3
			10.74	MHz	44.73	Геак	0.30	0.26		45.3	(2)	60.0	14.7
150kHz - 30MHz	2442.0		11.15	MHz	44.32		0.30	0.27		44.9	(2)	60.0	15.1
	2442.0	L1	663.10	kHz	38.71		0.40	0.25	0.00 (3)	39.4	(2)	46.0	6.6
			1.40	MHz	28.66	Average	0.30	0.26	1 [29.2	(2)	46.0	16.8
			10.83	MHz	32.83	Average	0.30	0.26		33.4	(2)	50.0	16.6
			11.10	MHz	33.42		0.30	0.27		34.0	(2)	50.0	16.0
			•			-				Res	ults:	Comp	lies

* In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $\mathsf{E}_{\mathsf{Corr}} = \mathsf{E}_{\mathsf{Meas}} + \mathsf{L}_{\mathsf{LISN}} + \mathsf{L}_{\mathsf{C}} - \mathsf{G}_{\mathsf{A}}$

Class B QP Limit = 56 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class B Avg Limit = 46 - 20Log ($f_{Emm}/500$) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

Table 12.1 – Summary of Power Line Conducted Emissions – L2

Measured	Channel	LISN	Emissio	on	Measured		Insertion	Cable	Amplifier	Correcte	d		
Frequency	Channel	LISN	Frequen	су	Emission	Detector*	Loss	Loss	Gain	Emissio	n	Limit	Margin
Range	Frequency	Port	[f _{Emm}]		[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]			
(MHz)	(MHz)				(dBuV)		(dB)	(dB)	(dB)	(dBuV)		(dBuV)	(dB)
			652.80	kHz	45.18	Peak 0.40 0.30 0.30 0.30	0.40	0.25		45.8	(2)	56.0	10.2
			1.38	MHz	37.06		0.26	[37.6	(2)	56.0	18.4	
			10.72	MHz	45.03		0.30	0.26	0.00 (3)	45.6	(2)	60.0	14.4
150kHz - 30MHz	2442.0	L2	11.26	MHz	43.42		0.30	0.27		44.0	(2)	60.0	16.0
	2442.0	LZ	662.04	kHz	38.99		0.40	0.25		39.6	(2)	46.0	6.4
			1.38	MHz	28.56	Average	0.30	0.26		29.1	(2)	46.0	16.9
			10.75	MHz	32.43	Average	0.30	0.26		33.0	(2)	50.0	17.0
			11.06	MHz	34.02		0.30	0.27	1	34.6	(2)	50.0	15.4
						-		-	-	Res	ults:	Comp	olies

* In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $\mathsf{E}_{\mathsf{Corr}} = \mathsf{E}_{\mathsf{Meas}} + \mathsf{L}_{\mathsf{LISN}} + \mathsf{L}_{\mathsf{C}} - \mathsf{G}_{\mathsf{A}}$

Class B QP Limit = 56 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class B Avg Limit = 46 - 20Log ($f_{Emm}/500$) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

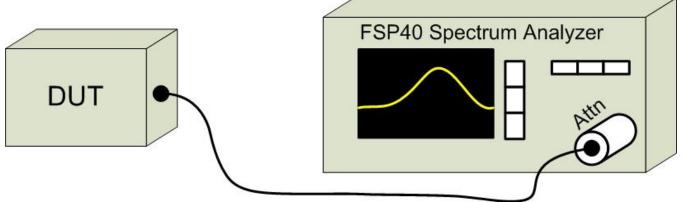
Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 – Setup - Conducted Measurements Equipment List

Equipm	Equipment List								
Asset Number	Manufacturer	Model Number	Serial Number	Description					
00241	R&S	FSU40	100500	Spectrum Analyzer					
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable					



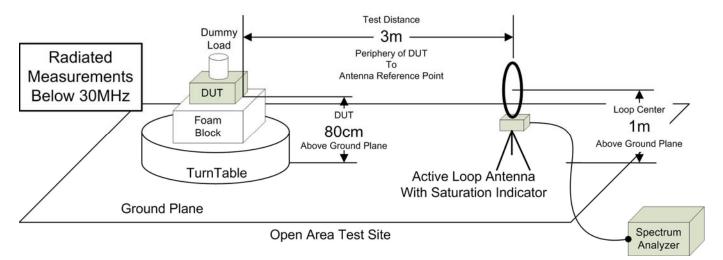

Figure A.1 – Test Setup Conducted Measurements

Table A.2 – Setup - Radiated Emissions Equipment List

Equipm	ent List			
Asset Number	Manufacturer	Model Number	Serial Number	Description
00050	Chase	CBL-6111A	1607	Bilog Antenna
00034	ETS	3115	6267	Double Ridged Guide Horn
00035	ETS	3115	6276	Double Ridged Guide Horn
00085	EMCO	6502	9203-2724	Loop Antenna
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz
00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz
00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz
00333	HP	85685A	3010A01095	RF Preselector
00049	HP	85650A	2043A00162	Quasi-peak Adapter
00051	HP	8566B	2747A05510	Spectrum Analyzer
00241	R&S	FSU40	100500	Spectrum Analyzer
00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier
00071	EMCO	2090	9912-1484	Multi-Device Controller
00072	EMCO	2075	0001-2277	Mini-mast
00073	EMCO	2080	0002-1002	Turn Table
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable
00275	TMS	LMR400	n/a	25m Cable
00278	TILE	34G3	n/a	TILE Test Software

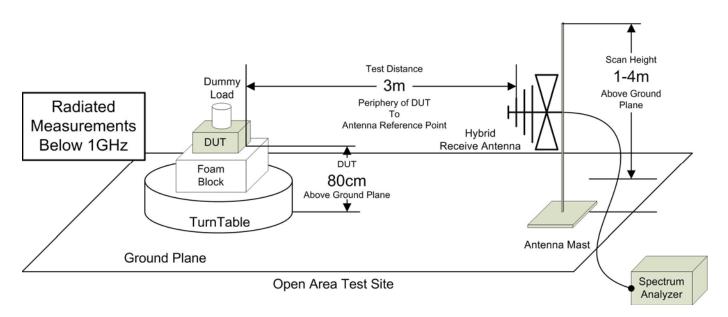


Figure A.3 – Test Setup Radiated Emissions Measurements 30 – 1000MHz

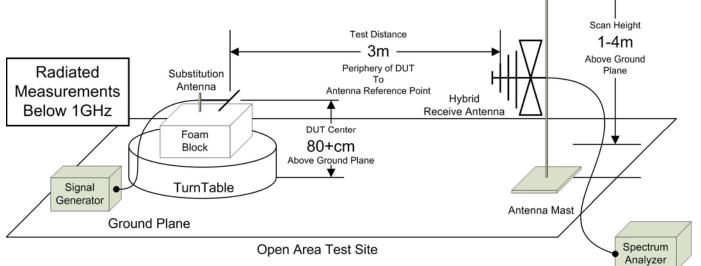


Figure A.4 – Test Setup Radiated Emissions Measurements 30 – 1000MHz Signal Substitution

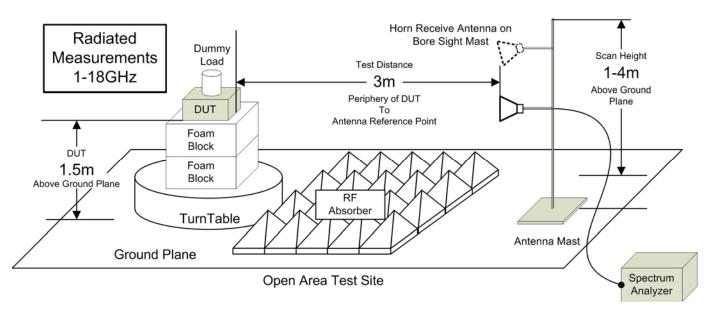


Figure A.5 – Test Setup Radiated Emissions Measurements 1 – 18GHz

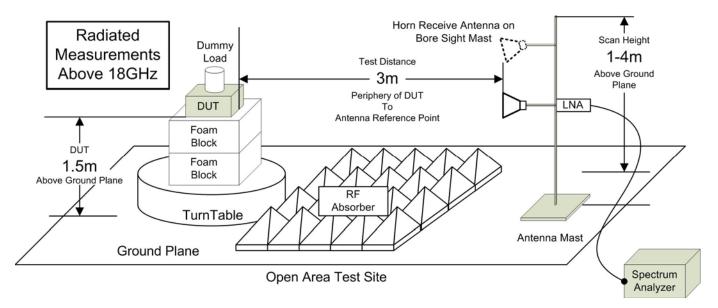


Figure A.6 – Test Setup Radiated Emissions Measurements Above 18 GHz

APPENDIX B – EQUIPMENT LIST AND CALIBRATION

Equipm	ent List						
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 2022
00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 2021
00035	ETS	3115	6276	Double Ridged Guide Horn	22 Mar 2019	Triennial	21 Mar 2022
00085	EMCO	6502	9203-2724	Loop Antenna	11 Jun 2019	Triennial	11 Jun 2022
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCR
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCR
00345	HP	11970U	2332A00174	Harmonic Mixer 40-60GHz	COU	n/a	COU
00346	Dorado	GH-19		Standard Gain Horn 40-60GHz	NCR	n/a	NCR
00347	HP	11970V	2521A01347	Harmonic Mixer 50-75GHz	COU	n/a	COU
00348	Dorado	GH-15	99005	Standard Gain Horn 50-75GHz	NCR	n/a	NCR
00349	HP	11970W	2521A01604	Harmonic Mixer 75-110GHz	COU	n/a	COU
00350	Dorado	GH-10	99001	Standard Gain Horn 75-110GHz	NCR	n/a	NCR
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 2023
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 2023
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020	Triennial	23 Jun 2023
00241	R&S	FSU40	100500	Spectrum Analyzer	10 Aug 2021	Triennial	10 Aug 2024
00257	Com-Power	LI-215A	191934	LISN	27 Dec 2021	Triennial	27 Dec 2024
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required

COU: Calibrate On Use

APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})						
Th	is uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2						
	Radiated Emissions 30MHz - 200MHz						
	$U_{LAB} = 5.14 dB$ $U_{CISPR} = 6.3 dB$						
	Radiated Emissions 200MHz - 1000MHz						
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$						
	Radiated Emissions 1GHz - 6GHz						
	$U_{LAB} = 4.80 dB$ $U_{CISPR} = 5.2 dB$						
	Radiated Emissions 6GHz - 18GHz						
	$U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$						
	Power Line Conducted Emissions 9kHz to 150kHz						
	$U_{LAB} = 2.96 dB$ $U_{CISPR} = 3.8 dB$						
	Power Line Conducted Emissions 150kHz to 30MHz						
	$U_{LAB} = 3.12 dB$ $U_{CISPR} = 3.4 dB$						
	If the calculated uncertainty U _{lab} is less than U _{CISPR} then:						
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit						
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit						
	If the calculated uncertainty U _{lab} is greater than U _{CISPR} then:						
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit						
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit						

Other Measurement Uncertainties (ULAB)					
RF Conducted Emissions 9kHz - 40GHz					
$U_{LAB} = 1.0 dB U_{CISPR} = n/a$					
Frequency/Bandwidth 9kHz - 40GHz					
U _{LAB} = 0.1ppm U _{CISPR} = n/a					
Temperature					
$U_{LAB} = 1^{O}C U_{CISPR} = n/a$					

END OF REPORT

APPENDIX H – RADIATED TX AND RX MEASUREMENT PLOTS

APPENDIX I – FIELD STRENGTH MEASUREMENT PLOTS