

Test Report Serial Number: Test Report Date: Project Number: 45461690 R6.0

15 February 2022

r: **1557**

EMC Test Report - New Certification

Applicant:

Garmin International Inc. 1200 East 151 St Olathe, KS, 66062 USA

FCC ID:

IPH-04247

Product Model Number / HVIN

A04247

IC Registration Number

1792A-04247

Product Marketing Name / PMN

A04247

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.247), Part 15 Subpart B

Digital Transmission System (DTS)

RSS-Gen, RSS-247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

45461690 R6.0 15 February 2022

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DUT INFORMATION	
3.0 SCOPE	
4.0 TEST SUMMARY	
5.0 NORMATIVE REFERENCES	
6.0 FACILITIES AND ACCREDITATIONS	
7.0 DUTY CYCLE AND TRANSMISSION DURATION	
8.0 OCCUPIED BANDWIDTH	
9.0 DTS BANDWIDTH	
10.0 ANTENNA PORT CONDUCTED POWER	
11.0 POWER SPECTRAL DENSITY	
12.0 CONDUCTED SPURIOUS EMISSIONS -BAND EDGE	
13.0 CONDUCTED SPURIOUS EMISSIONS	
14.0 RADIATED TX SPURIOUS EMISSIONS, RESTRICTED BAND	
15.0 RADIATED RX SPURIOUS EMISSIONS	
16.0 POWER LINE CONDUCTED EMISSIONS	
APPENDIX A – TEST SETUP DRAWINGS	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
END OF REPORT	
APPENDIX D – DUTY CYCLE PLOTS	
APPENDIX E – OCCUPIED / DTS BANDWIDTH MEASUREMENT PLOTS	
APPENDIX F - CONDUCTED POWER / PSD MEASUREMENT PLOTS	
APPENDIX G – CONDUCTED SPURIOUS EMISSIONS MEASUREMENT PLOTS	
APPENDIX H – RADIATED TX AND RX MEASUREMENT PLOTS	
ALT ENDIX II - NADIATED TX AND TX WEAGONEWENT LOTO	
Table of Figures	
Figure A.1 – Test Setup – Conducted Measurements	36
Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz	37
Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHz	38
Figure A.4 – Test Setup Radiated Measurements 30MHz – 1GHz, Signal Substitution	
Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz,	
Figure A.6 – Test Setup Radiated Measurements 18 – 26.5GHz,	
rigure A.7 – Test Setup – Line Conducted Emissions Measurements	40
Table of Plots	
Plot 16.1 – Power Line Conducted Emissions, Line 1	32
Plot 16.2 – Power Line Conducted Emissions, Line 2	

45461690 R6.0 15 February 2022

Table of Tables

Table 7.1 – Summary Duty Cycle Measurement - WiFi	11
Table 7.2 – Summary Duty Cycle Measurement - BLE	11
Table 8.1 – Summary of Occupied Bandwidth Measurements, WiFi	13
Table 8.2 – Summary of Occupied Bandwidth Measurements, BLE	13
Table 9.1 – Summary of 6dB DTS Bandwidth Measurements, WiFi	15
Table 9.2 – Summary of 6dB DTS Bandwidth Measurements, BLE	15
Table 10.1 – Summary of Conducted Power Measurements, WiFi	17
Table 10.2 – Summary of Conducted Power Measurements, BLE	18
Table 11.1 – Summary of Power Spectral Density Measurements, WiFi	20
Table 11.2 – Summary of Power Spectral Density Measurements, BLE	21
Table 12.1 – Summary of Spurious Emission Measurements – Band Edge, WiFi	23
Table 12.2 – Summary of Spurious Emission Measurements – Band Edge, BLE	23
Table 13.1 – Summary of Conducted Spurious Emissions, WiFi	25
Table 13.2 – Summary of Conducted Spurious Emissions, BLE	25
Table 14.1 – Summary of Radiated Simultaneous Tx Spurious Emissions, WiFi + ANT + Radar	27
Table 14.2 – Summary of Radiated Simultaneous Tx Spurious Emissions, BLE + ANT + Radar	28
Table 15.1 – Summary of Radiated Rx Spurious Emissions	
Table 16.1 – Summary of Power Line Conducted Emissions – L1	34
Table 16.1 – Summary of Power Line Conducted Emissions – L2	35
Table A.1 – Conducted Measurement Setup	
Table A.2 – Radiated Emissions Measurement Equipment	37
Table A.3 – Setup – Conducted Emissions Equipment List	40

45461690 R6.0 15 February 2022

1.0 DOCUMENT CONTROL

Revision History							
San	nples Tested By:	Art Voss, P.Eng.	Date	e(s) of Evaluation:	1 Oct - 1 Dec, 2021		
Rep	ort Prepared By:	Art Voss, P.Eng.	Rep	oort Reviewed By:	Ben Hewson		
Report	Dose	ription of Revision	Revised	Revised	Revision Date		
Revision	Desc	inpulon of Revision	Section	Ву	Revision Date		
0.1	Draft Release		n/a	Art Voss	4 December, 2022		
1.0	Initial Release		n/a	Art Voss	25 January, 2022		
2.0	Revised Plot Headings		16.0	Art Voss	2 February, 2022		
3.0	Revised Scope		3.0	Art Voss	3 February, 2022		
4.0	Added	DSS Equipment Class	Cover	Art Voss	9 February, 2022		
5.0	Revised BLE Info		7-14	Art Voss	14 February, 2022		
6.0	Re	vised Appendices	D-H	Art Voss	15 February 2022		
0.0	Revised	Filing from DSS to DTS	n/a	AIT VOSS	15 February, 2022		

2.0 CLIENT AND DUT INFORMATION

	Client Information					
Applicant Name	Garmin Inte	ernational Inc.				
	1200 East 1	51 St				
Applicant Address	Olathe, KS, 66062					
	USA					
	Dl	JT Information				
Device Identifier(s):	FCC ID:	IPH-04247				
Device identifier(s).	ISED ID:	1792A-04247				
Device Model(s) / HVIN:	A04247					
Device Marketing Name / PMN:	A04247					
Test Sample Serial No.:	Conducted:	3383564979, 3383564988 OTA: 3383564975, 3383565083				
Device Type:	Radar Devi	ce				
FCC Equipment Class:	Digital Transmission System (DTS)					
ISED Equipment Class:	Wireless Local Area Network Device					
	WiFi (DTS): 2412-2462MHz					
Transmit Frequency Range:	BLE/ANT: 2402-2480MHz					
	Radar: 24.0236GHz - 24.2176GHz					
	WiFi - Digital Transmission System (DTS): 6.42dBm					
Manuf. Max. Rated Output Power:	ANT - Low Power Communication Device Transmitter (DXX): 6.51dBm					
Mariur. Max. Kateu Output Fower.	BLE - Digital Transmission System (DTS): 1.56dBm					
	Radar: -11d	Bm EIRP				
Antenna Type and Gain:*	BLE/WiFi: -	0.4dBi, ANT: -0.5dBi, Radar: 10.5dBi				
Modulation:	WiFi: DSSS	, OFDM, CCK, MCS0-7				
Modulation:	BLE: GMSK					
Modulation:	ANT: GFSK					
DUT Power Source:		chargeable Li-Ion				
DUT Dimensions [LxWxH]	L x W x H: 1	05mm x 40mm x 38mm				
Deviation(s) from standard/procedure:	None					
Modification of DUT:	None					

^{*} Information on antenna gain provided by applicant.

45461690 R6.0 15 February 2022

3.0 SCOPE

Preface:

This Certification Report was prepared on behalf of:

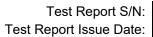
Garmin International Inc.

"(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and "unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Device:

The Garmin Model/HVIN: A04247 is a radar device consisting of a WiFi, BlueTooth Low Energy (BLE), Adaptive Network Topology (ANT) and 24GHz radar transmitters/transceivers. The BLE and WiFi transceivers share the same antenna and cannot simultaneously transmit.

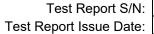
Requirement:


The transceivers of this *equipment* are subject to emissions evaluation in accordance with FCC: 47 CFR 2, 15C, ISED: RSS-Gen, RSS-210 and RSS-247. As per FCC 47 CFR §2.1093 and Health Canada Safety Code 6, an RF Exposure (SAR) evaluation is required for this *Equipment* and the results of the RF Exposure (SAR) evaluation appear in a separate report.

Application:

This is an application for a New Certification.

Scope:

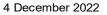

The scope of this investigation is limited to the evaluation and reporting of the wanted and spurious emissions in accordance with the rule parts cited in Normative References section of this report.

4.0 TEST SUMMARY

	TEST SUMMARY								
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result			
Section	Description of Test	Reference	Part(s) FCC	Part(s) ISED	Date	Nesuit			
7.0	Duty Cycle and Transmission	ANSI C63.10-2013	n/a	n/a	26 May 2021	n/a			
7.0	Duration	KDB 558074 D01v05	II/a	II/a	20 Way 2021	II/a			
8.0	Occupied Bandwidth	ANSI C63.10-2013	§2.1049	RSS-Gen (6.7)	26, 29 May	Pass			
0.0	Occupied Baridwidth	KDB 558074 D01v05	92.1049	133-Gen (0.7)	2021	газз			
9.0	DTS Bandwidth	ANSI C63.10-2013	\$45.047(a)(0)	RSS-Gen (6.7)	26, 29 May	Pass			
9.0	DIS Bandwidth	KDB 558074 D01v05	§15.247(a)(2)	RSS-247 (5.2)(a)	2021	Pass			
10.0	Conducted Day or (Fundamental)	ANSI C63.10-2013	§2.1046	RSS-Gen (6.12)	26, 29 May	Pass			
10.0	Conducted Pow er (Fundamental)	KDB 558074 D01v05	§15.247(b)(3)	RSS-247 (5.4)(d)	2021	газэ			
11.0	Pow er Spectral Density	ANSI C63.10-2013	§15.247(e)	RSS-247 (5.2)(b)	26, 29 May	Pass			
11.0	Fow er Spectral Density	KDB 558074 D01v05	§13.247(e)	N33-247 (3.2)(b)	2021				
12.0	Conducted Tx Spurious Emissions	ANSI C63.10-2013	§2.1051	RSS-Gen (6.13)	30 May 2021	Pass			
12.0	Band Edge	KDB 558074 D01v05	§15.247(d)	RSS-247 (5.5)	30 Way 2021	газз			
13.0	Conducted Tx Spurious Emissions	ANSI C63.10-2013	§2.1051	RSS-Gen (6.13)	30 May 2021	Pass			
13.0	Conducted 1x Spunous Emissions	KDB 558074 D01v05	§15.247(d)	RSS-247 (5.5)	30 Way 2021	rass			
14.0	Radiated Tx Spurious Emissions	ANSI C63.4-2014	§15.109	RSS-Gen (6.13)	2, 3 June	Pass			
14.0	And Restricted Band	KDB 558074 D01v05	§15.247(d)	N33-Gen (6.13)	2021	rass			
15.0	Radiated Rx Spurious Emissions	ANSI C63.4-2014	§15.109	RSS-Gen (7.4)	2, 3 June	Pass			
15.0	Radiated RX Spurious Emissions	KDB 558074 D01v05	815.109	ICES-003(6.2)	2021	rass			
16.0	Pow er Line Conducted Emissions	ANSI C63.4-2014	§15.107	ICES-003(6.1)	7 June 2021	Pass			

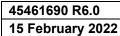

Test Station Day Log								
Date	Ambient Temp (°C)	Relative Humidity (%)	Barometric Pressure (kPa)	Test Station	Tests Performed Section(s)			
1 Oct 2021	22.8	15	102.6	LISN	16			
16 Nov 2021	23.5	15	102.8	EMC	10			
17 Nov 2021	21.0	17	103.2	EMC	8, 9, 11			
18 Nov 2021	22.9	17	101.9	EMC	8, 9			
21 Nov 2021	23.0	16	102.9	EMC	11, 12, 13			
29 Nov 2021	10.0	90	102.2	OATS	14, 15			
1 Dec 2021	24.1	18	101.1	EMC	7			

EMC - EMC Test Bench **SAC** - Semi-Anechoic Chamber **OATS** - Open Area Test Site **TC** - Temperature Chamber


LISN - LISN Test Area ESD - ESD Test Bench

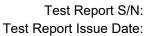
IMM - Immunity Test Area RI - Radiated Immunity Chamber

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.



Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

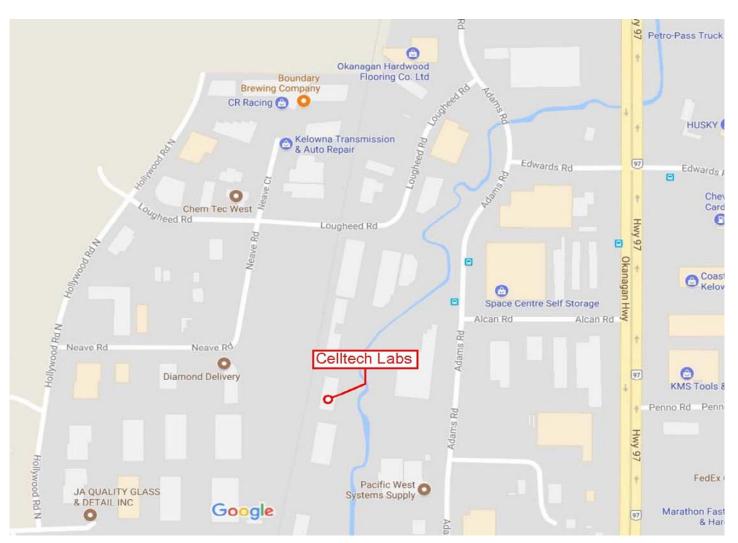
Date



5.0 NORMATIVE REFERENCES

		Normative References
ISO/IE	C 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI	C63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
OFIC	Title 47·	Telecommunication
		Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Sub Part C (15.247)	Intentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
FCC K	DB	OET Major Guidance Publications, Knowledge Data Base
	558074 D01v05r02	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)
		Operating Under Section 15.247
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
Amend	dment 1: March 2019	
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-247 Issue 2:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
Februa	ary 2017	and Licensed-Exempt Local Area Network (LE_LAN) Devices

45461690 R6.0


15 February 2022

6.0 FACILITIES AND ACCREDITATIONS

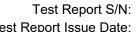
Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

7.0 DUTY CYCLE AND TRANSMISSION DURATION

See Appendix D for Measurement Plots

Table 7.1 - Summary Duty Cycle Measurement - WiFi

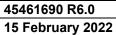

Duty Cycle Measurement Results: WiFi									
Mode	Channel Number	Frequency (MHz)	Modulation	Data Rate (Mbps)	Measured Duty Cycle [DC _{Meas}] (dBm)	Scale* Factor [CF] (dB)			
802.11b	11	2462.00	CCK	1	95.9	0.18			
802.11b	11	2462.00	CCK	2	92.4	0.34			
802.11b	11	2462.00	DSSS	5.5	83.4	0.79			
802.11b	13	2472.00	DSSS	1	95.8	0.19			
802.11g	11	2462.00	OFDM	6	96.3	0.16			
802.11g	11	2462.00	OFDM	9	94.6	0.24			
802.11g	11	2462.00	OFDM	12	88.2	0.55			
802.11g	13	2472.00	OFDM	6	96.4	0.16			
802.11n	11	2462.00	MCS0	6.5	87.6	0.57			
802.11n	13	2472.00	MCS0	6.5	87.6	0.57			

^{*}Scale Factor (Correction Factor) [CF] = 10Log(1/[DC_{Meas]})

Table 7.2 - Summary Duty Cycle Measurement - BLE

Duty Cycle Measurement Results: BLE							
	Channel Frequency			Data	Measured Duty Cycle	Scale* Factor	
Mode	Number	(MHz)	Modulation	Rate (Mbps)	[DC _{Meas}] (dBm)	[CF] (dB)	
802.15	18	2442.00	GMSK	-	60.8	2.16	

^{*}Scale Factor (Correction Factor) [CF] = 10Log(1/[DC_{Meas]})



8.0 OCCUPIED BANDWIDTH

Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)
General Procedure	
KDB 558074 (8.3.2.1)	8.3.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
Test Setup	Appendix A - Figure A.1

Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The 99% Occupied Bandwidth was measured and recorded and used for the basis for measuring the Conducted Output Power (See Section 10.0) and Power Spectral Density (See Section 11.0).

See Appendix E for Measurement Plots

Table 8.1 – Summary of Occupied Bandwidth Measurements, WiFi

Occupied Bandwidth Results: WiFi								
	Channel			Data	Measured			
Mode	Onamici	Frequency	Modulation	Data	Occupied	Emission		
Mode	Number		Wodulation	Rate	Bandwidth	Designator		
	Nullibel	(MHz)		(Mbps)	(MHz)	Designator		
	802.11b		ССК	1	13.2	13M2G1D		
802 11h			COR	2	13.2	13M2G1D		
002.110		2437.00	DSSS	5.5	13.2	13M2G1D		
				11	13.2	13M2G1D		
						6	16.8	16M8G1D
	6		OFDM	9	16.8	16M8G1D		
802.11g	U			12	16.7	16M7G1D		
				24	16.8	16M8G1D		
				24	16.6	16M6G1D		
	802.11n		MCS0	6.5	16.6	16M6G1D		
802.11n			MCS4	39	17.8	17M8G1D		
			MCS7	65	17.8	17M8G1D		
					Result:	Complies		

Table 8.2 - Summary of Occupied Bandwidth Measurements, BLE

Occupied Bandwidth Results: BLE							
Mode	Channel	Frequency	Modulation	Data	Measured Occupied	Emission	
Wode	Number	(MHz)		Rate (Mbps)	Bandwidth (MHz)	Designator	
	2	2402.00		-	1.05	1M04G1D	
802.15	18	2442.00	GMSK	1	1.04	1M04G1D	
	39	2480.00		-	1.05	1M04G1D	
Result: Complies							

ort S/N: **45461690 R6.0** e Date: **15 February 2022**

Test Procedure								
Normative Reference	FCC 47 CFR §2.1049, §15.247(a)(2), RSS-Gen (6.7), RSS-247 (5.2)(a),							
Normative Reference	KDB 558074 (8.2), ANSI C63.10 (11.8.2)							
Limits								
47 CFR §15.247(a)(2)	 (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. 							
RSS-247 (5.2)(a)	5.2 Digital transmission systems							
	DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400 - 2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.							
KDB 558074 (8.2)	8.2 Option 2							
C63.10 (11.8.2)	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 X RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.							
Test Setup	Appendix A Figure A.1							

Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle.

45461690 R6.0 15 February 2022

See Appendix E for Measurement Plots

Table 9.1 – Summary of 6dB DTS Bandwidth Measurements, WiFi

6dB (DTS	6dB (DTS) Bandwidth Results: WiFi										
Mode	Channel	Frequency	Modulation	Data	Measured DTS						
Mode	Number		modulation	Rate	Bandwidth						
	Number	(MHz)		(Mbps)	(MHz)						
802.11b	6	2437.00	CCK	1	8.5						
802.11b	6	2437.00	DSSS	5.5	6.4						
802.11g	6	2437.00	OFDM	6	16.6						
802.11n	6	2437.00	MCS0	6.5	17.8						
Result:					Complies						

Table 9.2 - Summary of 6dB DTS Bandwidth Measurements, BLE

6dB (DTS	6dB (DTS) Bandwidth Results: BLE										
	Channel			Data	Measured						
Mode	Chamilei	Frequency	Modulation	Data	DTS						
	Number		Wodulation	Rate	Bandwidth						
	Nullibei	(MHz)		(Mbps)	(MHz)						
	2	2402.00			712.0						
BLE	18	2442.00	GMSK	1	704.0						
	39	2480.00			708.0						
Result:											

45461690 R6.0 15 February 2022

10.0 ANTENNA PORT CONDUCTED POWER

Test Procedure								
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),							
Reference	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.2)							
Limits								
47 CFR §15.247(b)(3)	(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.							
RSS-247 (5.4)(d)	5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) Devices shall comply with the following requirements, where applicable: d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.							

Test Report S/N: Test Report Issue Date: | 15 February 2022

45461690 R6.0

See Appendix F for Measurement Plots

Table 10.1 – Summary of Conducted Power Measurements, WiFi

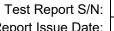
	Channel	F	Madalatia	Bit	Transmit	Duty Cycle	Measured	Corrected	Conducted	Conducted
Mode		Frequency	Modulation	Rate	Duty Cycle [DC]	Correction [CF] ⁽¹⁾	Power [P _{Meas}]	Power [P _{Corr}] ⁽²⁾	Limit [P _{Lim}]	Margin ⁽³⁾
	Number	(MHz)		(Mbps)	(%)	(dB)	(dBm)	(dBm)	(dBm)	(dB)
	1	2412		1	95.9	0.18	5.14	5.32	30	24.7
	2	2417	CCK -	1	95.9	0.18	5.21	5.39	30	24.6
	3	2422		1	95.9	0.18	5.23	5.41	30	24.6
802.11b	6	2437		1	95.9	0.18	5.42	5.60	30	24.4
002.110	10	2457		1	95.9	0.18	5.49	5.67	30	24.3
	11	2462		1	95.9	0.18	5.51	5.69	30	24.3
	11	2462	DSSS	5.5	83.4	0.79	3.20	3.99	30	26.0
	11	2462	DSSS	11	83.4	0.79	4.37	5.16	30	24.8
	11	2462		6	96.3	0.16	6.19	6.35	30	23.6
	11	2462	•	9	94.6	0.24	6.04	6.28	30	23.7
802.11g	11	2462	OFDM	12	88.2	0.55	5.54	6.09	30	23.9
	11	2462	•	24	88.2	0.55	4.82	5.37	30	24.6
	11	2462	'	54	88.2	0.55	3.66	4.21	30	25.8
	11	2462	MCS0	6.5	87.6	0.57	5.30	5.87	30	24.1
802.11n	11	2462	MCS4	36	87.6	0.57	3.08	3.65	30	26.3
	11	2462	MCS7	65	87.6	0.57	2.50	3.07	30	26.9
									Result:	Complies

⁽¹⁾ Correction Factor [CF] = 10Log(1/[DC])

⁽²⁾ Corrected Power [P_{Corr}] = P_{Meas} + CF

⁽³⁾ Conducted Margin = P_{Limit} - P_{Corr}

Test Report S/N: Test Report Issue Date: | 15 February 2022


45461690 R6.0

See Appendix F for Measurement Plots

Table 10.2 - Summary of Conducted Power Measurements, BLE

Conducted	Power Meas	surement Re	sults: 802.15 (BLE)						
	Channel		uency Modulation	Bit	Transmit	Duty Cycle	Measured	Corrected	Conducted	Conducted
Mode	Chamilei	Frequency		Rate	Duty Cycle	Correction	Power	Power	Limit	Margin ⁽³⁾
Wode	Number			Nate	[DC]	[CF] ⁽¹⁾	[P _{Meas}]	[P _{Corr}] ⁽²⁾	[P _{Lim}]	wargin '
		(MHz)		(Mbps)	(%)	(dB)	(dBm)	(dBm)	(dBm)	(dB)
	2	2402			60.8	2.16	-1.46	0.70	30	29.3
	18	2442			60.8	2.16	-0.98	1.18	30	28.8
BLE	39	2480	GMSK	-	60.8	2.16	-0.93	1.23	30	28.8
	18	2442			60.8	2.16	-0.60	1.56	30	28.4
	39	2480			60.8	2.16	-0.74	1.42	30	28.6
									Result:	Complies

- (1) Correction Factor [CF] = 10Log(1/[DC])
- (2) Corrected Power $[P_{Corr}] = P_{Meas} + CF$
- (3) Conducted Margin = P_{Limit} P_{Corr}

11.0 POWER SPECTRAL DENSITY

	FCC 47 CFR §15.247(e), RSS-247 (5.2)(b),
Normative Reference	KDB 558074 (10.3), ANSI C63.10 (11.10.3)
Limits	
47 CFR §15.247(e)	(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
RSS-247 (5.2)(b)	b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).
KDB 558074 (10.3)	Method AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each sweep)
C63.10 (11.10.3)	This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98 %); otherwise sweep triggering/signal gating must be implemented t ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).
	a) Set instrument center frequency to DTS channel center frequency.
	b) Set span to at least 1.5 X OBW.
	c) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz
	d) Set VBW ≥ 3 X RBW.
	e) Detector = RMS
	f) Ensure that the number of measurement points in the sweep ≥ 2 X span/RBW.
	g) Sweep time = auto couple.
	h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
	i) Use the peak marker function to determine the maximum amplitude level.
	j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this marequire zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).
Test Setup	Appendix A Figure A.1

Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points ≥ 2 X Span / RBW = 2 X (1.5MHz / 3kHz) = 1000, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Power Spectral Density was measured and recorded.

Test Report S/N: Test Report Issue Date: | 15 February 2022

45461690 R6.0

See Appendix F for Power Density Measurement Plots

Table 11.1 - Summary of Power Spectral Density Measurements, WiFi

Power S	Spectral D	ensity Mea	surement Re	esults: \	ViFi					
Mode	Channel	Frequency	Modulation	Bit Rate		Transmit Duty Cycle		Corrected PSD	PSD Limit	Margin ⁽³⁾
	Number				[PSD _{Meas}]	[DC]	[CF] ⁽¹⁾	[PSD _{Corr}] (2)	[PSD _{Lim}]	
		(MHz)		(Mbps)	(dBm)	(%)	(dB)	(dBm)	(dBm)	(dB)
802.11b	11	2462	CCK	1.0	-8.090	95.9	0.18	-7.91	10	17.9
802.11g	11	2462	OFDM	6.0	-10.860	92.4	0.34	-10.52	10	20.5
802.11n	11	2462	MCS0	6.5	-10.860	87.6	0.57	-10.29	10	20.3
									Result:	Complies

- (1) Duty Cycle Correction Factor [CF] = 10Log(1/[DC])
- (2) Corrected PSD [PSDCorr] = [PSDMeas] + [CF]
- (3) Margin = $[PSD_{Limit}]$ $[PSD_{Corr}]$

Test Report S/N: Test Report Issue Date: | 15 February 2022

45461690 R6.0

See Appendix F for Power Density Measurement Plots

Table 11.2 - Summary of Power Spectral Density Measurements, BLE

Power S	Spectral D	ensity Mea	surement Re	esults: E	BLE						
	Channel			Bit	Measured	Transmit	Duty Cycle	Corrected	PSD		
Mode	Onamici	Frequency	Modulation	Rate	PSD	Duty Cycle		PSD	Limit	Margin ⁽³⁾	
Mode	Number	Number			rtuto	[PSD _{Meas}]	[DC]	[CF] ⁽¹⁾	[PSD _{Corr}] (2)	[PSD _{Lim}]	
	Number	(MHz)		(Mbps)	(dBm)	(%)	(dB)	(dBm)	(dBm)	(dB)	
BLE	2	2402	GMSK	ı	-13.910	60.8	2.16	-11.75	8	19.7	
BLE	18	2442	GMSK	-	-14.190	60.8	2.16	-12.03	8	20.0	
BLE	39	2480	GMSK	-	-11.920	60.8	2.16	-9.76	8	17.8	
									Result:	Complies	

- (1) Duty Cycle Correction Factor [CF] = 10Log(1/[DC])
- (2) Corrected PSD [PSDCorr] = [PSDMeas] + [CF]
- (3) Margin = $[PSD_{Limit}]$ $[PSD_{Corr}]$

12.0 CONDUCTED SPURIOUS EMISSIONS -BAND EDGE

Test Procedure	
Normative Reference	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),
	KDB 558074 (11.3), ANSI C63.10 (11.11.3)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.
RSS-247 (5.5)	5.5 Unwanted emissions
	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted unde section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and
	2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).
	As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.
KDB 558074 (11.3)	11.1 General
C63.10 (11.11.3)	The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:
	b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).
	11.2 Reference level measurement
	a) Set instrument center frequency to DTS channel center frequency.
	b) Set the span to ≥ 1.5 X DTS bandwidth.
	c) Set the RBW = 100 kHz.
	d) Set the VBW ≥ 3 X RBW.
	e) Detector = peak.
	f) Sweep time = auto couple.
	g) Trace mode = max hold.
	h) Allow trace to fully stabilize.
	i) Use the peak marker function to determine the maximum PSD level.
	Note that the channel found to contain the maximum PSD level can be used to establish the reference

45461690 R6.0 15 February 2022

See Appendix G for Measurement Plots

Table 12.1 - Summary of Spurious Emission Measurements - Band Edge, WiFi

Band Ed	Band Edge Measurement Results: 802.11											
	Channel			Bit	Emission	Fundamental	Attenuation					
Modo	Mode	Frequency	Modulation	Rate	Pote Power Power		Attenuation	Limit	Margin			
Wiode	Number			Nate	[P _{Em}]	[P _{Fund}]	[Atten]					
		(MHz)		(Mbps)	(dBm)	(dBm)	(dB)	(dB)	(dB)			
802.11g	1	2412.00	OFDM	6	-58.12	-3.50	54.62	30	24.6			
002.11g	11	2462.00	OI DIVI	Ŭ	-61.57	-5.50	58.07	30	28.1			
	Result: Complies											

Attenuation [Atten] = [P_{Fund}] - [P_{Em}]

Margin = Attenuation - Limit

Table 12.2 - Summary of Spurious Emission Measurements - Band Edge, BLE

Band Ed	Band Edge Measurement Results: BLE										
	Channel			Bit	Emission	Fundamental	Attenuation				
Mode	Frequency		ncy Modulation		Power	Power	Attenuation	Limit	Margin		
Wiode	Number			Rate	[P _{Em}]	[P _{Fund}]	[Atten]				
		(MHz)		(Mbps)	(dBm)	(dBm)	(dB)	(dB)	(dB)		
BLE	2	2402.00	GMSK	1	-59.02	0.70	59.72	30	29.7		
DLE	39	2480.00	GIVION	ı	-59.18	0.70	59.88	50	29.9		
	Result: Complies										

Attenuation [Atten] = [P_{Fund}] - [P_{Em}]

Margin = Attenuation - Limit

^{*} Information regarding antenna gain provided by applicant

^{*} Information regarding antenna gain provided by applicant

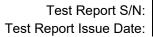
13.0 CONDUCTED SPURIOUS EMISSIONS

Limits 47 CFR §15.247(d) (d) mo intercor me limit ave req spe RSS-247 (5.5) In a mo	CC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5), DB 558074 (11.3), ANSI C63.10 (11.11.3) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally odulated intentional radiator is operating, the radio frequency power that is produced by the rentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that entains the highest level of the desired power, based on either an RF conducted or a radiated reasurement, provided the transmitter demonstrates compliance with the peak conducted power nits. If the transmitter complies with the conducted power limits based on the use of RMS reaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation quired under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits recified in §15.209(a) is not required.
Limits 47 CFR §15.247(d) (d) moderate interest	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally odulated intentional radiator is operating, the radio frequency power that is produced by the tentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that what in the highest level of the desired power, based on either an RF conducted or a radiated easurement, provided the transmitter demonstrates compliance with the peak conducted power nits. If the transmitter complies with the conducted power limits based on the use of RMS eraging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation quired under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits
47 CFR §15.247(d) (d) mo inter cor me limi ave req spe RSS-247 (5.5) 5.5 In a	odulated intentional radiator is operating, the radio frequency power that is produced by the tentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that what in the highest level of the desired power, based on either an RF conducted or a radiated easurement, provided the transmitter demonstrates compliance with the peak conducted power nits. If the transmitter complies with the conducted power limits based on the use of RMS eraging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation quired under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits
mo intercorrection intercorrec	odulated intentional radiator is operating, the radio frequency power that is produced by the tentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that what in the highest level of the desired power, based on either an RF conducted or a radiated easurement, provided the transmitter demonstrates compliance with the peak conducted power nits. If the transmitter complies with the conducted power limits based on the use of RMS eraging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation quired under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits
In a	
mo	5 Unwanted emissions
on cor pov sec ger d) F 240 sha	any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally odulated device is operating, the RF power that is produced shall be at least 20 dB below that in e 100 kHz bandwidth within the band that contains the highest level of the desired power, based either an RF conducted or a radiated measurement, provided that the transmitter demonstrates impliance with the peak conducted power limits. If the transmitter complies with the conducted over limits based on the use of root-mean-square averaging over a time interval, as permitted under action 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the eneral field strength limits specified in RSS-Gen is not required. For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and -00-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. all not exceed 4 W, except as provided in section 5.4(e).
	.1 General
C63.10 (11.11.3) The	e DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the wer shall be attenuated according to the following conditions:
des bar	If maximum conducted (average) output power was used to demonstrate compliance as escribed in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency and shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 dz (i.e., 30 dBc).
11.	.2 Reference level measurement
a) \$	Set instrument center frequency to DTS channel center frequency.
b) \$	Set the span to ≥ 1.5 X DTS bandwidth.
c) \$	Set the RBW = 100 kHz.
d) \$	Set the VBW ≥ 3 X RBW.
e) [Detector = peak.
f) S	Sweep time = auto couple.
g) 7	Trace mode = max hold.
h) <i>i</i>	Allow trace to fully stabilize.
i) U	Use the peak marker function to determine the maximum PSD level.
	ote that the channel found to contain the maximum PSD level can be used to establish the ference

45461690 R6.0 15 February 2022

See Appendix G for Measurement Plots

Table 13.1 – Summary of Conducted Spurious Emissions, WiFi


Spurious Do	omain Emis	sions: WiFi									
	Channel			Bit	Emission	Measured	Emission				
Mode	Chamilei	Frequency	Modulation Rate		Frequency	Emission	Limit	Margin			
Wiode	Number			Nate		[P _{Meas}]	[P _{Lim}]	Wargin			
	Nullibei	(MHz)		(Mbps)	(MHz)	(dBm)	(dBm)				
802.11g	1	2412	OFDM	6.0	ND	ND	30	n/a			
	Result										

ND: No Emissions Detected

Table 13.2 – Summary of Conducted Spurious Emissions, BLE

Spurious D	omain Emis	sions: BLE						
	Channel			Bit	Emission	Measured	Emission	
Mode	Chamilei	Frequency	Modulation Rate		Frequency Emission		Limit	Margin
Wiode	Number			Nate		[P _{Meas}]	[P _{Lim}]	Wargiii
	Nullibel	(MHz)		(Mbps)	(MHz)	(dBm)	(dBm)	
BLE	18	2442	GMSK	1.0	ND	ND	30	n/a
						Result:	Com	plies

ND: No Emissions Detected

14.0 RADIATED TX SPURIOUS EMISSIONS, RESTRICTED BAND

Test Procedure									
Normative Reference	FCC 47 CFR §2.1051, §	15.247(d), §15.205(a), §15.205(c), §15.209(a)							
Normative Reference	KDB 558074 (8.6), ANS	C63.10 (11.12)							
Limits									
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitt under paragraph (b)(3) of this section, the attenuation required under this paragraph shall to 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (se §15.205(c)). §15.209 Radiated emission limits; general requirements.								
47 CFR §15.209(a)	(a) Except as provided e	Ison limits; general requirements. Isewhere in this subpart, the emissions from an intentional radiator distrength levels specified in the following table:							
	Frequency (MHz)	Field Strength (microvolts/meter)							
	0.009 - 0.490	2400/F (kHz) @300m							
	0.490 - 1.705	24000/F (kHz) @30m							
	1.705 - 30 30 @ 30m								
	30 - 88								
	88 - 216	9							
	216 - 960	200 @3m							
	Above 960	500 @3m							

45461690 R6.0 15 February 2022

See Appendix H Radiated Tx Spurious Measurement Plots

Table 14.1 - Summary of Radiated Simultaneous Tx Spurious Emissions, WiFi + ANT + Radar

Summary of	of Radiated	Simultane	ous Tx	Emis	sions W	/iFi + <i>/</i>	+ TN	Ra	dar			
Measured Frequency	Antenna	Emission		Measured Emission		Cable Loss	Ampli Gair		Correct Emissi		Limit	Margin
Range	Polarization	Frequency	[E _{Meas}	.]	[ACF]	[L _c]	[G _A]	[E _{Corr}	l		
(MHz)			(dBu\	/)	(dB)	(dB)	(dB)	(dBuV/	m)	(dBuV)	(dB)
30-1000MHz	Horizontal	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	46.0	n/a
30-1000MHz	Vertical	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	43.5	n/a
1 - 3GHz	Horizontal	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
1 - 3GHz	Vertical	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
3-13GHz	Horizontal	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
3-13GHz	Vertical	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
13-18GHz	Horizontal	ND	ND	(1)	38.75	16.54	0.00	(3)	ND		54.0	n/a
13-18GHz	Vertical	ND	ND	(1)	38.75	16.54	0.00	(3)	ND		54.0	n/a
18-22GHz	Horizontal	ND	ND	(1)	43.05	18.83	0.00	(3)	ND		54.0	n/a
18-22GHz	Vertical	ND	ND	(1)	43.05	18.83	0.00	(3)	ND		54.0	n/a
22 -25GHz	Horizontal	ND	ND	(1)	42.96	21.86	0.00	(3)	ND		54.0	n/a
22-25GHz	Vertical	ND	ND	(1)	42.96	21.86	0.00	(3)	ND		54.0	n/a
									Res	ults:	Com	plies

⁽¹⁾ No Emissions Detected (ND) above ambient or within 20dB of the limit

$$E_{Corr} = E_{Meas} + ACF + L_C - G_A$$

⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

⁽³⁾ External Amplier not used

45461690 R6.0 15 February 2022

See Appendix H Radiated Tx Spurious Measurement Plots

Table 14.2 - Summary of Radiated Simultaneous Tx Spurious Emissions, BLE + ANT + Radar

Summary of	f Radiated	Simultane	ous Tx	Emis	sions B	LE + A	NT +	Rad	dar			
Measured Frequency	Antenna	Emission		Measured Emission		Cable Loss	Ampli Gai		Correct Emissi		Limit	Margin
Range	Polarization	Frequency	[E _{Meas}	.]	[ACF]	[L _c]	[G _A]	[E _{Corr}	l		
(MHz)			(dBu\	/)	(dB)	(dB)	(dB)	(dBuV/	m)	(dBuV)	(dB)
30-1000MHz	Horizontal	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	46.0	n/a
30-1000MHz	Vertical	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	43.5	n/a
1 - 3GHz	Horizontal	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
1 - 3GHz	Vertical	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
3-13GHz	Horizontal	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
3-13GHz	Vertical	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
13-18GHz	Horizontal	ND	ND	(1)	38.75	16.54	0.00	(3)	ND		54.0	n/a
13-18GHz	Vertical	ND	ND	(1)	38.75	16.54	0.00	(3)	ND		54.0	n/a
18-22GHz	Horizontal	ND	ND	(1)	43.05	18.83	0.00	(3)	ND		54.0	n/a
18-22GHz	Vertical	ND	ND	(1)	43.05	18.83	0.00	(3)	ND		54.0	n/a
22 -25GHz	Horizontal	ND	ND	(1)	42.96	21.86	0.00	(3)	ND		54.0	n/a
22-25GHz	Vertical	ND	ND	(1)	42.96	21.86	0.00	(3)	ND		54.0	n/a
									Res	ults:	Com	plies

⁽¹⁾ No Emissions Detected (ND) above ambient or within 20dB of the limit

$$E_{Corr} = E_{Meas} + ACF + L_C - G_A$$

⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

⁽³⁾ External Amplier not used

Test Report S/N: **45461690 R6.0**Test Report Issue Date: **15 February 2022**

15.0 RADIATED RX SPURIOUS EMISSIONS

Test Procedure	
Normative Reference	FCC 47 CFR §15.109, ICES-003(6.2)
Normative Reference	ANSI C63.4:2014
Limits	
47 CFR §15.109	(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: 30-88MHz: 40dBuV/m
	88-216MHz: 43.5dBuV/m
	216-960MHz: 46dBuV/m
	> 960MHz: 54dBuV/m
ICES-003(6.2.1)	6.2.1 - Radiated Emissions Limits Below 1 GHz
	Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 5 determined at a distance of 3 metres.
	30-88MHz: 40dBuV/m
	88-216MHz: 43.5dBuV/m
	216-960MHz: 46dBuV/m
	> 960MHz: 54dBuV/m
Test Setup	Appendix A Figure A.2

Measurement Procedure

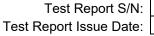
The DUT was set up as per ANSI C63.4:2014. Emissions were scanned between 30MHz and 1000MHz. The turntable was rotated 360 degrees and the antenna was elevated to 4m to optimize the measured emissions.

45461690 R6.0 15 February 2022

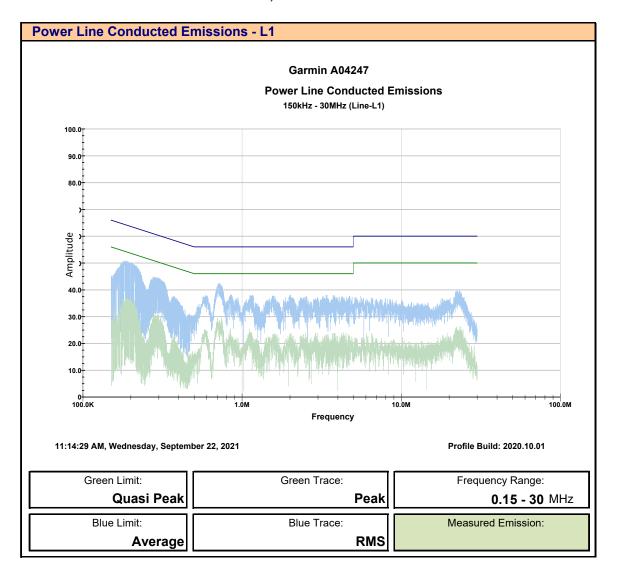
See Appendix H Radiated Rx Spurious Measurement Plots

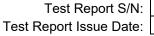
Table 15.1 – Summary of Radiated Rx Spurious Emissions

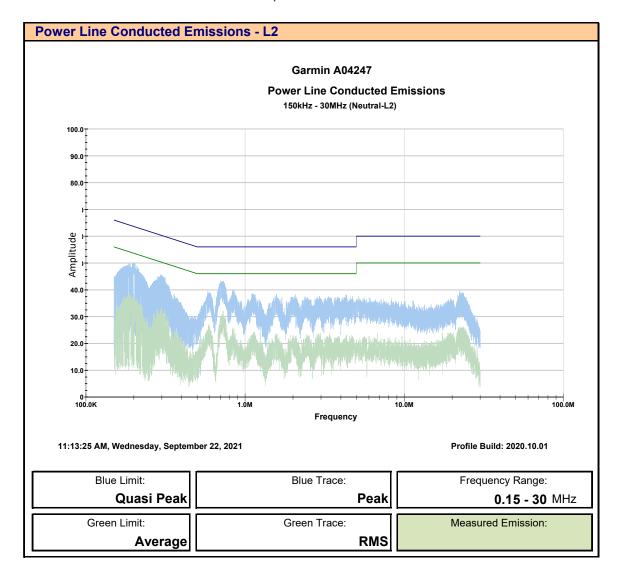
Measurement	Results				
Frequency	Antenna	Measured	Limit		
		Emission	e.r.p./e.r.i.p.	Margin	
Range	Polarization	[E _{Meas}]	[A _L]		
		(dBm)	(dBuV/m)	(dB)	
30-1000MHz	Horizontal	ND	-	n/a	
1 - 18GHz	Horizontal	ND	-	n/a	
30-1000MHz	Vertical	ND	-	n/a	
1 - 18GHz	vertical	ND	-	n/a	
		Results:	Compli	ies	


ND: No emissions detected above ambient or within 20dB of the limit

45461690 R6.0 15 February 2022


16.0 POWER LINE CONDUCTED EMISSIONS


Test Procedure	
Normative Reference	FCC 47 CFR §15.107, ICES-003(6.1)
Normative Reference	ANSI C63.4-2014
Limits	
47 CFR §15.107	(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges. 0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the frequency
	0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average
ICES-003(6.1)	5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average 6.1 - AC Power Line Conducted Emissions Limits
1023-003(0.1)	Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 2.
	0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the
	0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average
	5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average
Test Setup	Appendix A Figure A.7


Plot 16.1 - Power Line Conducted Emissions, Line 1

Plot 16.2 - Power Line Conducted Emissions, Line 2

Test Report S/N: Test Report Issue Date: | 15 February 2022

45461690 R6.0

Table 16.1 – Summary of Power Line Conducted Emissions – L1

Measured			Emission Measured Frequency Emission			Insertion	Cable	Amplifier	Correct	ed			
Frequency	Channel	LISN			Emission	Detector*	Loss	Loss	Gain	Emissio	n	Limit	Margin
Range	Frequency	Port	[f _{Emm}]		[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]			
(MHz)	(MHz)				(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
			658.90	kHz	45.95		0.40	0.25		46.6	(2)	56.0	9.4
		1.38	MHz	38.16	Peak	0.30	0.26		38.7	(2)	56.0	17.3	
			10.74	MHz	44.73	reak	0.30	0.26		45.3	(2)	60.0	14.7
150kHz - 30MHz	2442.0		11.15	MHz	44.32		0.30	0.27	0.00 (3)	44.9	(2)	60.0	15.1
150KHZ - 30IVIHZ	2442.0	L1	663.10	kHz	38.71		0.40	0.25	0.00 (3)	39.4	(2)	46.0	6.6
			1.40	MHz	28.66	A	0.30	0.26		29.2	(2)	46.0	16.8
			10.83	MHz	32.83	0.30 0.30	0.30	0.26	1	33.4	(2)	50.0	16.6
			11.10	MHz	33.42		0.30	0.27	1	34.0	(2)	50.0	16.0
									•	Res	ults:	Comp	lies

^{*} In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(3) External Amplier not used

$$E_{Corr} = E_{Meas} + L_{LISN} + L_{C} - G_{A}$$

Class B QP Limit = $56 - 20 \text{Log} (f_{\text{Emm}}/500) \text{ for } f_{\text{Emm}} = 150 \text{kHz to } 500 \text{kHz}$

Class B Avg Limit = 46 - 20Log ($f_{Emm}/500$) for $f_{Emm} = 150$ kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

⁽²⁾ LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

Test Report S/N: Test Report Issue Date: | 15 February 2022

45461690 R6.0

Table 16.1 – Summary of Power Line Conducted Emissions – L2

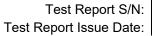
Summary of F	Power Line	Conducted T	x Emissio	ns									
Measured	Channel	LISN	Emission Measured			Insertion	Cable	Amplifier	Correcte	ed			
Frequency	Chamilei	LION	Frequen	су	Emission	Detector*	Loss	Loss	Gain	Emissio	n	Limit	Margin
Range	Frequency	Port	[f _{Emm}]		[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]			
(MHz)	(MHz)				(dBuV)		(dB)	(dB)	(dB)	(dBuV)		(dBuV)	(dB)
			652.80	kHz	45.18		0.40	0.25		45.8	(2)	56.0	10.2
		20	1.38	MHz	37.06	Peak	0.30	0.26		37.6	(2)	56.0	18.4
			10.72	MHz	45.03		0.30	0.26		45.6	(2)	60.0	14.4
150kHz - 30MHz	2442.0		11.26	MHz	43.42		0.30	0.27	0.00 (3)	44.0	(2)	60.0	16.0
130KHZ - 30IVIHZ	2442.0	L2	662.04	kHz	38.99		0.40	0.25	0.00 (3)	39.6	(2)	46.0	6.4
			1.38	MHz	28.56	Averene	0.30	0.26		29.1	(2)	46.0	16.9
			10.75	MHz	32.43	Average	0.30	0.26		33.0	(2)	50.0	17.0
			11.06 MHz 34.02	0.30	0.27		34.6	(2)	50.0	15.4			
	Results:											Comp	lies

^{*} In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

$$E_{Corr} = E_{Meas} + L_{LISN} + L_{C} - G_{A}$$

Class B QP Limit = $56 - 20 \text{Log} (f_{\text{Emm}}/500) \text{ for } f_{\text{Emm}} = 150 \text{kHz to } 500 \text{kHz}$

Class B Avg Limit = 46 - 20Log ($f_{Emm}/500$) for $f_{Emm} = 150$ kHz to 500kHz


Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

⁽²⁾ LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

⁽³⁾ External Amplier not used

APPENDIX A – TEST SETUP DRAWINGS

Table A.1 - Conducted Measurement Setup

Equipm	ent List			
Asset Number	Manufacturer	Model Number	Serial Number	Description
00241	R&S	FSU40	100500	Spectrum Analyzer
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable

Figure A.1 – Test Setup – Conducted Measurements

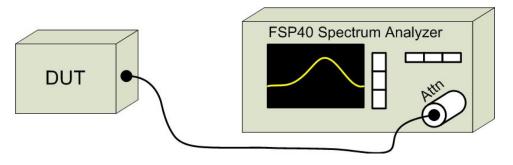


Table A.2 - Radiated Emissions Measurement Equipment

Equipment List					
Asset Number	Manufacturer	Model Number	Serial Number	Description	
00050	Chase	CBL-6111A	1607	Bilog Antenna	
00034	ETS	3115	6267	Double Ridged Guide Horn	
00035	ETS	3115	6276	Double Ridged Guide Horn	
00085	EMCO	6502	9203-2724	Loop Antenna	
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	
00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz	
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	
00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	
00333	HP	85685A	3010A01095	RF Preselector	
00049	HP	85650A	2043A00162	Quasi-peak Adapter	
00051	HP	8566B	2747A05510	Spectrum Analyzer	
00241	R&S	FSU40	100500	Spectrum Analyzer	
00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	
00071	EMCO	2090	9912-1484	Multi-Device Controller	
00072	EMCO	2075	0001-2277	Mini-mast	
00073	EMCO	2080	0002-1002	Turn Table	
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	
00275	TMS	LMR400	n/a	25m Cable	
00278	TILE	34G3	n/a	TILE Test Software	

Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz

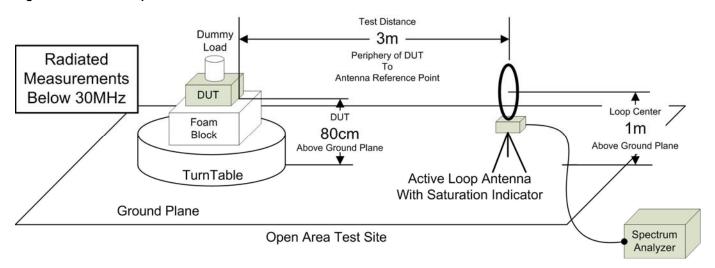


Figure A.3 - Test Setup Radiated Measurements 30MHz - 1GHz

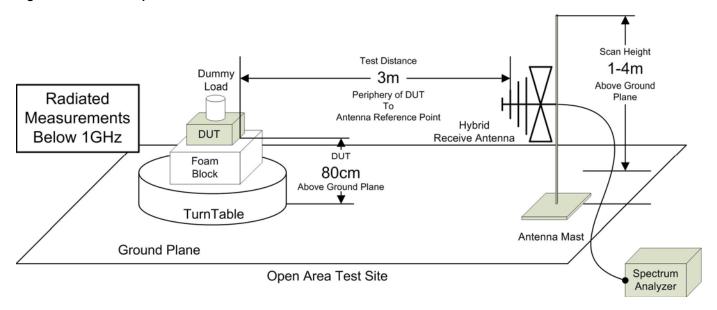
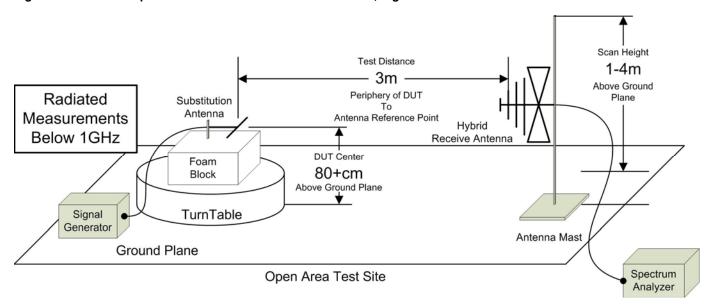



Figure A.4 - Test Setup Radiated Measurements 30MHz - 1GHz, Signal Substitution

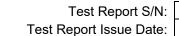


Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz,

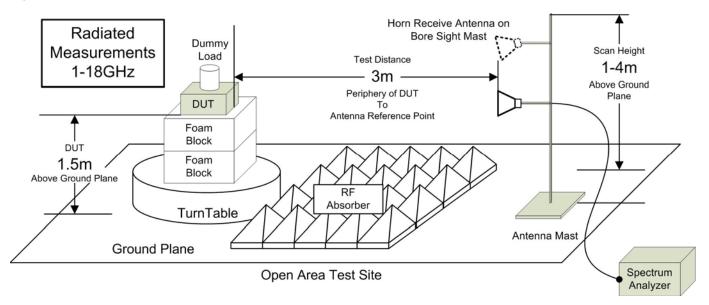


Figure A.6 - Test Setup Radiated Measurements 18 - 26.5GHz,

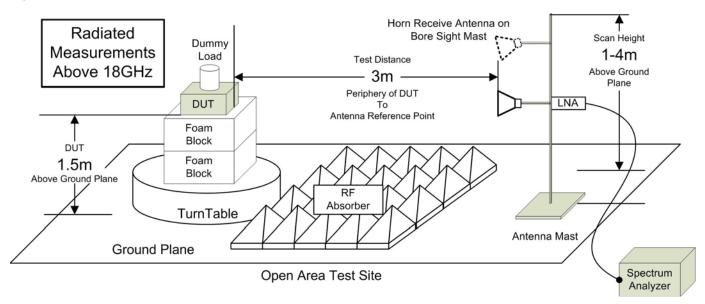


Table A.3 – Setup – Conducted Emissions Equipment List

Equipment List					
Asset Number	Manufacturer	Model Number	Serial Number	Description	
00333	HP	85685A	3010A01095	RF Preselector	
00049	HP	85650A	2043A00162	Quasi-peak Adapter	
00051	HP	8566B	2747A05510	Spectrum Analyzer	
00223	HP	8901A	3749A07154	Modulation Analyzer	
00257	Com-Power	LI-215A	191934	LISN	
00276	TMS	LMR400	n/a	4m Cable	

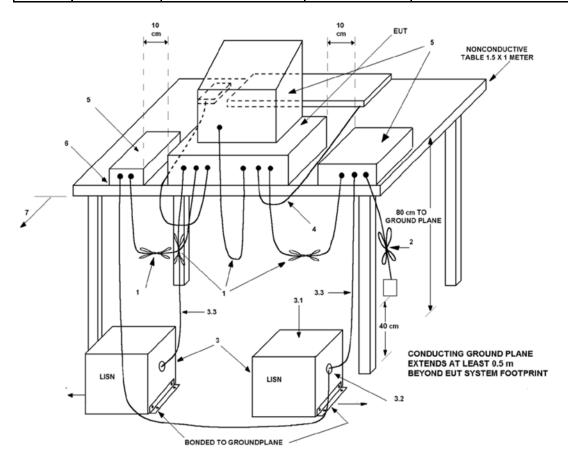
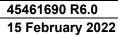
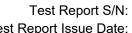
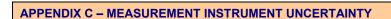



Figure A.7 – Test Setup – Line Conducted Emissions Measurements





APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equipm	Equipment List						
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 2022
00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 2021
00035	ETS	3115	6276	Double Ridged Guide Horn	22 Mar 2019	Triennial	21 Mar 2022
00085	EMCO	6502	9203-2724	Loop Antenna	11 Jun 2019	Triennial	11 Jun 2022
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCR
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCR
00345	HP	11970U	2332A00174	Harmonic Mixer 40-60GHz	COU	n/a	COU
00346	Dorado	GH-19		Standard Gain Horn 40-60GHz	NCR	n/a	NCR
00347	HP	11970V	2521A01347	Harmonic Mixer 50-75GHz	COU	n/a	COU
00348	Dorado	GH-15	99005	Standard Gain Horn 50-75GHz	NCR	n/a	NCR
00349	HP	11970W	2521A01604	Harmonic Mixer 75-110GHz	COU	n/a	COU
00350	Dorado	GH-10	99001	Standard Gain Horn 75-110GHz	NCR	n/a	NCR
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 2023
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 2023
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020	Triennial	23 Jun 2023
00241	R&S	FSU40	100500	Spectrum Analyzer	10 Aug 2021	Triennial	10 Aug 2024
00257	Com-Power	LI-215A	191934	LISN	27 Dec 2021	Triennial	27 Dec 2024
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required COU: Calibrate On Use

CISPR 16-4 Measurement Uncertainty (U _{LAB})				
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2				
Radiated Emissions 30MHz - 200MHz				
U _{LAB} = 5.14dB	U _{CISPR} = 6.3dB			
Radiated Emissions 200MHz - 1000MHz				
U _{LAB} = 5.90dB	U _{CISPR} = 6.3dB			
Radiated Emissions 1GHz - 6GHz				
U _{LAB} = 4.80dB	U _{CISPR} = 5.2dB			
Radiated Emissions 6GHz - 18GHz				
U _{LAB} = 5.1dB	U _{CISPR} = 5.5dB			
Power Line Conducted Emissions 9kHz to 150kHz				
U _{LAB} = 2.96dB	U _{CISPR} = 3.8dB			
Power Line Conducted Emissions 150kHz to 30MHz				
U _{LAB} = 3.12dB	U _{CISPR} = 3.4dB			
If the calculated uncertainty U _{lab} is less than U _{CISPR} then:				
1 Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit				
Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit				
If the calculated uncertainty U _{lab} is greater than U _{CISPR} then:				
3 Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit				
4 Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit				

	Uncertainties (U _{LAB})	
RF Conducted Emissions 9kHz - 40GHz		
U _{LAB} = 1.0dB	$U_{CISPR} = n/a$	
Frequency/Bandwidth 9kHz - 40GHz		
U _{LAB} = 0.1ppm	U _{CISPR} = n/a	
Temperature		
U _{LAB} = 1 ^o C	U _{CISPR} = n/a	

END OF REPORT

45461690 R6.0 15 February 2022

APPENDIX D - DUTY CYCLE PLOTS

APPENDIX E - OCCUPIED / DTS BANDWIDTH MEASUREMENT PLOTS

APPENDIX F - CONDUCTED POWER / PSD MEASUREMENT PLOTS

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS MEASUREMENT PLOTS

APPENDIX H - RADIATED TX AND RX MEASUREMENT PLOTS