

Test Report Serial Number: Test Report Date: Project Number:

45461698 R0.1 13 December 2021 1552

SAR Test Report - New Application

Applicant:

Garmin International Inc. 1200 East 151 St. **Olathe, KS, 66062 USA**

Maximum Reported 1g BODY SAR								
FCC/ISED	IRIDIUM	1.48						
FCC/ISED	WIFI	0.47	\\//\/c					
FCC/ISED	SIMULTANEOUS	0.64	W/kg					
Ger	eral Pop. Limit:	1.60						

Maximum Reported 10g EXTREMITY SAR								
FCC/ISED	IRIDIUM	0.69						
FCC/ISED	WIFI	0.16	\\//\/c~					
FCC/ISED	SIMULTANEOUS	0.19	W/kg					
Ger	neral Pop. Limit:	4.00						

FCC ID:

IPH-04166

Product Model Number / HVIN

A04166

IC Registration Number

1792A-04166 Product Name / PMN

A04166

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X7R8 Canada

Industry Canada

Test Lab Certificate: 2470.01

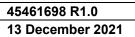
IC Registration 3874A

FCC Registration: CA3874

45461698 R1.0 13 December 2021

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	9
7.0 RF CONDUCTED POWER MEASUREMENT	10
Table 7.1 Conducted Power Measurements Table 7.2 Conducted Power Measurements Table 7.3 Conducted Power Measurements Table 7.4 Conducted Power Measurements	11
8.0 NUMBER OF TEST CHANNELS (Nc) AND CONFIGURATIONS	13
Table 8.1 Antenna Distances Table 8.2 Body SAR test Exclusion Workchart Table 8.2 Extremity SAR test Exclusion Workchart	15
9.0 ACCESSORIES EVALUATED	17
Table 9.1 Manufacturer's Accessory List	17
10.0 SAR MEASUREMENT SUMMARY	18
Table 10.1: Measured Results – BODY/EXTREMITY	18
11.0 SCALING OF MAXIMUM MEASURE SAR	19
TABLE 11.1 SAR SCALING – BODY CONFIGURATION	20
12.0 SAR EXPOSURE LIMITS	22
TABLE 12.1 EXPOSURE LIMITS	22
13.0 DETAILS OF SAR EVALUATION	23
13.1 DAY LOG	
13.7 Scan Resolution 2GHz to 3GHz	27
14.0 MEASUREMENT UNCERTAINTIES	
Table 14.1 Measurement Uncertainty	


15.0 FLUID DIELECTRIC PARAMETERS	30
TABLE 15.1 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL	
16.0 SYSTEM VERIFICATION TEST RESULTS	40
TABLE 16.1 SYSTEM VERIFICATION RESULTS 5250MHz HEAD TSL TABLE 16.2 SYSTEM VERIFICATION RESULTS 2450MHz HEAD TSL TABLE 16.3 SYSTEM VERIFICATION RESULTS 2450MHz HEAD TSL TABLE 16.4 SYSTEM VERIFICATION RESULTS 5750MHz HEAD TSL TABLE 16.5 SYSTEM VERIFICATION RESULTS 1640MHz HEAD TSL	41 42 43
17.0 SYSTEM VALIDATION SUMMARY	45
Table 17.1 System Validation Summary	45
18.0 MEASUREMENT SYSTEM SPECIFICATIONS	46
Table 18.1 Measurement System Specifications	46
19.0 TEST EQUIPMENT LIST	48
TABLE 19.1 EQUIPMENT LIST AND CALIBRATION	48
20.0 FLUID COMPOSITION	49
TABLE 20.1 FLUID COMPOSITION 5250MHz & 5750MHz HEAD TSL	49
APPENDIX A – SYSTEM VERIFICATION PLOTS	
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR	
APPENDIX C - SETUP PHOTOS	
FIGURE C.1 – PHOTO, SETUP, DUT FRONT SIDE	
APPENDIX D – DUT AND ACCESSORY PHOTOS	66
FIGURE D.1 – PHOTO, DUT, FRONT FIGURE D.2 – PHOTO, DUT, FRONT FIGURE D.3 – PHOTO, DUT, LEFT FIGURE D.4 – PHOTO, DUT, RIGHT FIGURE D.5 – PHOTO, DUT, TOP FIGURE D.6 – PHOTO, DUT, BOTTOM.	
APPENDIX E – PROBE CALIBRATION	70
APPENDIX F – DIPOLE CALIBRATION	71
APPENDIX G - PHANTOM	72

45461698 R1.0 13 December 2021

1.0 DOCUMENT CONTROL

	Revision History									
Sam	ples Tested By:	Trevor Whillock/Ben Hewson	Date	e(s) of Evaluation:	1,12,16,17 Nov & 3,8 Dec 2021					
Report Prepared By:		Ben Hewson	Rep	oort Reviewed By:	Art Voss					
Report	Desc	ription of Revision	Revised	Revised	Revision Date					
Revision		i iption of ite vision	Section	Ву	ite vision bate					
0.1	-	Draft Report	n/a	Ben Hewson	13 December 2021					

2.0 CLIENT AND DEVICE INFORMATION

Client Information							
Applicant Name	Garmin International Inc.						
	1200 East 151 St.						
Applicant Address	Olathe, KS,66062						
	USA						
	DUT Information						
Type of Equipment:	Handheld Transceiver						
Device Model(s) / HVIN:	A04166						
Device Marketing Name / PMN:	A04166						
Test Sample Serial No.:	3374769248						
	IRIDIUM 1616-1626MHz (FCC ID: IPH-03302/ ISED ID:1792A-03302)						
	WiFi: 2412 - 2462 MHz						
Transmit Frequency Range:	WiFi UNII 1: 5200 - 5240 MHz						
	WiFi UNII 3: 5745-5825 MHz						
	BT/ANT: 2402 - 2480 MHz						
Number of Channels:	See Section 8.0						
	IRIDIUM 1620 MHz 31.54dBm						
	WiFi 2.4GHz: 802.11b: 8.5dBm /802.11g: 9.0dBm /802.11n:6.0dBm/802.11n40:3.0dBm						
	WiFi 5 GHz UNII-1 802.11a: 13.6dBm / 802.11n: 13.4dBm/ 802.11n40: 8.5dBm/ 802.11ac80: 9.0dBm						
Manuf. Max. Avg Rated Output Power:	WiFi 5 GHz UNII-3 802.11a: 13.0dBm / 802.11n: 12.8dBm/ 802.11n40: 9.0dBm/802.11ac80: 8.5dBm						
	ANT:GFSK: 0.6dBm / BT BR:GFSK: 0.6dBm / PI/4-DQPSK: 3.0dBm / 8-DPSK: 3.0dBm /BT BLE (GMSK): 0dBm						
	FDMA-FM						
	WiFi 802.11b/g/n: DSSS, OFDM, MCS0-7						
Modulation:	WiFi 802.11 a/ac: OFDM,MCS0-7						
	BT: GFSK, PI/4-DQPSK, 8-DPSK						
	BLE: GMSK						
DUT Power Source:	5V USB, Internal Li-ion battery						
Deviation(s) from standard/procedure:	None						

45461698 R1.0 13 December 2021

3.0 SCOPE OF EVALUATION

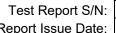
This Certification Report was prepared on behalf of:

Garmin International Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in this report.

The A04166, FCC ID: IPH-04166 ISEDC ID: 1792A-04166 is a hand held transceiver with three transmiiters, one that operates in the 16GHz Iridium frequncy band, another in the 5GHz WiFi frequency band and the third in the 2.4GHz WiFi and BT/ANT frequency band. The transceiver is capable of simultaneous transmission between the 5GHz WiFi and BT/ANT. The device is intended for General Population Use. The product operates from an internal proprietary Li-ion rechargeable battery which can be connected to a compliant USB interface port, AC or DC adapter for charging. Test samples provided by the manufacturer were capable of transmitting at select frequencies and modulations preset by the manufacturer. An additional antenna modification was prepared for one sample allowing the ability to connect test equipment for antenna port conducted power analysis. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC\IEEE 62209-1528, IEEE 1528, IEC 62209-2, FCC KDB 865646, 447498, 248227 and RSS 102.


Application:

This is an application for a new device certification.

Scope:

Due to the nature of the device, the scope of this evaluation is to evaluate the SAR for intended and non-intended applications. It will include evaluation of the Iridium, 5GHz & 2.4 GHz transmitters for all required RF exposure configurations. The analysis of the Standalone Transmission SAR is found in Section 11.0 of this report.

The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, IEEE 1528, IEC 62209-1, IEC 62209-2, FCC 447498, and RSS 102

45461698 R1.0 13 December 2021

4.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2017	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEC International Standard	IEEE International Committee on Electromagnetic Safety
IEC/IEEE 62209-1528-2020:	Measurement procudeure for the assessment of sepcific absorption rate of human expoure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528; Human models, insturmentation, and procedures (Frequency range of 4 MHz to 10 GHz)
IEEE International Committe	ee on Electromagnetic Safety
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication
	devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 248227 D01v02r02	SAR Test Guidane for IEEE 802.11 (WiFI) Transmitters
* When the issue number	or issue date is omitted, the latest version is assumed.

45461698 R1.0 13 December 2021

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Model / HVIN:	
Garmin International Inc.	A04166	
Standard(s) Applied:	Measurement Procedure(s):	
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FC	C KDB248227, FCC KDB 941225
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5	
	IEC\IEEE 62209-1528, IEEE Standard 152	8-2013, IEC 62209-2
Reason For Issue:	Use Group:	Limits Applied:
x New Certification	x General Population / Uncontrolled	x 1.6W/kg - 1g Volume
Class I Permissive Change		8.0W/kg - 1g Volume
Class II Permissive Change	Occupational / Controlled	x 4.0W/kg - 10g Volume
Reason for Change:		Date(s) Evaluated:
Original Filing		1,12,16,17 Nov & 3,8 Dec 2021

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

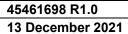
I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

13 December 2021 Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System


Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System with SAM Phantom

DASY 6 Measurement Controller

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.1 Conducted Power Measurements

			C	onducte	ed Powe	er Measu	irements									
		Measured	Rated	Rated		SAR Test										
	Frequency	Power	Power	Power	Delta	Channel										
Channel	(MHz)	(dBm)	(dBm)	(W)	(dB)	(Y/N)	Mode	Modulatio	n	BW						
1	2412	8.31	8.40	0.007	-0.09	-		DSSS-1Mbps								
2	2417	8.32	8.40	0.007	-0.08	-		DSSS-1Mbps								
6	2437	8.38	8.40	0.007	-0.02	Υ		DSSS-1Mbps								
10	2457	8.35	8.40	0.007	-0.05	-		DSSS-1Mbps	802.11b							
11	2462	8.36	8.40	0.007	-0.04	-		DSSS-1Mbps	002.110							
13	2472	8.05	8.40	0.007	-0.36	-		DSSS-1Mbps								
		8.12	8.40	0.007	-0.28	-		DSSS-2Mbps								
1	2412	8.05	8.40	0.007	-0.36	-		DSSS-11Mbps								
ı	2412	8.60	8.90	0.008	-0.30	Υ		OFDM-6Mbps	802.11g							
		5.30	6.00	0.004	-0.71	-		MCS-0	802.11n							
2	2417	8.21	8.40	0.007	-0.19	-		DSSS-2Mbps	802.11b							
		8.19	8.40	0.007	-0.21	-		DSSS-2Mbps								
		8.26	8.40	0.007	-0.14	-		DSSS-5.5Mbps	802.11b							
6	2437	8.07	8.40	0.007	-0.34	-		DSSS-11Mbps	1							
		8.37	8.40	0.007	-0.03	γ		OFDM-6Mbps	802.11g							
		5.30	6.00	0.004	-0.71	-		MCS-0	802.11n							
		8.04	8.40	0.007	-0.36	-		DSSS-2Mbps	802.11b	20MHz						
		8.06	8.40	0.007	-0.34	-		DSSS-5.5Mbps								
	2462	8.05	8.40	0.007	-0.36	-		DSSS-11Mbps								
		8.26	8.40	0.007	-0.14	Υ	WLAN 2.4G	OFDM-6Mbps								
11		8.25	8.40	0.007	-0.15			OFDM-9Mbps	802.11g 802.11n							
		8.09	8.40	0.007	-0.31	-		OFDM-12Mbps								
		5.39	6.00	0.004	-0.62	-		MCS-0		802.11n						
		5.16	6.00	0.004	-0.85	-										
		5.02	6.00	0.004	-0.98	-		MCS-7	1							
		7.66	8.40	0.007	-0.75	-		DSSS-2Mbps								
		8.10	8.40	0.007	-0.31	-		DSSS-5.5Mbps	802.11b							
		8.05	8.40	0.007	-0.36	-		DSSS-11Mbps	1							
13	2472	8.11	8.40	0.007	-0.30	Υ		OFDM-6Mbps	000.44							
		6.66	8.40	0.007	-1.75	-		OFDM-9Mbps	802.11g							
		4.14	6.00	0.004	-1.87	-		MCS-0								
		0.78	6.00	0.004	-5.23	-		MCS-7	802.11n							
_		1.67	1.77	0.002	-0.10	-		MCS-0								
5	2432	-0.51	1.77	0.002	-2.28	_		MCS-7	1							
_		1.6	1.77	0.002	-0.17	-		MCS-0	1							
6	2437	-0.55	1.77	0.002	-2.32			MCS-7	1							
		1.54	1.77	0.002	-0.23	_		MCS-0								
7 244	2442	-0.59	1.77	0.002	-2.36	_		MCS-7	802.11n	40MHz						
		1.08	1.77	0.002	-0.69	_		MCS-0	1							
9	2452	-0.95	1.77	0.002	-2.72	_		MCS-7	1							
		1.06	1.77	0.002	-0.71			MCS-0	1							
11 246	2462	-1.4	1.77	0.002	-3.17	-		MCS-7	$\overline{}$							

Table 7.2 Conducted Power Measurements

	Conducted Power Measurements											
	Frequency	Measured Power	Rated Power	Rated Power	Delta	SAR Test Channel						
Channel	(MHz)	(dBm)	(dBm)	(W)	(dB)	(Y/N)	Mode		Modulation			
36	5180	12.63	13.60	0.023	-0.97	-		OFDM-6Mbps				
36	5180	12.60	13.60	0.023	-1.00	-		OFDM-9Mbps				
36	5180	12.40	13.60	0.023	-1.20	-		OFDM-24Mbps	802.11a - UNII-1			
40	5200	13.57	13.60	0.023	-0.03	-		OFDM-6Mbps	602.11a - UNII-1			
44	5220	13.60	13.60	0.023	0.00	Υ		OFDM-6Mbps				
48	5240	13.59	13.60	0.023	-0.01	-		OFDM-6Mbps		20MHz		
36	5180	12.48	13.50	0.022	-1.02	-		MCS-0		ZUIVII IZ		
36	5180	12.15	13.50	0.022	-1.35	-	WiFI 5G	MCS-3				
36	5180	11.56	13.50	0.022	-1.94	-		MCS-7	802.11n - UNII-1			
40	5200	13.41	13.50	0.022	-0.09	-		MCS-0	602.11II - UNII-1			
44	5220	13.25	13.50	0.022	-0.25	-		MCS-0				
48	5240	13.49	13.50	0.022	-0.01	Υ		MCS-0				
38	5190	8.48	8.50	0.007	-0.02	Υ		MCS-0	802.11n - UNII-1	40MHz		
46	5230	7.69	8.50	0.007	-0.81	-		MCS-0	002.11II - UIVII-1	4UIVITIZ		
42	5210	7.66	8.90	0.008	-1.24	Υ		MCS-0	802.11ac - UNII-1	80MHz		

Table 7.3 Conducted Power Measurements

	Conducted Power Measurements												
		Measured	Rated	Rated		SAR Test							
	Frequency	Power	Power	Power	Delta	Channel							
Channel	(MHz)	(dBm)	(dBm)	(W)	(dB)	(Y/N)	Mode		Modulation				
149	5745	12.86	13.00	0.020	-0.14	у		OFDM-6Mbps					
149	5745	12.69	13.00	0.020	-0.31	-		OFDM-9Mbps					
149	5745	12.78	13.00	0.020	-0.22	-		OFDM-24Mbps	802.11a - UNII-3				
149	5745	12.77	13.00	0.020	-0.23	-		MCS-0		20MHz			
149	5745	12.39	13.00	0.020	-0.61	-		MCS-3					
149	5745	12.68	12.70	0.019	-0.02	-		MCS-0		ZUIVII IZ			
149	5745	12.44	12.70	0.019	-0.26	-	WiFI 5G	MCS-3					
149	5745	12.39	12.70	0.019	-0.31	-		MCS-7	802.11n - UNII-3				
157	5785	12.76	12.70	0.019	0.06	-		MCS-0					
165	5825	12.32	12.70	0.019	-0.38	-		MCS-0					
151	5755	8.74	9.00	0.008	-0.26	-		MCS-0	802.11n - UNII-3	40MHz			
159	5795	8.67	9.00	0.008	-0.33	-		MCS-0	302.1111 - UNII-3	4UIVIHZ			
155	5775	7.53	8.30	0.007	-0.77	-		MCS-0	802.11ac - UNII-1	80MHz			

45461698 R1.0 13 December 2021

Table 7.4 Conducted Power Measurements

	Conducted Power Measurements											
	Measured Rated SAR Test											
	Frequency	Power	Power	Power	Delta	Channel	Duty Cycle	Crest Factor				
Channel	(MHz)	(dBm)	(dBm)	(W)	(dB)	(Y/N)			Mode	Modulation		
1	1616.02	31.54	31.54	1.43	0.00	Υ						
2	1620.98	31.45	31.54	1.43	-0.09	Υ	9.30%	10.75	IRIDIUM	FDMA-FM		
3	1625.98	31.40	31.54	1.43	-0.14	Υ						

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Continuous Wave (CW) mode is a test mode not typical with normal transmission modes and may produce higher than rated conducted power levels Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using .CW mode at the Maximum output power level setting and produced the most conservative SAR. The <u>reported SAR</u> was not scaled down.

45461698 R1.0 13 December 2021

8.0 NUMBER OF TEST CHANNELS (Nc) AND CONFIGURATIONS

This device is intended to be mounted on a vehicle dashboard; optionally, the device can be hand-held .Due to the physical dimensions of the device and Iridium Antenna it would not be used within the user's apparel, however may be in contact with the user's body (i.e lap); the device was evaluated to Body SAR limits. Body SAR Limits are more stringent than Extremity SAR limits. Additional SAR measurements were made where the transmitter antenna location to an edge was sufficiently near that it was required in accordance to the FCC KDB guidance. The back side of the device was found to be the worst case setup configuration and produced the highest SAR. The back side of the device was chosen as the primary test position. Note: Only worst case test data from the preliminary evaluation was reported. FCC KDB 941225D07V01r02 was used as guidance for the selection of test positions for SAR evaluation..

As per FCC KDB 248227, the required 802.11 test channels are Ch1, Ch6 & Ch 11 and the worse case exposure configuration derived was the back side position;

When applicable, SAR test reduction methods may be utilized.

802.11b DSSS SAR test reduction is determined according to the following:

- a) When the <u>reported</u> SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the <u>reported</u> SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any <u>reported</u> SAR is > 1.2 W/kg, SAR is required for the third channel.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

- a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

See 12.1 for details.

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. An initial test position was established for Both UNII1 and UNII 3 bands.

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

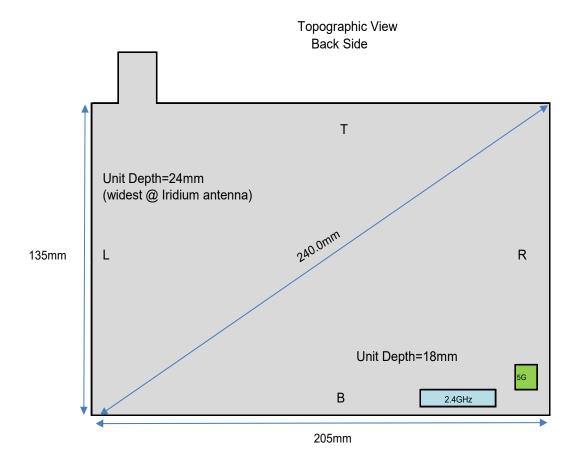
NOTE: The Bluetooth/ANT transmitter is capable of simultaneous transmission with the 5GHz WiFi Transmitter.

Due to the nature of this device, Bluetooth/ANT was evaluated for Simultaneous Transmission SAR.

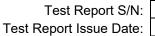
See 11.3 for evaluation of Simultaneous Transmission SAR.

As per KDB 447498 D01V06, where appropriate SAR test exclusion based on antenna test separation distances may be applied.

- 1. When the distance is < 50mm exclusion threshold is "Ratio", when the distance is >50 mm exclusion is in "mW"
- 2. Maximum power is the source-based-time-average power and represents the maximum RF output power among production units.
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user


45461698 R1.0 13 December 2021

- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separaton distances ≤ 50mm are determined by; (step a)


[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]*[$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the f channel transmit frequency in GHz
- power and distance are rounded to the nearest MW and mm before calculation
- result is rounded to one decimal place for comparison
- the values 3.0 and 7.5 are referred to as numeric thresholds in step b
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distance > 50mm, the SAR test exclusion threshold is determined according to t the following; (step b)
 - a) [Power allowed at numeric threshold for 50 mm in step a) + test separation distance 50mm)*(f(MHz)/150)] mW, at 100 MHz to 1500 MHz b)[Power allowed at numeric threshold for 50 mm in step a) + (test separation distance -50mm)* 10] mW at > 1500MHz and ≤ 6GHz

Table 8.1 Antenna Distances

Antenna	Top Edge (mm)	Left Edge (mm)	Bottom Edge (mm)	Right Edge (mm)	Depth (mm)
WLAN/BT	120.0	160.0	8.0	35.0	9.0
5GHz	100.0	190.0	15.0	6.0	9.0

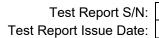

45461698 R1.0 13 December 2021

Table 8.2 Body SAR test Exclusion Workchart

Body SAR Test Exclusion Workchart: (≤3.0 for 1-g SAR - exclusion threshold < 50mm Ratio; >50mm mW)

	Wireless Interface	ВТ	2.4GHz WLAN	5GHz WLAN (UNII-1)	5GHz WLAN (UNII-3)
Exposure Position	Calculated Frequency	2480	2462	5240	5825
	Maximum Power (dBm)	3.00	9.00	13.60	13.00
	Maximum rated Power (mW)	2.0	7.9	22.9	13.0
	Separation Distance (mm)	9	9	9	9
Top -Display Side	exclusion threshold (ratio)	0.3	1.4	5.8	3.5
	testing required ? (>3)	No	No	Yes	Yes
	Separation Distance (mm)	9	9	9	9
Back Side	exclusion threshold (ratio)	0.3	1.4	5.8	3.5
	testing required ? (>3)	No	No	Yes	Yes
	Separation Distance (mm)	120	120	100	100
Top Edge	exclusion threshold (mW)	795	796	566	562
	testing required ?	No	No	No	No
	Separation Distance (mm)	160	160	190	102
Left Edge	exclusion threshold (mW)	1195	1196	1466	582
	testing required ?	No	No	No	No
	Separation Distance (mm)	35	35	6	6
Right Edge	exclusion threshold (ratio)	0.09	0.36	8.74	5.23
	testing required ? (>3)	No	No	Yes	Yes
	Separation Distance (mm)	8	8	15	15
Bottom Edge	exclusion threshold (ratio)	0.4	1.6	3.5	2.1
	testing required ? (>3)	No	No	Yes	No

45461698 R1.0 13 December 2021

Table 8.2 Extremity SAR test Exclusion Workchart

Extremity SAR Test Exclusion Workchart: (≤ 7.5 for 10-g exclusion threshold < 50mm Ratio; >50mm mW)

5 5 5	Wireless Interface	ВТ	2.4GHz WLAN	5GHz WLAN (UNII-1)	5GHz WLAN (UNII-3)
Exposure Position	Calculated Frequency	2480	2462	5240	5825
	Maximum Power (dBm)	3.00	9.00	13.60	13.00
	Maximum rated Power (mW)	2.0	7.9	22.9	20.0
	Separation Distance (mm)	9	9	9	9
Top -Display Side	exclusion threshold (ratio)	0.3	1.4	5.8	5.4
	testing required ? (>7.5)	No	No	No	No
	Separation Distance (mm)	9	9	9	9
Back Side	exclusion threshold (ratio)	0.3	1.4	1.4	5.4
	testing required ? (>7.5)	No	No	No	No
	Separation Distance (mm)	120	120	100	100
Top Edge	exclusion threshold (mW)	1988	1989	1414	1405
	testing required ?	No	No	No	No
	Separation Distance (mm)	160	160	190	102
Left Edge	exclusion threshold (mW)	2988	2989	3664	1455
	testing required ?	No	No	No	No
	Separation Distance (mm)	35	35	6	6
Right Edge	exclusion threshold (ratio)	0.09	0.36	8.74	8.03
	testing required ? (>7.5)	No	No	Yes	Yes
	Separation Distance (mm)	8	8	15	15
Bottom Edge	exclusion threshold (ratio)	0.4	1.6	3.5	3.2
	testing required ? (>7.5)	No	No	No	No

45461698 R1.0 13 December 2021

9.0 ACCESSORIES EVALUATED

Table 9.1 Manufacturer's Accessory List

No accessories evaluated.

Test Report S/N: Test Report Issue Date: 13 December 2021

45461698 R1.0

10.0 SAR MEASUREMENT SUMMARY

Table 10.1: Measured Results - BODY/EXTREMITY

	Measured SAR Results (1g) - BC) - BODY	′ (10g)-E	KTREN	IITY							
			DUT	Test	Test			Accesso	ries		Spa	acing	Conducted	Measured SAR (1g)	Measured SAR (10g)	SAR
Date	Plot			Frequency	Modulation	Configuration	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	100% DC	Drift
	ID	M/N	Type	(MHz)	Wiodulation	Configuration	ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
1-Nov-2021	B1	A04166	Hand-Held Transmitter	ch44-5220	OFDM-6	Display - Top Side	20Mhz	WiFi -UNI-1	n/a	n/a	0	0	13.6	0.035	0.013	2.710
1-Nov-2021	B2	A04166	Hand-Held Transmitter	ch44-5220	OFDM-6	Back Side	20Mhz	WiFi -UNI-1	n/a	n/a	0	0	13.6	0.385	0.129	0.129
2-Nov-2021	В3	A04166	Hand-Held Transmitter	ch44-5220	OFDM-6	Right Edge	20Mhz	WiFi -UNI-1	n/a	n/a	0	0	13.6	0.383	0.133	0.600
2-Nov-2021	B4	A04166	Hand-Held Transmitter	ch44-5220	OFDM-6	Bottom Edge	20Mhz	WiFi -UNI-1	n/a	n/a	0	0	13.6	0.124	0.049	0.380
2-Nov-2021	B5	A04166	Hand-Held Transmitter	Ch48-5240	MCS0	Back Side	20Mhz	WiFi -UNI-1	n/a	n/a	0	0	13.49	0.453	0.149	0.250
2-Nov-2021	B6	A04166	Hand-Held Transmitter	Ch48-5240	MCS0	Right Edge	20Mhz	WiFi -UNI-1	n/a	n/a	0	0	13.49	0.297	0.103	4.430
2-Nov-2021	B7	A04166	Hand-Held Transmitter	CH 38 -5190	MCS0	Right Edge	40MHz	WiFi -UNI-1	n/a	n/a	0	0	8.48	0.248	0.086	1.100
2-Nov-2021	B8	A04166	Hand-Held Transmitter	ch42-5210	MCS0	Right Edge	80MHz	WiFi -UNI-1	n/a	n/a	0	0	7.66	0.171	0.050	-0.880
04-Dec-2021	B50	A04166	Hand-Held Transmitter	ch149-5745	OFDM-6	Display - Top Side	20Mhz	WiFi-UNI-3	n/a	n/a	0	0	12.86	0.057	0.018	0.130
03-Dec-2021	B51	A04166	Hand-Held Transmitter	ch149-5745	OFDM-6	Back Side	20Mhz	WiFi-UNI-3	n/a	n/a	0	0	12.86	0.329	0.109	0.090
03-Dec-2021	B52	A04166	Hand-Held Transmitter	ch149-5745	OFDM-6	Right Edge	20Mhz	WiFi-UNI-3	n/a	n/a	0	0	12.86	0.451	0 .151	4.250
12-Nov-2021	B200	A04166	Hand-Held Transmitter	ch6-2437	DSSS-1Mbps	Back Side	20Mhz	WiFi-802.11b	n/a	n/a	0	0	8.38	0.113	0.048	-0.090
12-Nov-2021	B201	A04166	Hand-Held Transmitter	ch6-2437	DSSS-1Mbps	Display Side	20Mhz	WiFi-802.11b	n/a	n/a	0	0	8.38	0.027	0.014	-0.190
12-Nov-2021	B202	A04166	Hand-Held Transmitter	ch6-2437	DSSS-1Mbps	Bottom Edge	20Mhz	WiFi-802.11b	n/a	n/a	0	0	8.38	0.091	0.043	0.570
16-Nov-2021	B203	A04166	Hand-Held Transmitter	ch6-2437	OFDM-6	Back Side	20Mhz	WiFi -802.11g	n/a	n/a	0	0	8.38	0.125	0.053	-0.630
16-Nov-2021	B204	A04166	Hand-Held Transmitter	ch1-2412	OFDM-6	Back Side	20Mhz	WiFi -802.11g	n/a	n/a	0	0	8.6	0.134	0.057	-0.640
16-Nov-2021	B205	A04166	Hand-Held Transmitter	ch11-2462	OFDM-6	Back Side	20Mhz	WiFi -802.11g	n/a	n/a	0	0	8.26	0.125	0.053	0.210
16-Nov-2021	B206	A04166	Hand-Held Transmitter	ch13-2472	OFDM-6	Back Side	20Mhz	WiFi -802.11g	n/a	n/a	0	0	8.11	0.111	0.046	0.210
07-Dec-2021	B400	A04166	Hand-Held Transmitter	Low-1616 MhZ	FDMA-FM	Back Side	1MHz	IRIDIUM	n/a	n/a	0	0	31.54	1.480	0.646	1.080
08-Dec-2021	B401	A04166	Hand-Held Transmitter	Low-1616 MhZ	FDMA-FM	Display Side	1MHz	IRIDIUM	n/a	n/a	0	0	31.54	0.058	0.349	0.550
07-Dec-2021	B402	A04166	Hand-Held Transmitter	Low-1616 MhZ	FDMA-FM	Left Edge	1MHz	IRIDIUM	n/a	n/a	0	0	31.54	0.113	0.069	0.090
08-Dec-2021	B403	A04166	Hand-Held Transmitter	Mid-1621 MhZ	FDMA-FM	Back Side	1MHz	IRIDIUM	n/a	n/a	0	0	31.45	1.370	0.622	0.660
08-Dec-2021	B404	A04166	Hand-Held Transmitter	High-1626 MhZ	FDMA-FM	Back Side	1MHz	IRIDIUM	n/a	n/a	0	0	31.4	1.250	0.596	0.120
07-Dec-2021	B405	A04166	Hand-Held Transmitter	Low-1616 MhZ	FDMA-FM	Back Side Repeat	1MHz	IRIDIUM	n/a	n/a	0	0	31.54	1.410	0.691	0.250
			SAR Li	mit			Spatial Peak Body/Extremity RF Exposure Cate			Category						
	FCC	C 47 CFR 2.1	093	He	alth Canada S	Safety Code 6		1 & 10 0	ram Av	erage	1.6W/k	g/4W/kg		General Po	pulation	

11.0 SCALING OF MAXIMUM MEASURE SAR

Table 11.1 SAR Scaling – BODY CONFIGURATION

	Scaling of Maximum Measured SAR (1g)						
N/	leasured Parameters	В	ody Configurat	ion			
IV	leasureu Parameters		Iridium	Wifi			
	Plot ID		B400	B52			
Max	kimum Measured SAR _M		1.480	0.451	(W/kg)		
	Frequency		1616	5745	(MHz)		
	Power Drift		1.080 (1)	4.250 (1)	(dB)		
	Conducted Power		31.540	12.860	(dBm)		
Fluid Deviation from Target							
Δе	Permitivity		-3 .76% (2)	-7.31% (2)			
Δσ	Conductivity		1.22% (2)	1.22% (2)			

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Note(2): Fluid Dielectric Parameters are Within 5% of Targets. SAR Adjustment for Fluid Sensitivity is not Required.

Flu	id Sensitivity Calculation	(1g)	IEC 62209	-2 Annex F
	Delta SAR = 0	Ce * Δe + Cσ * Δα	σ	(F.1)
	$Ce = (-0.0007854*f^3) + (0.0007854*f^3) + (0.000785*f^3) + (0.00075*f^3) + (0.00075*$	09402*f ²) - (0.027	742*f) - 0.2026	(F.2)
	$C\sigma = (0.009804*f^3) - (0.08)$	661*f ²) + (0.0298	1*f) + 0.7829	(F.3)
f	Frequency (GHz)		1.616	5.745
	Ce		-0.226	-0.199
	Сσ		0.646	-0.045
	Ce * ∆e		0.008	0.015
	Cσ * Δσ		0.008	-0.001
	ΔSAR		0.016	0.014

Manufacturer's Tuneup Tolerance							
Measured Conducted Power 31.540 12.860							
Rated Conducted Power	Rated Conducted Power 31.540 13.000						
ΔΡ		0.000 (4)	-0.140	(dB)			

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

SAR Adjustment for Fluid Sensitivity						
SAR ₁ = SAR _M * ΔSAR		1.480	0.457	(W/kg)		
	•		•			
SAR Adjus	stment for Tuneu	p Tolerance				
$SAR_2 = SAR_1 + [\Delta P]$		1.480	0.472	(W/kg)		
SAF	R Adjustment for	Drift				
SAR ₃ = SAR ₂ + Drift		1.480	0.472	(W/kg)		
			_			
	reported SAR					
FCC/ISED = SAR ₃		1.48	0.47	(W/kg)		

Table 11.2 SAR Scaling – EXTREMITY CONFIGURATION

Scaling of Maximum Measured SAR (10g)							
R/	Incourage Development	Extr	emity Configura	ation			
l IV	leasured Parameters	Face	Body	Head			
	Plot ID		B405	B52			
Max	kimum Measured SAR _M		0.691	0.151	(W/kg)		
	Frequency		1616	5745	(MHz)		
	Power Drift		0.250 (1)	4.250 (1)	(dB)		
	Conducted Power		31.540	12.860	(dBm)		
Fluid Deviation from Target							
Δe	Permitivity		-3 .76% (2)	-7.31% (2)			
Δσ	Conductivity		1.22% (2)	1.22% (2)			

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Note(2): Fluid Dielectric Parameters are Within 5% of Targets. SAR Adjustment for Fluid Sensitivity is not Required.

Flui	d Sensitivity Calculation ((10g)	IEC 62209	-2 Annex F	
	Delta SAR = 0	Ce * Δe + Cσ * Δ	σ	(F.1)	
($Ce = (-0.0007854*f^3) + (0.0)$	09402*f ²) - (0.027	742*f) - 0.2026	(F.2)	
$C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$ (F.3)					
f	Frequency (GHz)		1.616	5.745	
	Ce		-0.226	-0.199	
	Сσ		0.646	-0.045	
	Ce * ∆e		0.008	0.015	
•	Cσ * Δσ		0.008	-0.001	
	ΔSAR		0.016	0.014	

Manufacturer's Tuneup Tolerance					
Measured Conducted Power		31.540	12.860	(dBm)	
Rated Conducted Power		31.540	13.000	(dBm)	
ΔΡ		0.000 (4)	-0.140 (4)	(dB)	

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

SAR Adjustment for Fluid Sensitivity					
SAR ₁ = SAR _M * ΔSAR		0.691	0.153	(W/kg)	
				_	
SAR Adjus	stment for Tuneu	p Tolerance			
$SAR_2 = SAR_1 + [\Delta P]$		0.691	0.158	(W/kg)	
SAF	R Adjustment for	Drift			
SAR ₃ = SAR ₂ + Drift		0.691	0.158	(W/kg)	
	reported SAR				
FCC/ISED = SAR ₃		0.69	0.16	(W/kg)	

45461698 R1.0 13 December 2021

NOTES to Table11.1

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle for Face, Body and/or Head icluding ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4.

The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Stop 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 4

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

Table 11.3: Simultaneous SAR Evaluation – BODY/EXTREMITY

Wifi & BT	Body SAR						
Plot ID	Frq	ch	Protocol	Modulation	SAR		
B52	5745	149	UNII-3	OFDM-6	0.47		
n/a	2480	n/a	BT 3EDR	8DPSK	0.17		
	total SAR 0.64						
	Body 1	I.6 W/kg - a	veraged ov	er 1 gram			

Wifi & BT Extremity SAR								
Plot ID	Plot ID Frq ch Protocol Modulation							
B52	5745	149	UNII-3	OFDM-6	0.16			
n/a	2480	n/a	BT 3EDR	8DPSK	0.03			
	total SAR 0.19							
	Extremity 4.0 W/kg - averaged over 10 gram							

Wifi & AN	Wifi & ANT Body SAR								
Plot ID	Frq	ch	Protocol	Modulation	SAR				
B52	52 5745 149 UNII-3 OFDM-6								
n/a	2480	n/a	ANT	GFSK	0.05				
	total SAR 0.52								
	Body 1.6 W/kg - averaged over 1 gram								

Wifi & AN	Wifi & ANT Extremity SAR									
Plot ID	Frq	ch	SAR							
B52	B52 5745 149 UNII-3 OFDM-6									
n/a	2480	n/a	ANT	GFSK	0.02					
	total SAR 0.18									
	Extremity 4.0 W/kg - averaged over 10 gram									

Wifi in 5GHz can operate simultaneously with BT or ANT 2.4GHz

The sum of the two transmitters is less than the limit; therefore, the simultansous transmisson meets the requirements of KDB447468 D01 V06 section 4.3.2 page 13

The estimated SAR value for the BT and ANT+ transmitters are listed below. [max. power, mW / mim. seperation distance, mm] * [\sqrt{f} (GHz) / x], where x = 7.5 for 1 gram SAR and x=18.75 for 10 gram SAR

[max: power, mw / mim. seperation distance, mim] [vt(GHz) / x], where x = 7.5 for 1 gram SAR and x=18.75 for 10 gram SAR

 $[2/5] * [\sqrt{2.48/7.5}] = 0.17$

[2/5] * [\sqrt{2.48/18.75}] = 0.03

ANI

ANT

 $[1.2/5] * [\sqrt{2.480/7.5}] = 0.05$

 $[1.2/5] * [\sqrt{2.480/18.75}] = 0.02$

12.0 SAR EXPOSURE LIMITS

Table 12.1 Exposure Limits

	SAR RF EXPOSURE LIMITS								
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /						
FCC 47 CFRg2.1093	nealth Canada Salety Code 6	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾						
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg						
(averaged	over the whole body)	0.00 W/kg							
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg						
(Head and Trunk av	eraged over any 1 g of tissue)	1.0 W/kg	0.0 W/kg						
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg						
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg						

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

45461698 R1.0

13 December 2021

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

	DAY LOG							
	Ambient	Fluid	Relative	Barometric	Dielectric			
Date	Temp	Temp	Humidity	Pressure	Fluid	ပ	st	
	(° C)	(° C)	(%)	(kPa)	표	SPC	Test	Task
31 Oct 2021	22.6	20.6	25%	102.9	X	Х		5250H Fluid, SPC
01 Nov 2021	23.6	23.5	20%	101.5			Х	5250H Testing
02 Nov 2021	25.4	20.9	28%	102.3			Х	5250H Testing
11 Nov 2021	26	23.5	25%	102.6	Х	Х		2450H Fluid, SPC
12 Nov 2021	22.8	21.2	26%	102.7			X	2450H SAR Testing
16 Nov 2021	26.1	23.3	23%	102.5	X	Х	Х	2450H Fluid, SPC, SAR Testing
02 Dec 2021	25.7	20.7	24%	101.9	Х			5750H Fluid
03 Dec 2021	25.6	20.5	23%	102.8		Х	Х	5750H SPC, SAR Testing
06 Dec 2021	26.3	20.0	19%	101.5	Х	Х		1640H Fluid, SPC
08 Dec 2021	25.5	20.1	23%	100.7			Х	1640H SAR Testing

45461698 R1.0 13 December 2021

13.2 DUT Setup and Configuration

	DUT Setup and Configuration
1	The DUT was evaluated for SAR in accordance with the procedures described in IEC\IEEE 62209-1528, IEEE 1528, FCC KDB 865646, 447498, 941225, 248227, and RSS-102. The device was evaluated at a phantom separation distance of 0mm.
2	The intended use of the device is to be hand held or mounted. The DUT was additionally evaluated for SAR in accordance with the procedures described in KDB 941225D07V01r02. The Back Side of the device was the highest SAR value for the highest output power channel, and was used as the default position. Additionally the Right Edge and Bottom Edge and Display SIde were evaluated as proximity to the transmitter was sufficiently near to require evaluation. The Left Edge was also evaluated on the Iridium band based on proximity to the transmitter.
3	The Initial Test Position SAR Test Reduction Procedure As per KDB 248227D01. The DUT has an extending antenna that would not facilitate positioning the DUT in an upside position in use, and was not considered for evaluation. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration.
4	The Device was capable of transmitting at various modulations and data rates. The Conducted Power was higher when measured in DSSS Mode 1Mbps 2.4GHz ,OFDM 6Mbps & MCS0 UNII-1, OFDM 6Mbps UNII-3. The Iridium band was and was evaluated across the low, mid and high channels. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer. Each SAR evaluation was performed with a fully charged battery.

13.3 DUT Positioning

	DUT Positioning
	securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to oning of the DUT for each test evaluation.
BODY/EXTREMITY Configuration	
	clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact antom, or 0mm separation from the DUT to the phantom.
HEAD Configuration	

FACE Configuration

This device is not intended to be held to the face and was not tested in the FACE configuration.

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

45461698 R1.0 13 December 2021

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the Maximum Distance to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the reported SAR which appears on the Cover Page of this report.

45461698 R1.0 13 December 2021

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is ≤ 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed \pm 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)	4 1 1 111111					
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm					
Zoom Scan Spatial Resolution ΔX, ΔΥ	7.5 mm					
Zoom Scan Spatial Resolution ∆Z	E					
(Uniform Grid)	5 mm					
Zoom Scan Volume X, Y, Z	30 mm					
Phantom	ELI					
Fluid Depth	150 ± 5 mm					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)	4 I 1 MM					
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX, ΔΥ	12 mm					
Zoom Scan Spatial Resolution ΔX, ΔΥ	5 mm					
Zoom Scan Spatial Resolution ∆Z	5 mm					
(Uniform Grid)	5 111111					
Zoom Scan Volume X, Y, Z	30 mm					
Phantom	ELI					
Fluid Depth	150 ± 5 mm					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)						
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)	0 = .					
Area Scan Spatial Resolution ΔX , ΔY	10 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	4 mm					
Zoom Scan Spatial Resolution ∆Z	2 mm					
(Uniform Grid)	2 111111					
Zoom Scan Volume X, Y, Z	22 mm					
Phantom	ELI					
Fluid Depth	100 ± 5 mm					

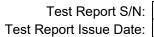
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

14.0 MEASUREMENT UNCERTAINTIES

Table 14.1 Measurement Uncertainty

UNCERTAINTY BUDG	ET FOR I	DEVICE	EVAL	<u>UATIO</u>	N (IEE	E 1528	-2013 Ta	ble 9)	
							Stand	Stand	Vi
Source of Uncertainty	1528	Toler	Prob	Div	Ci	Ci	Unct	Unct	or
	Section	±%	Dist				±%	±%	$V_{ m eff}$
Measurement System					(1g)	(10g)	(1g)	(10g)	0
EX3DV4 Probe Calibration** (k=1)	E.2.1	6.7	N	1	1	1	6.7	6.7	∞
Axial Isotropy** (k=1)	E.2.2	0.6	R	√3	0.7	0.7	0.2	0.2	8
Hemispherical Isotropy** (k=1)	E.2.2	3.2	R	√3	0.7	0.7	1.3	1.3	8
Boundary Effect*	E.2.3	1.0	R	√3	1	1	0.6	0.6	~
Linearity** (<i>k</i> =1)	E.2.4	0.5	R	√3	1	1	0.3	0.3	∞
System Detection Limits*	E.2.4	1.0	R	√3	1	1	0.6	0.6	∞
Modulation Response** (<i>k</i> =1)	E.2.5	8.3	R	√3	1	1	4.8	4.8	8
Readout Electronics*	E.2.6	0.3	N	1	1	1	0.3	0.3	~
Response Time*	E.2.7	0.8	R	√3	1	1	0.5	0.5	8
Integration Time*	E.2.8	2.6	R	√3	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	0.0	R	√3	1	1	0.0	0.0	10
RF Ambient Conditions - Reflection	E.6.1	0.0	R	√3	1	1	0.0	0.0	10
Probe Positioner Mechanical Tolerance*	E.6.2	0.0	R	√3	1	1	0.0	0.0	8
Probe Positioning wrt Phantom Shell*	E.6.3	0.4	R	√3	1	1	0.2	0.2	8
Post-processing*	E.5	2.0	R	√3	1	1	1.2	1.2	8
Test Sample Related									
Test Sample Positioning	E.4.2	2.2	N	1	1	1	2.2	2.2	5
Device Holder Uncertainty*	E.4.1	3.6	N	1	1	1	3.6	3.6	∞
SAR Drift Measurement ⁽²⁾	E.2.9	0.0	R	√3	1	1	0.0	0.0	8
SAR Power Scaling ⁽³⁾	E.6.5	0.0	R	√3	1	1	0.0	0.0	8
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	6.1	R	√3	1	1	3.5	3.5	8
SAR Correction Uncertainty	E.3.2	1.6	N	1	1	0.84	1.6	1.3	∞
Liquid Conductivity (measurement)	E.3.3	5.0	N	1	0.78	0.71	3.9	3.6	10
Liquid Permittivity (measurement)	E.3.3	5.0	N	1	0.23	0.26	1.2	1.3	10
Liquid Conductivity (Temperature)	E.3.2	0.4	R	√3	0.78	0.71	0.2	0.2	10
Liquid Permittivity Temperature)	E.3.2	0.2	R	√3	0.23	0.26	0.0	0.0	10
Effective Degrees of Freedom(1)							V _{eff} =	1141
Combined Standard Uncertainty			RSS				11.1	11.0	
	Expanded Uncertainty (95% Confidence Interval)						22.2	21.9	

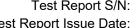

⁽¹⁾ The Effective Degrees of Freedom is > 30

Therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

⁽²⁾ The SAR Value is compensated for Drift

⁽³⁾ SAR Power Scaling not Required

^{*} Provided by SPEAG for DASY4



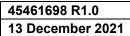
45461698 R1.0 13 December 2021

Table 14.2 Calculation of Degrees of Freedom

Calculation of the Degrees and Effective Degrees of Freedom						
v _i = n - 1	$v_{\text{eff}} = \frac{u_c^4}{m}$ $\sum_{i=1}^{\infty} \frac{c_i^A u_i^A}{v_i}$					

45461698 R1.0 13 December 2021

15.0 FLUID DIELECTRIC PARAMETERS


Table 15.1 Fluid Dielectric Parameters 5250MHz HEAD TSL

Aprel Laboratory Test Result for UIM Dielectric Parameter Sun 31/Oct/2021 10:48:21 Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

******	******	*****	*******	******
Freq	FCC_eH	FCC_sh	lTest_e	Test_s
5.1500	36.04	4.60	33.65	4.49
5.1600	36.03	4.61	33.55	4.47
5.1700	36.02	4.62	33.52	4.48
5.1800	36.01	4.63	33.69	4.52
5.1900	36.00	4.64	33.75	4.54
5.2000	35.99	4.65	33.96	4.50
5.2100	35.97	4.67	33.95	4.58
5.2200	35.96	4.68	33.84	4.50
5.2300	35.95	4.69	33.70	4.54
5.2400	35.94	4.70	33.76	4.62
5.2500	35.93	4.71	33.40	4.58
5.2600	35.92	4.72	33.47	4.57
5.2700	35.91	4.73	33.49	4.64
5.2800	35.89	4.74	33.42	4.62
5.2900	35.88	4.75	33.39	4.66
5.3000	35.87	4.76	33.91	4.64
5.3100	35.86	4.77	33.75	4.67
5.3200	35.85	4.78	33.93	4.63
5.3300	35.84	4.79	33.77	4.66
5.3400	35.83	4.80	33.35	4.62
5.3500	35.81	4.81	33.49	4.68

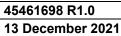
FLUID DIELECTRIC PARAMETERS							
Date: 31 Oct	20	21 Fluid Te	emp: 20.7	Frequency:	5250MHz	Tissue:	Head
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
5150.0000		33.6500	4.4900	36.0400	4.60	-6.63%	-2.39%
5160.0000		33.5500	4.4700	36.0300	4.61	-6.88%	-3.04%
5170.0000		33.5200	4.4800	36.0200	4.62	-6.94%	-3.03%
5180.0000		33.6900	4.5200	36.0100	4.63	-6.44%	-2.38%
5190.0000	*	33.7500	4.5400	36.0000	4.64	-6.25%	-2.16%
5200.0000		33.9600	4.5000	35.9900	4.65	-5.64%	-3.23%
5210.0000	*	33.9500	4.5800	35.9700	4.67	-5.62%	-1.93%
5220.0000	*	33.8400	4.5000	35.9600	4.68	-5.90%	-3.85%
5230.0000		33.7000	4.5400	35.9500	4.69	-6.26%	-3.20%
5240.0000	*	33.7600	4.6200	35.9400	4.70	-6.07%	-1.70%
5250.0000		33.4000	4.5800	35.9300	4.71	-7.04%	-2.76%
5260.0000		33.4700	4.5700	35.9200	4.72	-6.82%	-3.18%
5270.0000		33.4900	4.6400	35.9100	4.73	-6.74%	-1.90%
5280.0000		33.4200	4.6200	35.8900	4.74	-6.88%	-2.53%
5290.0000		33.3900	4.6600	35.8800	4.75	-6.94%	-1.89%
5300.0000		33.9100	4.6400	35.8700	4.76	-5.46%	-2.52%
5310.0000		33.7500	4.6700	35.8600	4.77	-5.88%	-2.10%
5320.0000		33.9300	4.6300	35.8500	4.78	-5.36%	-3.14%
5330.0000		33.7700	4.6600	35.8400	4.79	-5.78%	-2.71%
5340.0000		33.3500	4.6200	35.8300	4.80	-6.92%	-3.75%
5350.0000		33.4900	4.6800	35.8100	4.81	-6.48%	-2.70%

*Channel Frequency Tested

45461698 R1.0

13 December 2021

Table 15.2 Fluid Dielectric Parameters 2450MHz HEAD TSL



Aprel Laboratory
Test Result for UIM Dielectric Parameter
Thu 11/Nov/2021 17:25:34

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

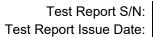
******	*****			*****
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
2.3500	39.38	1.71	36.13	1.69
2.3600	39.36	1.72	36.15	1.71
2.3700	39.34	1.73	36.29	1.72
2.3800	39.32	1.74	36.08	1.72
2.3900	39.31	1.75	36.14	1.71
2.4000	39.29	1.76	36.01	1.71
2.4100	39.27	1.76	35.71	1.72
2.4200	39.25	1.77	35.62	1.73
2.4300	39.24	1.78	35.72	1.76
2.4400	39.22	1.79	35.69	1.79
2.4500	39.20	1.80	35.80	1.80
2.4600	39.19	1.81	35.76	1.80
2.4700	39.17	1.82	35.89	1.81
2.4800	39.16	1.83	35.78	1.81
2.4900	39.15	1.84	35.67	1.86
2.5000	39.14	1.85	35.64	1.86
2.5100	39.12	1.87	35.57	1.86
2.5200	39.11	1.88	35.30	1.88
2.5300	39.10	1.89	35.25	1.88
2.5400	39.09	1.90	35.38	1.90
2.5500	39.07	1.91	35.57	1.92

FLUID DIELECTRIC PARAMETERS								
Date: 11 Nov	/ 202	1 Fluid Te	mp: 23.5	Frequency:	2450MHz	Tissue:	Head	
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
2350.0000		36.1300	1.6900	39.3800	1.71	-8.25%	-1.17%	
2360.0000		36.1500	1.7100	39.3600	1.72	-8.16%	-0.58%	
2370.0000		36.2900	1.7200	39.3400	1.73	-7.75%	-0.58%	
2380.0000		36.0800	1.7200	39.3200	1.74	-8.24%	-1.15%	
2390.0000		36.1400	1.7100	39.3100	1.75	-8.06%	-2.29%	
2400.0000		36.0100	1.7100	39.2900	1.76	-8.35%	-2.84%	
2410.0000		35.7100	1.7200	39.2700	1.76	-9.07%	-2.27%	
2420.0000		35.6200	1.7300	39.2500	1.77	-9.25%	-2.26%	
2430.0000		35.7200	1.7600	39.2400	1.78	-8.97%	-1.12%	
2437.0000	*	35.7140	1.7660	39.2360	1.78	-8.98%	1.22%	
2440.0000		35.6900	1.7900	39.2200	1.79	-9.00%	0.00%	
2450.0000		35.8000	1.8000	39.2000	1.80	-8.67%	0.00%	
2460.0000		35.7600	1.8000	39.1900	1.81	-8.75%	-0.55%	
2470.0000		35.8900	1.8100	39.1700	1.82	-8.37%	-0.55%	
2480.0000		35.7800	1.8100	39.1600	1.83	-8.63%	-1.09%	
2490.0000		35.6700	1.8600	39.1500	1.84	-8.89%	1.09%	
2500.0000		35.6400	1.8600	39.1400	1.85	-8.94%	0.54%	
2510.0000		35.5700	1.8600	39.1200	1.87	-9.07%	-0.53%	
2520.0000		35.3000	1.8800	39.1100	1.88	-9.74%	0.00%	
2530.0000		35.2500	1.8800	39.1000	1.89	-9.85%	-0.53%	
2540.0000		35.3800	1.9000	39.0900	1.90	-9.49%	0.00%	
2550.0000		35.5700	1.9200	39.0700	1.91	-8.96%	0.52%	

45461698 R1.0

13 December 2021

Table 15.3 Fluid Dielectric Parameters 2450MHz HEAD TSL



Aprel Laboratory
Test Result for UIM Dielectric Parameter
Tue 16/Nov/2021 11:00:46

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

******	*****	*****	******	*****
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
2.3500	39.38	1.71	35.99	1.74
2.3600	39.36	1.72	36.00	1.74
2.3700	39.34	1.73	35.94	1.73
2.3800	39.32	1.74	35.73	1.73
2.3900	39.31	1.75	35.68	1.73
2.4000	39.29	1.76	35.60	1.74
2.4100	39.27	1.76	35.44	1.78
2.4200	39.25	1.77	35.50	1.78
2.4300	39.24	1.78	35.41	1.80
2.4400	39.22	1.79	35.49	1.83
2.4500	39.20	1.80	35.50	1.84
2.4600	39.19	1.81	35.53	1.85
2.4700	39.17	1.82	35.54	1.82
2.4800	39.16	1.83	35.44	1.86
2.4900	39.15	1.84	35.50	1.86
2.5000	39.14	1.85	35.22	1.86
2.5100	39.12	1.87	35.18	1.87
2.5200	39.11	1.88	35.21	1.90
2.5300	39.10	1.89	35.07	1.90
2.5400	39.09	1.90	35.00	1.94
2.5500	39.07	1.91	35.11	1.95

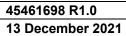
45461698 R1.0 13 December 2021

FLUID DIELECTRIC PARAMETERS							
Date: 16 Nov 2021 Fluid Temp: 23.3 Frequency: 2450MHz Tissue: Head							
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
2350.0000		35.9900	1.7400	39.3800	1.71	-8.61%	1.75%
2360.0000		36.0000	1.7400	39.3600	1.72	-8.54%	1.16%
2370.0000		35.9400	1.7300	39.3400	1.73	-8.64%	0.00%
2380.0000		35.7300	1.7300	39.3200	1.74	-9.13%	-0.57%
2390.0000		35.6800	1.7300	39.3100	1.75	-9.23%	-1.14%
2400.0000		35.6000	1.7400	39.2900	1.76	-9.39%	-1.14%
2410.0000		35.4400	1.7800	39.2700	1.76	-9.75%	1.14%
2412.0000	*	35.4520	1.7800	39.2660	1.76	-9.71%	1.22%
2420.0000		35.5000	1.7800	39.2500	1.77	-9.55%	0.56%
2430.0000		35.4100	1.8000	39.2400	1.78	-9.76%	1.12%
2437.0000	*	35.4260	1.8060	39.2360	1.78	-9.71%	1.22%
2440.0000		35.4900	1.8300	39.2200	1.79	-9.51%	2.23%
2450.0000		35.5000	1.8400	39.2000	1.80	-9.44%	2.22%
2460.0000		35.5300	1.8500	39.1900	1.81	-9.34%	2.21%
2462.0000	*	35.5320	1.8440	39.1860	1.81	-9.32%	1.22%
2470.0000		35.5400	1.8200	39.1700	1.82	-9.27%	0.00%
2472.0000	*	35.5200	1.8280	39.1680	1.82	-9.31%	1.22%
2480.0000	*	35.4400	1.8600	39.1600	1.83	-9.50%	1.64%
2490.0000		35.5000	1.8600	39.1500	1.84	-9.32%	1.09%
2500.0000		35.2200	1.8600	39.1400	1.85	-10.02%	0.54%
2510.0000		35.1800	1.8700	39.1200	1.87	-10.07%	0.00%
2520.0000		35.2100	1.9000	39.1100	1.88	-9.97%	1.06%
2530.0000		35.0700	1.9000	39.1000	1.89	-10.31%	0.53%
2540.0000		35.0000	1.9400	39.0900	1.90	-10.46%	2.11%

45461698 R1.0

13 December 2021

Table 15.4 Fluid Dielectric Parameters 5750MHz HEAD TSL



Aprel Laboratory
Test Result for UIM Dielectric Parameter
Wed 02/Dec/2021 17:32:54

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

******		*****	*****	*****
Freq	FCC_eH	IFCC_sh	lTest_e	Test_s
5.6500	35.47	5.12	33.01	5.34
5.6600	35.46	5.13	32.91	5.33
5.6700	35.45	5.14	32.80	5.33
5.6800	35.44	5.15	32.96	5.26
5.6900	35.43	5.16	33.04	5.28
5.7000	35.41	5.17	32.87	5.32
5.7100	35.40	5.18	32.80	5.31
5.7200	35.39	5.19	33.10	5.36
5.7300	35.38	5.20	32.90	5.26
5.7400	35.37	5.21	32.76	5.48
5.7500	35.36	5.22	32.88	5.33
5.7600	35.35	5.23	32.77	5.41
5.7700	35.33	5.24	32.93	5.40
5.7800	35.32	5.25	32.93	5.32
5.7900	35.31	5.26	32.73	5.36
5.8000	35.30	5.27	32.88	5.42
5.8100	35.29	5.28	32.72	5.47
5.8200	35.28	5.29	32.83	5.43
5.8300	35.27	5.30	32.70	5.41
5.8400	35.25	5.31	32.70	5.42
5.8500	35.24	5.32	32.83	5.50

	FLUID DIELECTRIC PARAMETERS								
Date: 2 Dec	202	21 Fluid Te	emp: 22.2	Frequency:	5750MHz	Tissue:	Head		
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
5650.0000		33.0100	5.3400	35.4700	5.12	-6.94%	4.30%		
5660.0000		32.9100	5.3300	35.4600	5.13	-7.19%	3.90%		
5670.0000		32.8000	5.3300	35.4500	5.14	-7.48%	3.70%		
5680.0000		32.9600	5.2600	35.4400	5.15	-7.00%	2.14%		
5690.0000		33.0400	5.2800	35.4300	5.16	-6.75%	2.33%		
5700.0000		32.8700	5.3200	35.4100	5.17	-7.17%	2.90%		
5710.0000		32.8000	5.3100	35.4000	5.18	-7.34%	2.51%		
5720.0000		33.1000	5.3600	35.3900	5.19	-6.47%	3.28%		
5730.0000		32.9000	5.2600	35.3800	5.20	-7.01%	1.15%		
5740.0000		32.7600	5.4800	35.3700	5.21	-7.38%	5.18%		
5745.0000	*	32.7840	5.4500	35.3680	5.21	-7.31%	1.22%		
5750.0000		32.8800	5.3300	35.3600	5.22	-7.01%	2.11%		
5760.0000		32.7700	5.4100	35.3500	5.23	-7.30%	3.44%		
5770.0000		32.9300	5.4000	35.3300	5.24	-6.79%	3.05%		
5780.0000		32.9300	5.3200	35.3200	5.25	-6.77%	1.33%		
5790.0000		32.7300	5.3600	35.3100	5.26	-7.31%	1.90%		
5800.0000		32.8800	5.4200	35.3000	5.27	-6.86%	2.85%		
5810.0000		32.7200	5.4700	35.2900	5.28	-7.28%	3.60%		
5820.0000		32.8300	5.4300	35.2800	5.29	-6.94%	2.65%		
5830.0000		32.7000	5.4100	35.2700	5.30	-7.29%	2.08%		
5840.0000		32.7000	5.4200	35.2500	5.31	-7.23%	2.07%		
5850.0000		32.8300	5.5000	35.2400	5.32	-6.84%	3.38%		

Test Report S/N: Test Report Issue Date:

45461698 R1.0

13 December 2021

Table 15.5 Fluid Dielectric Parameters 1640MHz HEAD TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Sat 06/Dec/2021 15:02:35

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

		******	*****
FCC_eH	IFCC_sh	l Test_e	Test_s
40.39	1.25	39.00	1.20
40.38	1.26	39.29	1.20
40.36	1.26	38.95	1.20
40.35	1.27	39.01	1.20
40.34	1.27	38.82	1.22
40.33	1.28	38.77	1.23
40.31	1.28	38.55	1.24
40.30	1.29	38.82	1.24
40.28	1.30	38.63	1.25
40.27	1.30	38.64	1.26
40.25	1.31	38.76	1.26
40.24	1.31	38.53	1.28
40.22	1.32	38.59	1.29
40.21	1.32	38.48	1.31
40.19	1.33	38.64	1.31
40.17	1.34	38.57	1.30
40.16	1.34	38.42	1.32
40.14	1.35	38.34	1.33
40.13	1.35	38.33	1.34
40.11	1.36	38.47	1.36
40.09	1.37	38.17	1.36
	FCC_eH 40.39 40.38 40.36 40.35 40.34 40.33 40.31 40.28 40.27 40.25 40.24 40.22 40.21 40.19 40.17 40.16 40.14 40.13 40.11	FCC_eHFCC_sH 40.39	FCC_eHFCC_sHTest_e 40.39

13 December 2021

	FLUID DIELECTRIC PARAMETERS								
Date: 6 Dec	202	21 Fluid Te	emp: 22.8	Frequency:	1640MHz	Tissue:	Head		
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
1540.0000		39.0000	1.2000	40.3900	1.25	-3.44%	-4.00%		
1550.0000		39.2900	1.2000	40.3800	1.26	-2.70%	-4.76%		
1560.0000		38.9500	1.2000	40.3600	1.26	-3.49%	-4.76%		
1570.0000		39.0100	1.2000	40.3500	1.27	-3.32%	-5.51%		
1580.0000		38.8200	1.2200	40.3400	1.27	-3.77%	-3.94%		
1590.0000		38.7700	1.2300	40.3300	1.28	-3.87%	-3.91%		
1600.0000		38.5500	1.2400	40.3100	1.28	-4.37%	-3.13%		
1610.0000		38.8200	1.2400	40.3000	1.29	-3.67%	-3.88%		
1616.0000	*	38.7820	1.2420	40.2960	1.29	-3.76%	1.22%		
1620.0000		38.6300	1.2500	40.2800	1.30	-4.10%	-3.85%		
1621.0000	*	38.6320	1.2520	40.2780	1.30	-4.09%	1.22%		
1626.0000	*	38.6336	1.2536	40.2764	1.30	-4.08%	1.22%		
1630.0000		38.6400	1.2600	40.2700	1.30	-4.05%	-3.08%		
1640.0000		38.7600	1.2600	40.2500	1.31	-3.70%	-3.82%		
1650.0000		38.5300	1.2800	40.2400	1.31	-4.25%	-2.29%		
1660.0000		38.5900	1.2900	40.2200	1.32	-4.05%	-2.27%		
1670.0000		38.4800	1.3100	40.2100	1.32	-4.30%	-0.76%		
1680.0000		38.6400	1.3100	40.1900	1.33	-3.86%	-1.50%		
1690.0000		38.5700	1.3000	40.1700	1.34	-3.98%	-2.99%		
1700.0000		38.4200	1.3200	40.1600	1.34	-4.33%	-1.49%		
1710.0000		38.3400	1.3300	40.1400	1.35	-4.48%	-1.48%		
1720.0000		38.3300	1.3400	40.1300	1.35	-4.49%	-0.74%		
1730.0000		38.4700	1.3600	40.1100	1.36	-4.09%	0.00%		
1740.0000		38.1700	1.3600	40.0900	1.37	-4.79%	-0.73%		

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.1 System Verification Results 5250MHz HEAD TSL

System Verification Test Results								
D	4-	Frequency	V	alidation Source				
Da	ate	(MHz)	P	/N	S/N			
31 Oc	t 2021	5250	D5G	HzV2	1031			
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)			
Head	20.6	23	25%	50	10			
	Fluid Parameters							
	Permittivity			Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation			
33.40	35.93	-7.04%	4.58	4.71	-2.76%			
		Measur	ed SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
3.96	3.97	-0.34%	1.18	1.15	3.01%			
	Me	asured SAR No	ormalized to 1	.0W				
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized Target Deviat					
79.20	79.47	-0.34%	23.60	22.91	3.01%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

Table 16.2 System Verification Results 2450MHz HEAD TSL

System Verification Test Results							
Dr	ate	Frequency	uency Validation Source				
Da	ate	(MHz)	P	/N	S/N		
11 Nov	/ 2021	2450	D24	50V2	825		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	23.5	26	25%	250	10		
Fluid Parameters							
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
35.80	39.20	-8.67%	1.80	1.80	0.00%		
		Measur	ed SAR				
	1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation		
12.00	13.18	-8.95%	5.54	6.01	-7.74%		
	Me	asured SAR No	ormalized to 1	.0W			
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
48.00	52.72	-8.95%	22.16	24.02	-7.72%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

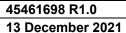
Table 16.3 System Verification Results 2450MHz HEAD TSL

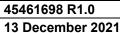
System Verification Test Results								
D	nte	Frequency	quency Validation Source					
Da	ite	(MHz)	P	/N	S/N			
16 No	v 2021	2450	D24	50V2	825			
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)			
Head	23.3	26	23%	250	10			
	Fluid Parameters							
	Permittivity		Conductivity					
Measured	Target	Deviation	Measured	Target	Deviation			
35.50	39.20	-9.44%	1.84	1.80	2.22%			
		Measur	ed SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
13.60	13.18	3.19%	6.20	6.01	3.25%			
	Me	asured SAR No	ormalized to 1.	.0W				
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized Target Devia					
54.40	52.72	3.19%	24.80	24.02	3.27%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.




Table 16.4 System Verification Results 5750MHz HEAD TSL

System Verification Test Results							
De	ate	Frequency	Validation Source				
Da	ate	(MHz)	P	/N	S/N		
03 De	c 2021	5750	D5GI	HzV2	1031		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	20.5	26	23%	50	10		
		Fluid Pa	rameters				
	Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation		
32.88	35.36	-7.01%	5.33	5.22	2.11%		
		Measur	ed SAR				
	1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation		
3.81	3.78	0.87%	1.08	1.10	-1.86%		
	Me	asured SAR No	ormalized to 1.	.0W			
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
76.20	75.54	0.87%	21.60	22.01	-1.86%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

Celltech
Testing and Engineering Services Lab

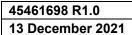
Table 16.5 System Verification Results 1640MHz HEAD TSL

System Verification Test Results								
D	nte	Frequency	Validation Source					
Da	ite	(MHz)	P	/N	S/N			
06 De	c 2021	1640	ALS-D-1	620-S-2	207-00102			
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)			
Head	20.0	26	19%	1000	10			
	Fluid Parameters							
	Permittivity			Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation			
38.76	40.25	-3.70%	1.26	1.31	-3.82%			
		Measur	ed SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
34.60	32.49	6.49%	18.60	17.19	8.20%			
	Me	asured SAR No	ormalized to 1	.0W				
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized Target Devia		Deviation			
34.60	32.49	6.49%	18.60	17.19	8.20%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.


Test Report S/N: Test Report Issue Date:

45461698 R1.0 13 December 2021

17.0 SYSTEM VALIDATION SUMMARY

Table 17.1 System Validation Summary

	System Validation Summary											
Frequency	Validation	Probe	Probe	Validation	Source	Tissus	Tissue Dielectrics			lation Resu	ılts	
(MHz)	Date	Model	S/N	Source	S/N	Tissue	Permitivity	Conductivity	Sensitivity	Linearity	Isotropy	
1640	12-Jun-21	EX3DV4	3600	1620-S-2	207-00102	Head	39.87	1.27	Pass	Pass	Pass	
2450	29-Jun-21	EX3DV4	3600	D2450V2	825	Head	38.53	1.85	Pass	Pass	Pass	
5250	25-May-21	EX3DV4	3600	D5GHzV2	1031	Head	33.74	4.9	Pass	Pass	Pass	
5750	28-May-21	EX3DV4	3600	D5GHzV2	1031	Head	34.99	5.10	Pass	Pass	Pass	

18.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 18.1 Measurement System Specifications

Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL				
Repeatability	+/- 0.035 mm				
No. of axis	6.0				
Data Acquisition Electronic	(DAE) System				
Cell Controller					
Processor	Intel(R) Core(TM) i7-7700				
Clock Speed	3.60 GHz				
Operating System	Windows 10 Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Software	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V52.10.0.1446				
Software	Postprocessing Software: SEMCAD X, V14.6.10(Deployment Build)				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	3600				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom					
Туре	ELI Elliptical Planar Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				

	Measurement System Specification						
	Probe Specification						
	Symmetrical design with triangular core;						
Construction:	Built-in shielding against static charges						
	PEEK enclosure material (resistant to organic solvents, glycol)						
	In air from 10 MHz to 2.5 GHz						
Calibration:	In head simulating tissue at frequencies of 900 MHz						
	and 1.8 GHz (accuracy \pm 8%)						
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)						
Directivity:	± 0.2 dB in head tissue (rotation around probe axis)						
Directivity.	±0.4 dB in head tissue (rotation normal to probe axis)						
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB						
Surface Detect:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces						
	Overall length: 330 mm; Tip length: 16 mm;						
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm						
	Distance from probe tip to dipole centers: 2.7 mm	11-10-2					
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe					
	Phantom Specification						

The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.

ELI Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

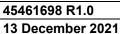

19.0 TEST EQUIPMENT LIST

Table 19.1 Equipment List and Calibration

Test Equipment List							
DESCRIPTION	ASSET	SERIAL NO.	DATE	CALIBRATION			
DEGOKII HON	NO.	OERIAL NO.	CALIBRATED	DUE			
Schmid & Partner DASY 6 System	-	-	·	-			
-DASY Measurement Server	00158	1078	CNR	CNR			
-Robot	00046	599396-01	CNR	CNR			
-DAE4	00019	353	22-Apr-21	22-Apr-22			
-EX3DV4 E-Field Probe	00213	3600	20-Apr-21	20-Apr-22			
-CLA 30 Validation Dipole	00300	1005	18-Mar-20	18-Mar-23			
-CLA150 Validation Dipole	00251	4007	18-Mar-20	18-Mar-23			
-D450V3 Validation Dipole	00221	1068	27-Apr-21	27-Apr-24			
-D750V3 Validation Dipole	00238	1061	21-Mar-19	21-Mar-22			
-D835V2 Validation Dipole	00217	4D075	27-Apr-21	27-Apr-24			
-D900V2 Validation Dipole	00020	54	16-Mar-20	16-Mar-23			
ALS-D-01640-S-2	00299	207-00102	15-Dec-20	15-Dec-23			
-D1800V2 Validation Dipole	00222	247	16-Mar-20	16-Mar-23			
-D1900V2 Validation Dipole	00218	5d107	16-Mar-20	16-Mar-23			
ALS-D-2300-S-2	00328	218-00201	26-Feb-19	26-Feb-22			
-D2450V2 Validation Dipole	00219	825	24-Apr-21	24-Apr-24			
ALS-D-2600-S-2	00327	225-00926	26-Feb-19	26-Feb-22			
-D5GHzV2 Validation Dipole	00126	1031	27-Apr-21	27-Apr-24			
ELI Phantom	00247	1234	CNR	CNR			
SAM Phantom	00154	1033	CNR	CNR			
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR			
Gigatronics 8652A Power Meter	00007	1835801	26-Mar-19	26-Mar-22			
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU			
Gigatronics 80334A Power Sensor	00237	1837001	26-Mar-19	26-Mar-22			
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-21	6-Jan-24			
Rohde & Schwarz SMR20 Signal Generator	00006	100104	11-Aug-20	11-Aug-23			
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR			
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR			
Narda Directional Coupler 3020A	00064	-	CNR	CNR			
Kangaroo VWR Humidity/Thermometer	00334	192385455	5-Aug-19	6-Aug-22			
Digital Multi Meter DMR-1800	00250	TE182	23-Jun-20	23-Jun-23			
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR			
DC-18G 10W 30db Attenuator	00102	-	COU	COU			
R&S FSP40 Spectrum Analyzer	00241	100500	9-Aug-21	9-Aug-24			
HP 8566B Spectrum Analyzer	00051	2747A055100	29-Jun-20	29-Jun-23			
RF Cable-SMA	00311	-	CNR	CNR			
HP Calibration Kit	00145	-	CNR	CNR			

CNR = Calibration Not Required

COU = Calibrate on Use

20.0 FLUID COMPOSITION

Table 20.1 Fluid Composition 5250MHz & 5750MHz HEAD TSL

This is a proprietary composition by SPEAG.

Table 20.2 Fluid Composition 2450MHz HEAD TSL

Tissue Simula	2450MHz Head					
Component by Percent Weight						
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾		
52.0	48.0	0.0	0.0	0.0		

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.3 Fluid Composition 1640MHz HEAD TSL

Tissue Simula	1640MHz Head					
Component by Percent Weight						
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾		
47.5	45.5	0.5	0.0	0.0		

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

13 December 2021

APPENDIX A - SYSTEM VERIFICATION PLOTS

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 33.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 10/31/2021 12:23:05 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.41, 4.41, 4.41) @ 5250 MHz; Calibrated: 4/28/2021

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/22/2021

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

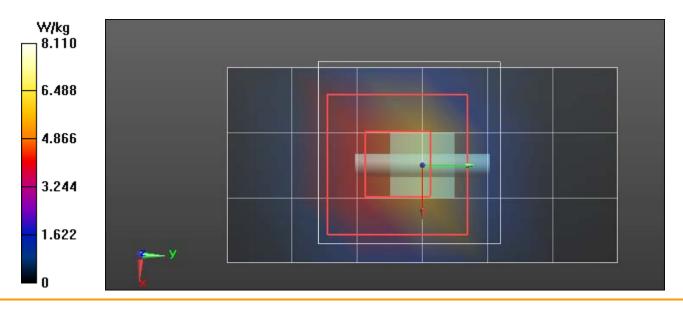
SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2/Area Scan (4x7x1):

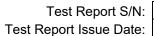
Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 5.64 W/kg

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2/Zoom Scan (8x8x6)/Cube

0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 30.63 V/m; Power Drift = -0.21 dB


Peak SAR (extrapolated) = 15.8 W/kg


SAR(1 g) = 3.96 W/kg; SAR(10 g) = 1.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 8.11 W/kg

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825 Procedure Name: SPC 2450H Input=250mw, Target=[11.86]13.18][14.50]W/kg 2

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.8$ S/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 11/11/2021 5:50:12 PM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.45, 6.45, 6.45) @ 2450 MHz; Calibrated: 4/28/2021
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/22/2021
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

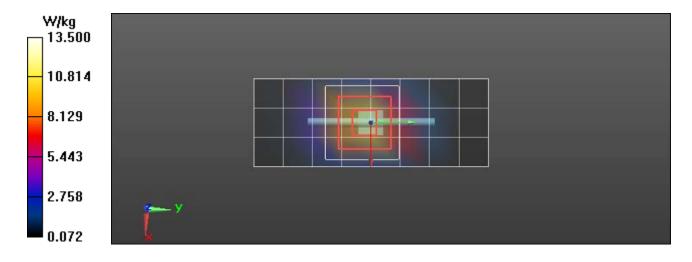
SPC/SPC 2450H Input=250mw, Target=[11.86]13.18][14.50]W/kg 2/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm

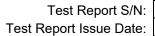
Maximum value of SAR (measured) = 10.7 W/kg

SPC/SPC 2450H Input=250mw, Target=[11.86]13.18][14.50]W/kg 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.17 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 25.5 W/kg


SAR(1 g) = 12 W/kg; SAR(10 g) = 5.54 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 47.8%

Maximum value of SAR (measured) = 13.5 W/kg

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825 Procedure Name: SPC 2450H Input=250mw, Target=[11.86]13.18][14.50]W/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 11/16/2021 11:46:48 AM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.45, 6.45, 6.45) @ 2450 MHz; Calibrated: 4/28/2021
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/22/2021
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

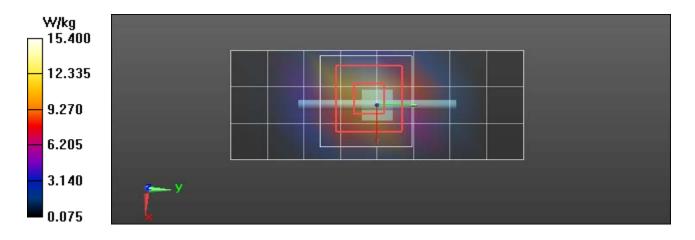
SPC/SPC 2450H Input=250mw, Target=[11.86]13.18][14.50]W/kg/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 13.8 W/kg

SPC/SPC 2450H Input=250mw, Target=[11.86]13.18][14.50]W/kg/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.65 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.2 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 47.7%

Maximum value of SAR (measured) = 15.4 W/kg

Test Report S/N: Test Report Issue Date: 45461698 R1.0 13 December 2021

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Procedure Name: SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000mw 2

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.33$ S/m; $\epsilon_r = 32.88$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 12/3/2021 1:16:11 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.06, 4.06, 4.06) @ 5750 MHz; Calibrated: 4/28/2021

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/22/2021

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000mw 2/Area Scan (4x7x1):

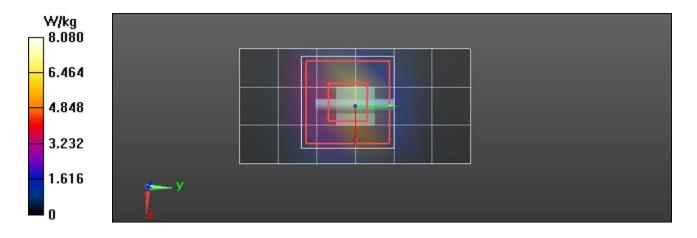
Measurement grid: dx=10mm, dy=10mm

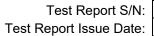
Maximum value of SAR (measured) = 6.44 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000mw 2/Zoom Scan (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 28.22 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 3.81 W/kg; SAR(10 g) = 1.08 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 52.2%

Maximum value of SAR (measured) = 8.08 W/kg

DUT: Dipole 1640 MHz D1640V2; Type: D1640V2; Serial: D1640V2 - SN:207-00102 Procedure Name: SPC 1640H Input=1.0W, Target=[31.52]33.18[36.5] W/kg 18.21 10gm 2

Communication System: UID 0, CW (0); Frequency: 1640 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1640 MHz; σ = 1.26 S/m; ϵ_r = 38.76; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 12/6/2021 5:57:51 PM

DASY5 Configuration:

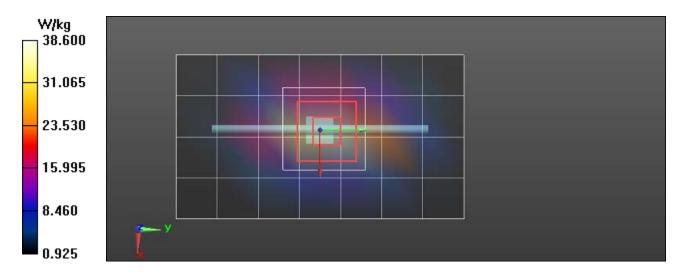
- Probe: EX3DV4 SN3600; ConvF(7.31, 7.31, 7.31) @ 1640 MHz; Calibrated: 4/28/2021
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/22/2021
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

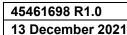
SPC/SPC 1640H Input=1.0W, Target=[31.52]33.18[36.5] W/kg 18.21 10gm 2/Area Scan (5x8x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 36.5 W/kg

SPC/SPC 1640H Input=1.0W, Target=[31.52]33.18[36.5] W/kg 18.21 10gm 2/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 174.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 61.8 W/kg


SAR(1 g) = 34.6 W/kg; SAR(10 g) = 18.6 W/kg

Smallest distance from peaks to all points 3 dB below = 12 mm

Ratio of SAR at M2 to SAR at M1 = 56.9%

Maximum value of SAR (measured) = 38.6 W/kg

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR

Plot B52

DUT: A04166; Type: Transmitter; Serial: 3374769248

Procedure Name: B52-A04166, Right Edge -P, 5745MHz 6mb, WIFI

Communication System: UID 0, CW (0); Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.405$ S/m; $\varepsilon_r = 32.82$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 12/3/2021 5:17:39 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.06, 4.06, 4.06) @ 5745 MHz; Calibrated: 4/28/2021

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/22/2021

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5750H/B52-A04166,Right Edge -P, 5745MHz 6mb,WIFI/Area Scan (18x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.955 W/kg

5750H/B52-A04166,Right Edge -P, 5745MHz 6mb,WIFI/Zoom Scan (9x9x6)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 2.809 V/m; Power Drift = 4.25 dB

Peak SAR (extrapolated) = 1.92 W/kg

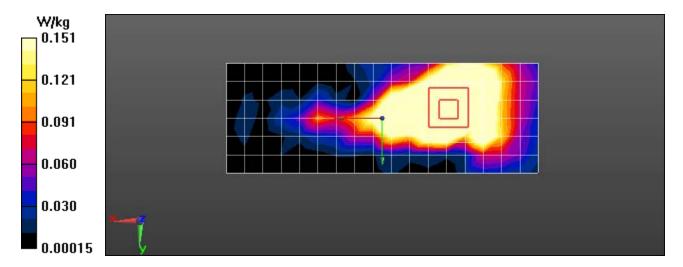
SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.151 W/kg

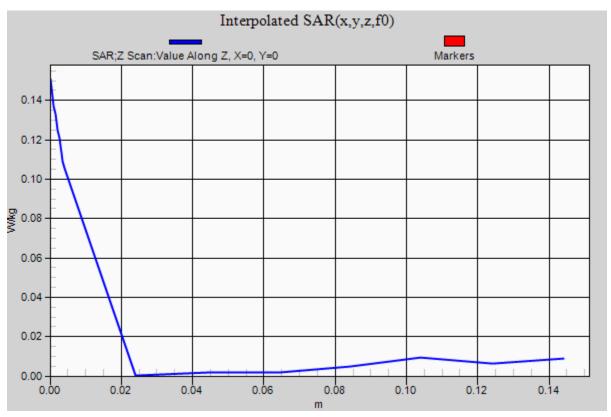
Smallest distance from peaks to all points 3 dB below = 8.8 mm

Ratio of SAR at M2 to SAR at M1 = 49.5%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.06 W/kg


5750H/B52-A04166,Right Edge -P, 5745MHz 6mb,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 3.050) [mm]

Maximum value of SAR (interpolated) = 0.151 W/kg

Test Report S/N: Test Report Issue Date:

45461698 R1.0 13 December 2021

Plot B400

DUT: A04166; Type: Transmitter; Serial: 3374769248

Procedure Name: B400-A04166, Back Side - Reduced, 1616MHz 15mm

Communication System: UID 0, CW (0); Frequency: 1616 MHz; Duty Cycle: 1:10.7498

Medium parameters used (interpolated): f = 1616 MHz; σ = 1.246 S/m; ϵ_r = 38.706; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 12/7/2021 1:44:27 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(7.31, 7.31, 7.31) @ 1616 MHz; Calibrated: 4/28/2021

Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/22/2021

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

1640H/B400-A04166, Back Side - Reduced, 1616MHz 15mm/Area Scan (13x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.954 W/kg

1640H/B400-A04166, Back Side - Reduced, 1616MHz 15mm/Zoom Scan (9x9x6)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.867 V/m; Power Drift = 1.08 dB

Peak SAR (extrapolated) = 7.30 W/kg

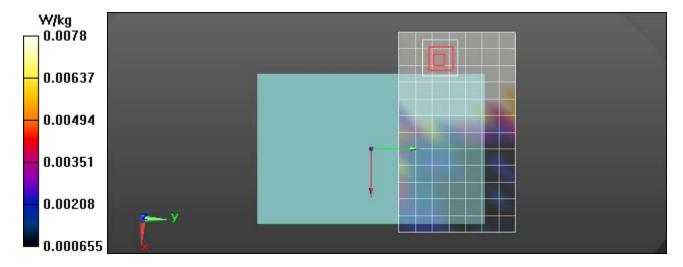
SAR(1 g) = 1.48 W/kg; SAR(10 g) = 0.646 W/kg

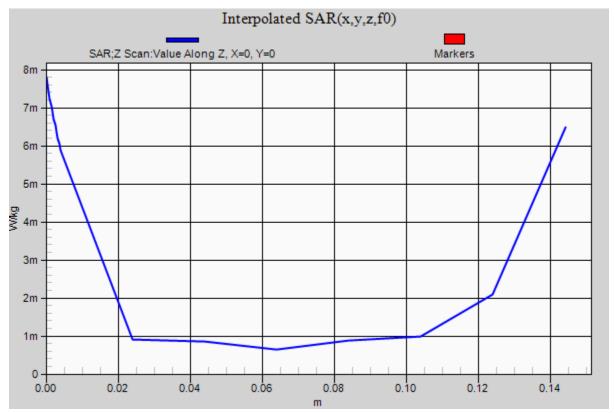
Smallest distance from peaks to all points 3 dB below = 4 mm

Ratio of SAR at M2 to SAR at M1 = 45.8%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.49 W/kg


1640H/B400-A04166, Back Side - Reduced, **1616MHz 15mm/Z Scan (1x1x19)**: Measurement grid: dx=20mm, dy=20mm, dz=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 10.64) [mm]

Maximum value of SAR (interpolated) = 0.00780 W/kg

Test Report S/N: Test Report Issue Date:

45461698 R1.0 13 December 2021

Plot B405

DUT: A04166; Type: Transmitter; Serial: 3374769248

Procedure Name: B405-A04166, Back Side - Reduced, 1616MHz 15mm Repeat SAR msmt

Communication System: UID 0. CW (0): Frequency: 1616 MHz; Duty Cycle: 1:10,7498

Medium parameters used (interpolated): f = 1616 MHz; $\sigma = 1.246$ S/m; $\varepsilon_r = 38.706$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 12/8/2021 3:18:23 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(7.31, 7.31, 7.31) @ 1616 MHz; Calibrated: 4/28/2021

Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/22/2021

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

1640H/B405-A04166, Back Side - Reduced, 1616MHz 15mm Repeat SAR msmt/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.942 W/kg

1640H/B405-A04166, Back Side - Reduced, 1616MHz 15mm Repeat SAR msmt/Zoom Scan (9x9x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.57 V/m; Power Drift = 0.25 dB Peak SAR (extrapolated) = 5.88 W/kg

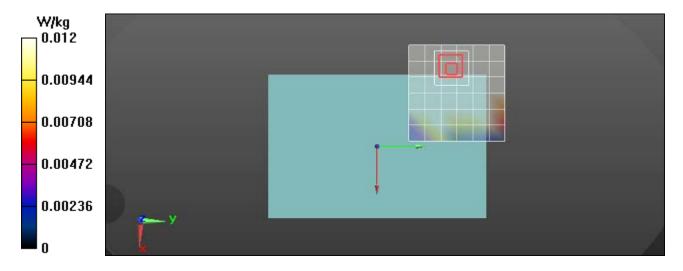
SAR(1 g) = 1.41 W/kg; SAR(10 g) = 0.691 W/kg

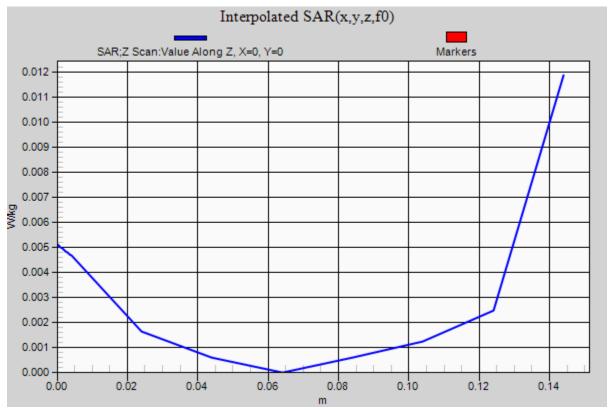
Smallest distance from peaks to all points 3 dB below = 3.2 mm

Ratio of SAR at M2 to SAR at M1 = 40.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.34 W/kg


1640H/B405-A04166, Back Side - Reduced, 1616MHz 15mm Repeat SAR msmt/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 18.84) [mm]

Maximum value of SAR (interpolated) = 0.0118 W/kg

