Test Report S/N: Test Report Issue Date: 27 July 2021 45461672 R1.0 # **APPENDIX F - DIPOLE CALIBRATION** ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Celltech Certificate No: D2450V2-825 Apr18 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN:825 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 24, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | Qe 1/2 | | | Katia Bakavia | Toological Manager | 10 100 | | Approved by: | Katja Pokovic | Technical Manager | Jet 15 | Issued: April 25, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-825_Apr18 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-825_Apr18 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.3 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.97 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-825_Apr18 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.5 Ω + 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.7 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.9 Ω + 8.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.2 dB | ### **General Antenna Parameters and Design** | Floatrical Dalay (one direction) | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.158 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 11, 2008 | Certificate No: D2450V2-825_Apr18 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 24.04.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:825 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.5 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 24.04.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:825 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.97 W/kg Maximum value of SAR (measured) = 21.0 W/kg 0 dB = 21.0 W/kg = 13.22 dBW/kg # Impedance Measurement Plot for Body TSL ### **NCL CALIBRATION LABORATORIES** Calibration File No: DC-1904 Project Number: 5921 Client.: Celltech Address: 21 - 364 Lougheed Road, Kelowna, BC V1X 7R8, Canada # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole (Head) Manufacturer: SPEAG Part number: D2450V2 Frequency: 2450 MHz Serial No: 825 Calibrated: 27/04/2021 Released on: 05/05/2021 This Calibration Certificate is incomplete unless accompanied by the Calibration Results Summary Released by: Pieter Erasmus, Quality Manager Suite 102, 303 Terryfox Dr. Ottawa, Ontario, K2K 3J1 Canada Division of APREL Lab. Tel: (613) 435-8300 Fax: (613) 435-8306 Calibration Laboratories ### **Conditions** Dipole SN 825 was a re-calibration. Ambient Temperature of the Laboratory: $21 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ ### **Primary Measurement Standards** | Instrument | | Serial Num | ber | Cal due date | |-------------------|----------|------------|------------|----------------| | Signal Generator | HP | 83640B | 3844A00689 | Sept. 17, 2022 | | Network Analyzer | Keysight | E5063A | MY54502902 | Mar. 9, 2023 | | Spectrum Analyzer | Keysight | N9030B | MY57140772 | Apr. 20, 2023 | #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration has been accurately conducted and that all information contained within this report has been reviewed for accuracy and any uncertainties if applicable disclosed. Pieter Erasmus Quality Manager Maryna Nesterova **Test and Calibration Engineer** # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. ### **Tissue Validation** | Tissue | Frequency | Dielectric constant, ε _r | Conductivity,
σ [S/m] | |--------|-----------|-------------------------------------|--------------------------| | Head | 2450 MHz | 40.73 | 1.86 | ### **Electrical Specification** | Tissue | Frequency | Return Loss | Impedance | SWR: | |--------|-----------|-------------|----------------|-------| | Head | 2450 MHz | -19.83 dB | $43.26~\Omega$ | 1.23U | # **System Validation Results** | Tissue | Frequency | 1-Gram SAR | 10-Gram SAR | Uncertainty | |--------|-----------|-------------|-------------|-------------| | Head | 2450 MHz | 52.719 W/kg | 24.015 W/kg | 19.8% | ### Head Dipole SN: 825 #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole SN 825. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - o IEEE Standard 1528:2013 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - o EN 62209-1:2016 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices - o IEC 62209-2:2019 - Human exposure to RF fields from hand-held and body-mounted wireless devices -Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz) - o D22-012-Tissue dielectric tissue calibration procedure - o D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 kHz to 40 GHz #### **Conditions** Ambient Temperature of the Laboratory: $21 \, ^{\circ}\text{C} + / - 0.5 \, ^{\circ}\text{C}$ Temperature of the Tissue: $21 \, ^{\circ}\text{C} + / - 0.5 \, ^{\circ}\text{C}$ ### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. | | Tolerance, % | |-----------------------|--------------| | Mechanical | 2.00 | | Positioning Error | 0.10 | | Electrical | 0.37 | | Tissue Permittivity | 3.88 | | Tissue Conductivity | 3.56 | | Dipole Validation | 1.70 | | Combined Uncertainty, | | | k=2 | 4.81 | Dipole SN: 825 The Following Graphs are the results as displayed on the Vector Network Analyzer. **Electrical Calibration** | Test | Head | |-----------|----------------| | S11 R/L | -19.83 dB | | Impedance | $43.26~\Omega$ | | SWR | 1.23 U | #### **S11 Parameter Return Loss** #### Head Frequency Range 2326.59 MHz to 2450 MHz # **Smith Chart Dipole Impedance** ### **SWR** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Client Celltech Certificate No: D5GHzV2-1031_Apr18 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1031 Multilateral Agreement for the recognition of calibration certificates Calibration procedure(s) QA CAL-22.v3 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: April 26, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Certificate No: D5GHzV2-1031_Apr18 | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-17 (No. EX3-3503_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | VCh | | Approved by: | Katja Pokovic | Technical Manager | mur | Issued: April 26, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 13 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1031_Apr18 Page 2 of 13 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz | | | | 5750 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 4.61 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1031_Apr18 Page 3 of 13 # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.5 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 5.13 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1031_Apr18 # **Body TSL parameters at 5250 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.1 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | # **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 5.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | •••• | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 81.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1031_Apr18 # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.2 ± 6 % | 6.18 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.69 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 W/kg ± 19.5 % (k=2) | Page 6 of 13 Certificate No: D5GHzV2-1031_Apr18 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 49.1 Ω - 9.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.6 dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.1 Ω - 5.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.8 dB | | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.8 Ω - 7.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.2 dB | | # Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 48.8 Ω - 7.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.3 dB | | ### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 55.0 Ω - 5.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.8 dB | | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 58.1 Ω - 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.4 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 09, 2004 | Certificate No: D5GHzV2-1031_Apr18 Page 7 of 13 ### **DASY5 Validation Report for Head TSL** Date: 26.04.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\epsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.98$ S/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.13$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.58 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 17.8 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.24 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 19.9 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.94 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 18.8 W/kg 0 dB = 18.8 W/kg = 12.74 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 26.04.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.49$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.98$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.45 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.5 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.43 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 34.3 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 20.2 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.37 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 19.3 W/kg Certificate No: D5GHzV2-1031_Apr18 Page 11 of 13 0 dB = 18.5 W/kg = 12.67 dBW/kg # Impedance Measurement Plot for Body TSL ### **NCL CALIBRATION LABORATORIES** Calibration File No: DC-1906 Project Number: 5921 Client.: Celltech Address: 21 - 364 Lougheed Road, Kelowna, BC V1X 7R8, Canada # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole (Head) Manufacturer: SPEAG Part number: S5GHzV2 Frequency: 450 MHz Serial No: 1031 Calibrated: 27/04/2021 Released on: 05/05/2021 This Calibration Certificate is incomplete unless accompanied by the Calibration Results Summary Released by: Pieter Erasmus, Quality Manager Suite 102, 303 Terryfox Dr. Division of APREL Lab. Ottawa, Ontario, K2K 3J1 Canada Division of APREL Lab. Tel: (613) 435-8300 Fax: (613) 435-8306 ### **Conditions** Dipole SN 1031 was a re-calibration. Ambient Temperature of the Laboratory: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ ### **Primary Measurement Standards** | Instrument | | Serial Number | | Cal due date | |-------------------|----------|---------------|------------|----------------| | Signal Generator | HP | 83640B | 3844A00689 | Sept. 17, 2022 | | Network Analyzer | Keysight | E5063A | MY54502902 | Mar. 9, 2023 | | Spectrum Analyzer | Keysight | N9030B | MY57140772 | Apr. 20, 2023 | #### **Attestation** The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration has been accurately conducted and that all information contained within this report has been reviewed for accuracy and any uncertainties if applicable disclosed. Pieter Erasmus Quality Manager Maryna Nesterova **Test and Calibration Engineer** # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. ### **Tissue Validation** | Tissue | Frequency,
MHz | Dielectric constant, ε _r | Conductivity,
σ [S/m] | |--------|-------------------|-------------------------------------|--------------------------| | Head | 5250 | 37.68 | 4.75 | | Head | 5600 | 36.72 | 5.18 | | Head | 5750 | 36.33 | 5.52 | # **Electrical Specification** | Tissue | Frequency,
MHz | Return Loss,
dB | Impedance,
Ω | SWR | |--------|-------------------|--------------------|-----------------|--------| | Head | 5250 | -20.613 | 51.07 | 1.21 U | | Head | 5600 | -16.481 | 67.46 | 1.35 U | | Head | 5750 | -16.629 | 41.92 | 1.35 U | ### **SAR Validation** | Tissue | Frequency | 1-Gram SAR | 10-Gram SAR | Uncertainty | |--------|-----------|------------|-------------|-------------| | Head | 5250 MHz | 79.47 W/kg | 22.91 W/kg | 22.3% | | Head | 5600 MHz | 77.14 W/kg | 22.15 W/kg | 24.8% | | Head | 5750 MHz | 75.54 W/kg | 22.01 W/kg | 24.5% | # **SAR Validation Results** | Tissue | Frequency | 1-Gram SAR | 10-Gram SAR | Uncertainty | |--------|-----------|------------|-------------|-------------| | Head | 5250 MHz | 79.47 W/kg | 22.91 W/kg | 22.31 % | | Tissue | Frequency | 1-Gram SAR | 10-Gram SAR | Uncertainty | |--------|-----------|------------|-------------|-------------| | Head | 5600 MHz | 77.14 W/kg | 22.15 W/kg | 24.8% | | Tissue | Frequency | 1-Gram SAR | 10-Gram SAR | Uncertainty | |--------|-----------|------------|-------------|-------------| | Head | 5750 MHz | 75.54 W/kg | 22.01 W/kg | 24.5% | #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Dipole 1031. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - o IEEE Standard 1528:2013 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - o EN 62209-1:2016 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices - o IEC 62209-2:2019 - Human exposure to RF fields from hand-held and body-mounted wireless devices -Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz) - o D22-012-Tissue dielectric tissue calibration procedure - D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 kHz to 40 GHz #### **Conditions** Ambient Temperature of the Laboratory: $21 \, ^{\circ}\text{C} + /- 0.5 \, ^{\circ}\text{C}$ Temperature of the Tissue: $21 \, ^{\circ}\text{C} + /- 0.5 \, ^{\circ}\text{C}$ ### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. | | Tolerance, % | |-----------------------|--------------| | Mechanical | 2.00 | | Positioning Error | 0.10 | | Electrical | 0.37 | | Tissue Permittivity | 3.43 | | Tissue Conductivity | 4.68 | | Dipole Validation | 1.70 | | Combined Uncertainty, | | | k=2 | 5.21 | Dipole SN: 1031 The Following Graphs are the results as displayed on the Vector Network Analyzer. **Electrical Calibration** | Test | 5250 MHz | 5600 MHz | 5750 MHz | |--------------|----------|----------|----------| | S11 R/L, dB | -20.613 | -16.481 | -16.629 | | Impedance, Ω | 51.07 | 67.46 | 41.92 | | SWR | 1.21 U | 1.35 | 1.35 | #### **S11 Parameter Return Loss** # **Smith Chart Dipole Impedance** ### **SWR** Test Report S/N: Test Report Issue Date: 27 July 2021 45461672 R1.0 # **APPENDIX G - PHANTOM** Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ### **Certificate of Conformity / First Article Inspection** | Item | Oval Flat Phantom ELI 5.0 | |--------------|--| | Type No | QD OVA 002 A | | Series No | 1108 and higher | | Manufacturer | Untersee Composites | | | Knebelstrasse 8, CH-8268 Mannenbach, Switzerland | #### **Tests** Complete tests were made on the prototype units QD OVA 001 A, pre-series units QD OVA 001 B as well as on some series units QD OVA 001 B. Some tests are made on all series units QD OVA 002 A. | Test | Requirement | Details | Units tested | |----------------------|---|--|---------------------------------| | Shape | Internal dimensions, depth and sagging are compatible with standards | Bottom elliptical 600 x 400 mm, Depth 190 mm, dimension compliant with [1] for f > 375 MHz | Prototypes | | Material thickness | Bottom:
2.0mm +/- 0.2mm | dimension compliant with [3] for f > 800 MHz | all | | Material parameters | rel. permittivity 2 – 5,
loss tangent ≤ 0.05, at f ≤ 6
GHz | rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05 | Material samples | | Material resistivity | Compatibility with tissue simulating liquids . | Compatible with SPEAG liquids. ** | Phantoms,
Material
sample | | Sagging | Sagging of the flat section in tolerance when filled with tissue simulating liquid. | within tolerance for filling
height up to 155 mm | Prototypes, samples | Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility. #### **Standards** - [1] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01 - [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - [3] IEC 62209–1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18 - [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30 #### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **body-worn** SAR measurements and system performance checks as specified in [1-4] and further standards. Date 25.7.2011 Signature / Stamp Speak a G Schmid & Partner-Engineering AG Zeughavestrasse 43, 8004 Zorich, Switzerland Phone 441 44/245 8708, 464 444 444 5 9779 info@speag.com, http://www.speag.com