

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

CFR47, PART 15C - Intentional Radiators CFR47 Paragraph 15.249 and Industry Canada RSS-GEN Issue 5 and RSS-210 Issue 10 Application For Grant of Certification

Model: A04158

2402-2480 MHz (DXX) Low Power Digital Transmitter

FCC ID: IPH-04158 IC: 1792A-04158

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

FCC Designation: US5305 ISED Registration: 3041A-1

Test Report Number: 210307

Test Date: March 7, 2021

Authorized Signatory: Scot D. Rogers

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 1 of 57

Revision 1

Table of Contents

TABLE OF CONTENTS2		
REVISIONS		4
EXECUTIVE SUMMARY.		5
OPINION / INTERPRETAT	FION OF RESULTS	5
EQUIPMENT TESTED		6
Equipment Operational Mod	les	7
Equipment Function		8
Equipment Configuration		9
APPLICATION FOR CER	TIFICATION	10
	DS	11
EQUIPMENT TESTING PI	ROCEDURES	
AC Line Conducted Emissio	n Test Procedure	
Radiated Emission Test Proc	cedure	
Antenna Port Conducted En	nission Test Procedure	12
Diagram 1 Test arrangement	for Conducted emissions	13
Diagram 2 Test arrangement	for radiated emissions of tabletop equipment	14
Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)		
Diagram 4 Test arrangement for Antenna Port Conducted emissions		
TEST SITE LOCATIONS.		16
UNITS OF MEASUREMEI	NTS	
ENVIRONMENTAL COND	DITIONS	17
STATEMENT OF MODIFI	CATIONS AND DEVIATIONS	
INTENTIONAL RADIATO	RS	
Rogers Labs, Inc. 4405 West 259 th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214	Garmin International, Inc. SN's Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247	: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 Date: June 17, 2021

File: A04158 DXX TstRpt 210307

Page 2 of 57

Antenna Requirements	10
Restricted Bands of Operation	
Table 1 Radiated Emissions in Restricted Frequency Bands Data Mode 1 BT BR	19
Table 2 Radiated Emissions in Restricted Frequency Bands Data Mode 2 BT 2EDR	20
Table 3 Radiated Emissions in Restricted Frequency Bands Data Mode 3 BT 3EDR	21
Table 4 Radiated Emissions in Restricted Frequency Bands Data Mode 4 BT BLE	22
Summary of Results for Radiated Emissions in Restricted Bands	22
AC Line Conducted EMI Procedure	23
Figure 1 AC Line Conducted emissions of EUT line 1 (EUT – AC Adapter)	24
Figure 2 AC Line Conducted emissions of EUT line 2 (EUT – AC Adapter)	
Figure 3 AC Line Conducted emissions of EUT line 1 (EUT – Computer)	
Figure 4 AC Line Conducted emissions of EUT line 2 (EUT – Computer)	
Table 5 AC Line Conducted Emissions Data L1 (EUT – AC Adapter)	
Table 6 AC Line Conducted Emissions Data L2 (EUT – AC Adapter)	
Table 7 AC Line Conducted Emissions Data L1 (EUT – Computer)	27
Table 8 AC Line Conducted Emissions Data L2 (EUT – Computer)	27
Summary of Results for AC Line Conducted Emissions Results	
Summary of Results for AC Line Conducted Emissions Results	28
	28
General Radiated Emissions Procedure	28 28 29
General Radiated Emissions Procedure	28 28 29 29
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR Figure 7 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 3 BT 3EDR	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR Figure 7 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 3 BT 3EDR Figure 8 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 4 BT BLE	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR Figure 7 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 3 BT 3EDR Figure 8 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 4 BT BLE Figure 9 Plot of Transmitter Emissions Departed in 12402-2480 MHz Mode 4 BT BLE	
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR Figure 7 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 3 BT 3EDR Figure 8 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 4 BT BLE Figure 9 Plot of Transmitter Emissions Low Band Edge Mode 1 BT BR Figure 10 Plot of Transmitter Emissions Low Band Edge Mode 2 BT 2EDR	28 29 29 30 31323334353637
General Radiated Emissions Procedure Table 9 General Radiated Emissions Data Summary of Results for General Radiated Emissions Operation in the Band 2400 – 2483.5 MHz Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR Figure 7 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 3 BT 3EDR Figure 8 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 4 BT BLE Figure 9 Plot of Transmitter Emissions Low Band Edge Mode 1 BT BR Figure 10 Plot of Transmitter Emissions Low Band Edge Mode 2 BT 2EDR Figure 11 Plot of Transmitter Emissions Low Band Edge Mode 3 BT 3EDR	28 29 29 30 313132333435363738

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 3 of 57

Figure 15 Plot of Transmitter Emissions High Band Edge Mode 3 BR 2EDR	41
Figure 16 Plot of Transmitter Emissions High Band Edge Mode 4 BT BLE	42
Figure 17 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 1 BT BR	43
Figure 18 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 2 BT 2EDR	44
Figure 19 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 3 BT 3EDR	45
Figure 20 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 4 BT BLE	46
Transmitter Emissions Data	47
Table 10 Transmitter Radiated Emissions Mode 1 BT BR	47
Table 11 Transmitter Radiated Emissions Mode 2 BT 2EDR	48
Table 12 Transmitter Radiated Emissions Mode 3 BT 3EDR	49
Table 13 Transmitter Radiated Emissions Mode 4 BT BLE	50
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	51
ANNEX	52
Annex A Measurement Uncertainty Calculations	53
Annex B Test Equipment	54
Annex C Rogers Qualifications	56
Annex D Laboratory Certificate of Accreditation	57

Revisions

Revision 1 Issued June 17, 2021

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 4 of 57

Executive Summary

License Exempt Digital Transmission System Intentional Radiator operating under Code of Federal Regulations Title 47 (CFR47) Paragraph 15.249 and Industry Canada RSS-210 Issue 10 and RSS-GEN Issue 5, low power digital device transmitter operations in the 2400 – 2483.5 MHz frequency band.

Name of Applicant:	Garmin International, Inc. 1200 East 151st Street Olathe, KS 66062
M/N: A04158	
FCC ID: IPH-04158	IC: 1792A-04158
Operating Frequency	Range: 2402-2480 MHz

Operational communication modes

Mode	Peak Power (dBµV/m@3m)	Average power (dBµV/m@3m)	99% OBW (kHz)
Mode 1, BT BR (GFSK)	97.8	86.4	819
Mode 2, BT 2EDR (π /4-DQPSK)	97.1	83.0	1,160
Mode 3, BT 3EDR (8DPSK)	97.0	83.0	1,184
Mode 4, BT BLE (GMSK)	97.3	91.7	1,029

This report addresses EUT Operation as Low Power Device using transmitter modes 1, 2, 3, and 4

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Bands CFR47 15.205, RSS-210 4.1	-5.5	Complies
Emissions as per CFR47 15.207, RSS-GEN 8.8	-5.4	Complies
Radiated Emissions CFR47 15.209, RSS-GEN 8.9	-5.3	Complies
Harmonic Emissions per CFR47 15.249, RSS-210 B.10	-5.1	Complies

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 5 of 57

Equipment Tested

Model: A04158

Garmin International, Inc.Garmin Corporation1200 East 151st StreetNo.68, Zhangshu 2nd Rd.Olathe, KS 66062Xizhi Dist., New Taipei City 221, Taiwan, R.O.C.

Equipment	Model / PN	Serial Number
EUT	A04158	3354564362
EUT2	A04158	3354564378
USB cable	320-01461-0x	N/A
USB cable	320-01462-0x	N/A
USB cable	320-01545-00	N/A
AC Adapter	320-00096-0x	N/A
DC Power Cable (CLA)	013-00970-00	N/A
DC Power Cable (CLA)	013-00971-00	N/A
Pass-thru Cable	320-01487-00	N/A
DC Power Cable (GTM-xx)	320-00683-xx	N/A
DC Power Cable (FMI-75)	010-12375-00	N/A
DC Power Cable (BC-30)	320-00092-xx	N/A
DC Power Supply	BK 1745	209C13
Laptop Computer	Latitude 7480	EFSPSN2
USB Printer	Dell 0N5819	5D1SL61

Test results in this report relate only to the items tested. Worst-case configuration data recorded in this report.

Software: 1.07, Antennas: 2.4 GHz PIFA (0 dBi), 5 GHz PIFA (5 dBi)

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 6 of 57

Equipment Operational Modes

Mode	Transmitter Operation
1	BT BR (GFSK)
2	BT 2EDR (π/4-DQPSK)
3	BT 3EDR (8DPSK)
4	BT BLE (GMSK)
5	802.11b
6	802.11g
7	802.11n
8	U-NII-1 802.11a
9	U-NII-1 802.11n
10	U-NII-1 802.11n40
11	U-NII-1 802.11ac80
12	U-NII-3 802.11a
13	U-NII-3 802.11n
14	U-NII-3 802.11n40
15	U-NII-3 802.11ac80

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 7 of 57

Equipment Function

The EUT is a GPS receiver and display unit providing GPS reception and graphical display of location, navigation, and other information for the user. The GPS design offers use as a hand-held, transportation mounted or portable configuration for use in navigational applications. The design incorporates transmitter circuitry operating in the 2402-2480, 5150-5250, and 5725-5850 MHz frequency bands. The design provides cabled interface capabilities as presented below and wireless communications with compatible equipment. The EUT operates from direct current power provided from internal battery system or external power. External power may be supplied from installation vehicle via DC power adapter, AC/DC power adapter, or compliant USB interface as documented in this and other relevant reports. The EUT was arranged as described by the manufacturer emulating typical user configurations for testing purposes. The EUT offers no other interface connections than those presented in configuration options below as described by the manufacturer. For testing purposes, the EUT received power from both internal and external power options and configurations. During testing, the test system was configured to operate in a manufacturer defined mode. As requested by the manufacturer the equipment was tested for emissions compliance using the available configurations with the worse-case data presented. Test results in this report relate only to the products described in this report.

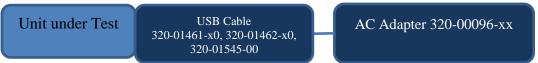
 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 8 of 57



Equipment Configuration

1) EUT operating on internal battery

Unit under Test

2) EUT connected to (and powered by) AC adapter through USB cable

3) EUT connected to Computer USB port through cable assembly (GPN: 320-01545-00)

4) EUT connected to DC Through USB cable (320-01461-x0, 320-01462-x0) powered from CLA (013-00970-00)

Unit under Test	USB Cable 320-01461-x0, 320-01462-x0	CLA 013-00970-00	

5) EUT connected to DC through USB cable (320-01461-x0, 320-01462-x0) powered from CLA (013-00971-00)

6) EUT connected to DC through ugh (320-01487-00) to (GTM-70; 320-00683-20, GTM-60; 320-00683-00)

Unit under Test	Pass-Thru cable 320-01487-00	GTM-70, GTM-60
	520 01 107 00	

7) EUT connected to DC through (320-01487-00) to FMI cable assembly (GPNS: 010-12375-00)

Unit under Test	Pass-Thru cable 320-01487-00	FMI-75
	520-01487-00	

8) EUT connected to DC through (320-01487-00) to BC30 cable assembly (GPN: 320-00092-xx)

Unit under Test	Pass-Thru cable	BC-30
	320-01487-00	

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 9 of 57

Application for Certification

(1)	Manufacturer:	Garmin International, Inc.
		1200 East 151st Street
		Olathe, KS 66062

- (2) Identification: M/N: A04158 FCC ID: IPH-04158 IC: 1792A-04158
- (3) Instruction Book:Refer to Exhibit for Instruction Manual.
- (4) Description of Circuit Functions:Refer to Exhibit of Operational Description.
- (5) Block Diagram with Frequencies:Refer to Exhibit of Operational Description.
- (6) Report of Measurements:

Report of measurements follows in this Report.

- (7) Photographs: Construction, Component Placement, etc.:Refer to Exhibit for photographs of equipment.
- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from internal battery power or external direct current power provided from authorized sources. The EUT provides USB-C interface port for power and communications as presented in this filing.
- (9) Transition Provisions of CFR47 15.37 are not requested.
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 10 of 57

Applicable Standards

The following information is submitted in accordance with the eCFR (electronic Code of Federal Regulations Title 47) (CFR47), dated March 7, 2021: Part 2, Subpart J, Part 15C Paragraph 15.249, RSS-210 Issue 10, and RSS-GEN Issue 5. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013. This report documents compliance for the EUT operations as Low Power Transmitter.

Equipment Testing Procedures

AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions were performed as required in CFR47 15C, RSS-210 Issue 10, RSS-GEN and specified in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50- μ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in the test setup exhibit for EUT placement used during testing.

Radiated Emission Test Procedure

Radiated emissions testing was performed as required in CFR47 15C, RSS-210 Issue 10, RSS-GEN and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising, and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams two and three showing typical test setup. Refer to photographs in the test setup exhibit for specific EUT placement during testing.

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

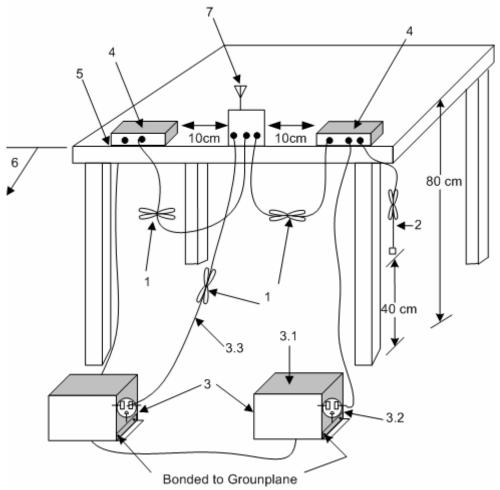
 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 11 of 57

Antenna Port Conducted Emission Test Procedure

The EUT was assembled as required for operation and placed on a benchtop. This configuration provided the ability to connect test equipment to the provided test antenna port Antenna Port conducted emissions testing was performed as presented in this document and specified in ANSI C63.10-2013. Testing was completed on a laboratory bench in a shielded room. The active antenna port of the device was connected to appropriate attenuation and the spectrum analyzer. Refer to diagram four showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

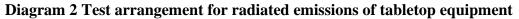
 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

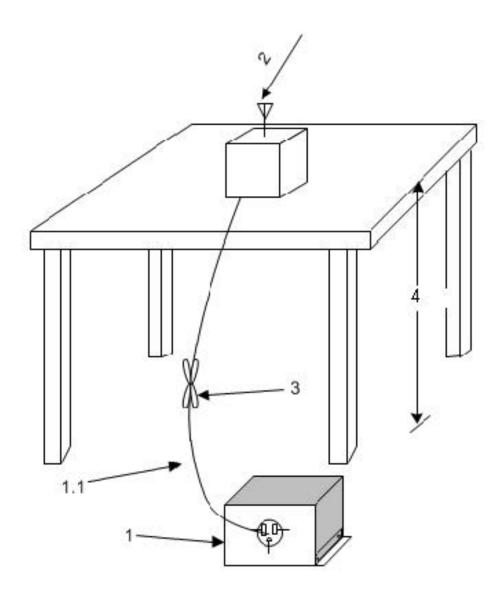

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158


 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 12 of 57





- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
- 2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4. Non-EUT components of EUT system being tested.
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
- 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 13 of 57

1—A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).

1.1—LISN spaced at least 80 cm from the nearest part of the EUT chassis.

2—Antenna can be integral or detachable, depending on the EUT (see 6.3.1).

3—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).

4—For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 14 of 57

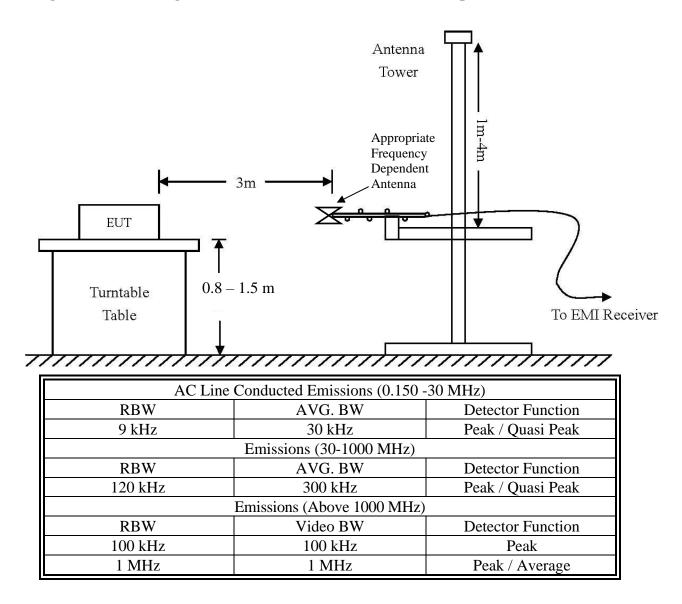
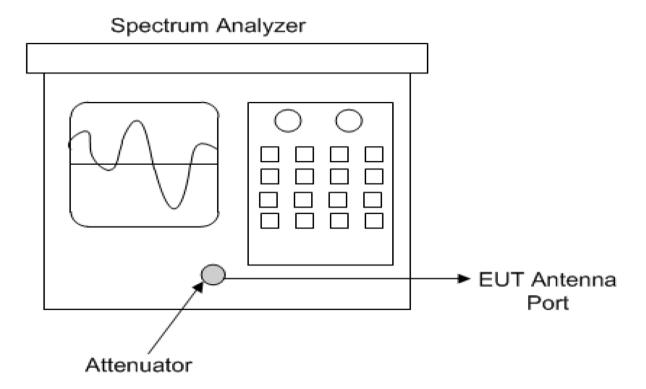



Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 15 of 57

Diagram 4 Test arrangement for Antenna Port Conducted emissions

Test Site Locations

Conducted EMI	AC line conducted emissions testing performed in a shielded screen room
	located at Rogers Labs, Inc., 4405 West 259th Terrace, Louisburg, KS
Antenna port	Antenna port conducted emissions testing was performed in a shielded
	screen room located at Rogers Labs, Inc., 4405 West 259th Terrace,
	Louisburg, KS
Radiated EMI	The radiated emissions tests were performed at the 3 meters, Open Area
	Test Site (OATS) located at Rogers Labs, Inc., 4405 West 259th Terrace,
	Louisburg, KS
Registered Site inform	nation: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096
NVLAP Accreditation	Lab code 200087-0

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 16 of 57

Units of Measurements

Conducted EMI Data presented in dBµV; dB referenced to one microvolt

Antenna port Conducted Data is in dBm; dB referenced to one milliwatt

Radiated EMI Data presented in dBµV/m; dB referenced to one microvolt per meter

Note: Radiated limit may be expressed for measurement in $dB\mu V/m$ when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters. Sample calculation demonstrates corrected field strength reading for Open Area Test Site using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains RFS $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB/m) + Losses (dB) - Gain (dB)$

Environmental Conditions

Ambient Temperature	22.8° C
Relative Humidity	38 %
Atmospheric Pressure	1030.2 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the CFR47 Part 15C, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5 emission requirements. There were no deviations to the specifications.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 17 of 57

Intentional Radiators

The following information is submitted supporting compliance with the requirements of CFR47, Subpart C, paragraph 15.249, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5.

Antenna Requirements

The EUT incorporates integral Planer Inverted F Antenna (PIFA) system. Production equipment offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values consider the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Rogers Labs, Inc.Garmin International, Inc.SN4405 West 259th TerraceModel: A04158Louisburg, KS 66053Test: 210307Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 18 of 57

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2390.0	46.7	34.2	44.9	31.7	54.0	-19.8	-22.3
2483.5	46.9	32.5	45.6	32.0	54.0	-21.5	-22.0
4804.0	49.2	36.1	50.2	37.4	54.0	-17.9	-16.6
4882.0	54.3	41.5	50.1	37.4	54.0	-12.5	-16.6
4960.0	53.5	40.6	49.9	36.5	54.0	-13.4	-17.5
7206.0	54.2	41.6	54.8	41.7	54.0	-12.4	-12.3
7323.0	55.2	42.2	54.8	42.0	54.0	-11.8	-12.0
7440.0	55.5	42.4	54.9	42.2	54.0	-11.6	-11.8
12010.0	61.3	48.5	61.2	48.1	54.0	-5.5	-5.9
12205.0	60.2	47.2	59.7	47.1	54.0	-6.8	-6.9
12400.0	60.7	47.5	60.3	47.6	54.0	-6.5	-6.4

Table 1 Radiated Emissions	in Restricted Frequency	Bands Data Mode 1 BT BR

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 19 of 57

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2390.0	44.3	31.7	45.3	31.7	54.0	-22.3	-22.3
2483.5	45.3	32.4	44.5	32.1	54.0	-21.6	-21.9
4804.0	52.7	38.1	50.0	36.6	54.0	-15.9	-17.4
4882.0	53.5	38.9	50.2	36.4	54.0	-15.1	-17.6
4960.0	52.9	38.1	49.8	36.2	54.0	-15.9	-17.8
7206.0	55.1	41.7	54.7	41.6	54.0	-12.3	-12.4
7323.0	55.5	42.1	54.8	42.0	54.0	-11.9	-12.0
7440.0	55.3	42.3	55.0	42.2	54.0	-11.7	-11.8
12010.0	60.8	48.1	61.5	48.5	54.0	-5.9	-5.5
12205.0	60.1	47.1	60.4	47.2	54.0	-6.9	-6.8
12400.0	60.4	47.6	60.4	47.6	54.0	-6.4	-6.4

Table 2 Radiated Emissions in Restricted Frequency Bands Data Mode 2 BT 2EDR
--

Rogers Labs, Inc. 4405 West 259 th Terrace	Garmin International, Inc. Model: A04158	SN's: 3354564362 / 3354564378 FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 20 of 57

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2390.0	45.1	31.7	44.4	31.7	54.0	-22.3	-22.3
2483.5	45.3	32.4	45.4	32.1	54.0	-21.6	-21.9
4804.0	51.9	38.0	49.6	36.4	54.0	-16.0	-17.6
4882.0	53.1	38.8	50.1	36.4	54.0	-15.2	-17.6
4960.0	52.5	37.9	49.9	36.1	54.0	-16.1	-17.9
7206.0	54.9	41.7	54.5	41.6	54.0	-12.3	-12.4
7323.0	55.3	42.1	55.7	42.0	54.0	-11.9	-12.0
7440.0	54.8	42.3	54.8	42.2	54.0	-11.7	-11.8
12010.0	61.2	48.1	60.8	48.1	54.0	-5.9	-5.9
12205.0	60.3	46.9	60.2	47.1	54.0	-7.1	-6.9
12400.0	60.7	47.6	60.5	47.6	54.0	-6.4	-6.4

Table 3 Radiated Emissions in Restricted Frequency Bands Data Mode 3 BT 3EDR
--

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 21 of 57

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2390.0	44.5	31.8	44.3	31.7	54.0	-22.2	-22.3
2483.5	46.4	32.8	45.7	32.2	54.0	-21.2	-21.8
4804.0	52.4	40.7	50.1	36.5	54.0	-13.3	-17.5
4884.0	53.7	43.4	50.4	37.7	54.0	-10.6	-16.3
4960.0	53.4	42.0	50.3	37.4	54.0	-12.0	-16.6
7206.0	54.9	41.7	54.7	41.6	54.0	-12.3	-12.4
7326.0	55.3	42.3	54.8	42.1	54.0	-11.7	-11.9
7440.0	55.2	42.5	55.3	42.2	54.0	-11.5	-11.8
12010.0	61.3	48.1	61.0	48.1	54.0	-5.9	-5.9
12210.0	59.9	47.2	59.5	47.2	54.0	-6.8	-6.8
12400.0	60.8	47.6	60.7	47.6	54.0	-6.4	-6.4

Table 4 Radiated	Emissions in	Restricted	Frequency	[•] Bands Data	Mode 4 BT BLE
I ubic i i iuuiuteu		HOUTICUU	requency	Dunus Dutu	

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15C and RSS-210 Issue 10 Intentional Radiator requirements. The EUT demonstrated a worst-case minimum margin of -5.5 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

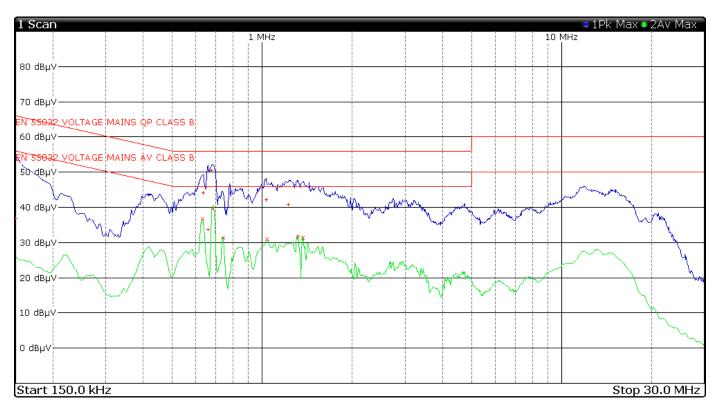
Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 22 of 57

AC Line Conducted EMI Procedure

The EUT was arranged in typical AC power equipment configurations for AC Line Conducted emissions testing. Testing was performed with the EUT placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the AC line-conducted emissions were the procedures of ANSI C63.10-2013 paragraph 6. The AC power adapter or CPU providing power to the EUT was connected to the LISN for AC line-conducted emissions testing. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except those providing power to the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequencies of each of the emissions, which demonstrated the highest amplitudes. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then data was recorded with maximum conducted emissions levels.

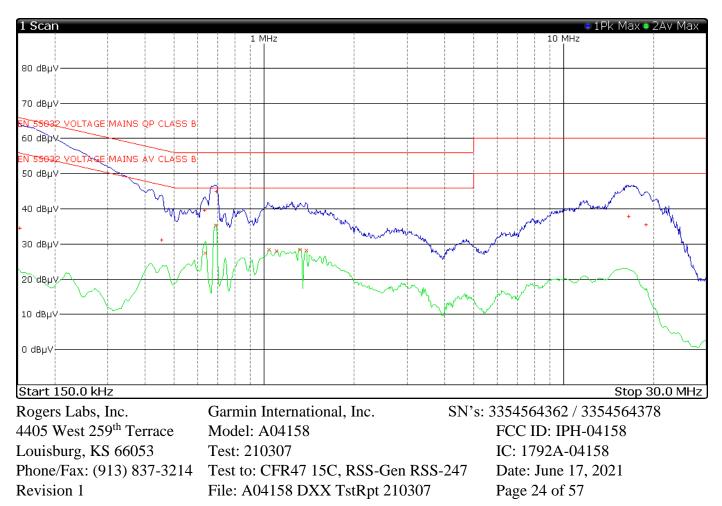
Refer to figures 1 and 2 for plots of the EUT – AC Power Adapter configuration #2 AC Line conducted emissions. Refer to figures 3 and 4 for plots of the EUT – USB Computer interface configuration #3 AC Line conducted emissions.

Trace 1 - QUASI PEAK


Trace 2 - AVERAGE

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Garmin International, Inc. SN Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247 File: A04158 DXX TstRpt 210307


SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 23 of 57

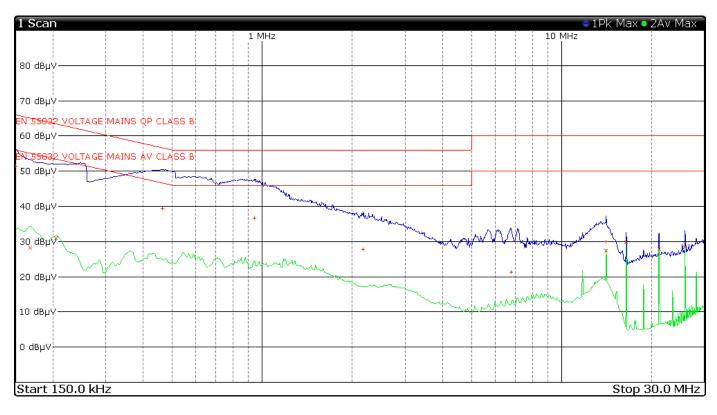


Figure 1 AC Line Conducted emissions of EUT line 1 (EUT – AC Adapter)

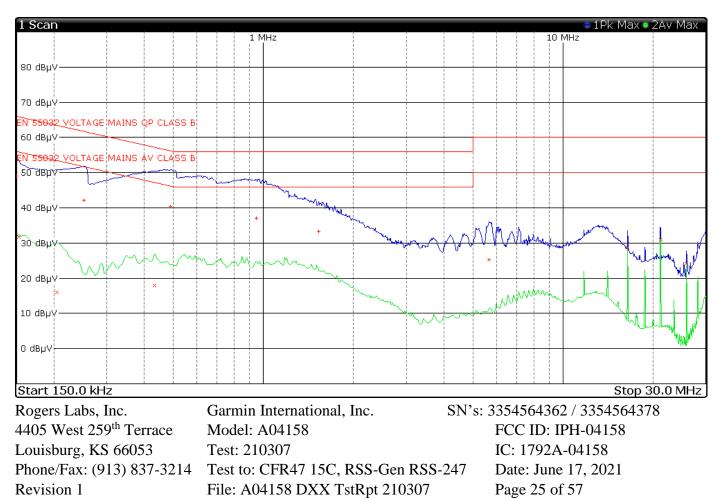


Figure 3 AC Line Conducted emissions of EUT line 1 (EUT – Computer)

Table 5 AC Line Conducted Emissions Data L1 (EUT – AC Adapter)

Trace	Frequency	Level	Delta Limit
1	678.8 kHz	50.53 dBµV	-5.47 dBµV
2	685.5 kHz	39.69 dBµV	-6.31 dBµV
2	631.5 kHz	36.75 dBµV	-9.25 dBµV
1	636 kHz	44.07 dBµV	-11.93 dBµV
1	1.03 MHz	42.13 dBµV	-13.87 dBµV
2	1.315 MHz	31.8 dBµV	-14.2 dBµV
2	1.369 MHz	31.43 dBµV	-14.57 dBµV
2	739.5 kHz	31.43 dBµV	-14.57 dBµV
2	1.034 MHz	30.85 dBµV	-15.15 dBµV
1	1.226 MHz	40.71 dBµV	-15.29 dBµV
1	658.5 kHz	33.72 dBµV	-22.28 dBµV
1	150 kHz	36.79 dBµV	-29.21 dBµV

Other emissions present had amplitudes at least 20 dB below the limit.

Table 6 AC Line Conducted Emissions Data L2 (EUT – AC Adapter)

Trace	Frequency	Level	Delta Limit
2	687.8 kHz	35.3 dBµV	-10.7 dBµV
1	690 kHz	44.95 dBµV	-11.05 dBµV
1	631.5 kHz	39.65 dBµV	-16.35 dBµV
2	1.318 MHz	28.46 dBµV	-17.54 dBµV
2	1.036 MHz	28.41 dBµV	-17.59 dBµV
2	1.385 MHz	28.16 dBµV	-17.84 dBµV
2	1.102 MHz	28.01 dBµV	-17.99 dBµV
2	636 kHz	27.49 dBµV	-18.51 dBµV
1	16.48 MHz	37.86 dBµV	-22.14 dBµV
1	18.93 MHz	35.53 dBµV	-24.47 dBµV
1	453.8 kHz	31.07 dBµV	-25.74 dBµV
1	152.3 kHz	34.45 dBµV	-31.43 dBµV

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 26 of 57

1

6.774 MHz

Table /	AC LINE CON	uucteu Emission	s Data L1 (EU1 – Ct
Trace	Frequency	Level	Delta Limit
1	150 kHz	51.38 dBµV	-14.62 dBµV
1	465 kHz	39.37 dBµV	-17.23 dBµV
1	939.8 kHz	36.71 dBµV	-19.29 dBµV
2	16.46 MHz	29.74 dBµV	-20.26 dBµV
2	25.87 MHz	28.48 dBµV	-21.52 dBµV
2	21.17 MHz	27.72 dBµV	-22.28 dBµV
2	14.11 MHz	27.48 dBµV	-22.52 dBµV
2	204 kHz	30.91 dBµV	-22.54 dBµV
2	168 kHz	28.22 dBµV	-26.84 dBµV
1	2.175 MHz	27.74 dBµV	-28.26 dBµV
1	14.11 MHz	29.91 dBµV	-30.09 dBµV

Table 7 AC Line Conducted Emissions Data L1 (EUT – Computer)

Other emissions present had amplitudes at least 20 dB below the limit.

-38.72 dBµV

21.28 dBµV

Trace	Frequency	Level	Delta Limit
1	489.8 kHz	40.35 dBµV	-15.82 dBµV
1	150 kHz	48.96 dBµV	-17.04 dBµV
1	948.8 kHz	37.09 dBµV	-18.91 dBµV
2	21.17 MHz	31.02 dBµV	-18.98 dBµV
1	251.3 kHz	42.25 dBµV	-19.47 dBµV
2	16.46 MHz	28.74 dBµV	-21.26 dBµV
1	1.532 MHz	33.24 dBµV	-22.76 dBµV
2	152.3 kHz	31.66 dBµV	-24.22 dBµV
2	25.87 MHz	24.18 dBµV	-25.82 dBµV
2	433.5 kHz	17.93 dBµV	-29.26 dBµV
1	5.678 MHz	25.26 dBµV	-34.74 dBµV
2	204 kHz	16.02 dBµV	-37.43 dBµV

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 27 of 57

Summary of Results for AC Line Conducted Emissions Results

The EUT demonstrated compliance with the AC Line Conducted Emissions requirements of CFR47 Part 15C and other applicable emissions requirements. The EUT – AC Adapter worst-case configuration demonstrated a minimum margin of -5.4 dB below the requirement. The EUT – computer worst-case configuration demonstrated a minimum margin of -14.6 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available mode during testing. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated measurements were performed. Final data was taken with the EUT located on the OATS at 3 meters distance between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers above 1 GHz, notch filters and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Garmin International, Inc. SN Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247 File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 28 of 57

Table 9 General Radiated Emissions Data

Frequency (MHz)	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
55.3	37.7	31.7	39.2	24.1	40.0	-8.3	-15.9
55.9	35.4	29.4	38.4	34.7	40.0	-10.6	-5.3
62.0	40.1	32.0	40.0	34.4	40.0	-8.0	-5.6
67.6	39.2	26.3	39.2	33.2	40.0	-13.7	-6.8
70.5	42.0	34.6	39.2	23.6	40.0	-5.4	-16.4
72.3	40.3	32.7	39.0	33.0	40.0	-7.3	-7.0
94.3	34.1	30.3	37.2	33.2	40.0	-9.7	-6.8
108.0	27.2	21.1	29.3	24.9	40.0	-18.9	-15.1
130.3	39.1	27.0	39.3	34.6	40.0	-13.0	-5.4
135.0	40.0	28.8	32.2	28.4	40.0	-11.2	-11.6
205.3	30.8	26.1	20.0	16.5	40.0	-13.9	-23.5
205.3	31.2	25.7	28.7	24.3	40.0	-14.3	-15.7
216.0	33.1	26.8	29.8	25.8	40.0	-13.2	-14.2
240.0	39.5	34.3	33.4	30.2	47.0	-12.7	-16.8
720.0	37.0	32.5	33.6	28.4	47.0	-14.5	-18.6
960.0	36.3	33.6	35.0	30.9	47.0	-13.4	-16.1

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15C paragraph 15.209, RSS-210 Issue 10, and RSS-GEN Issue 5 Intentional Radiators. The EUT configuration demonstrated a minimum margin of -5.3 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 29 of 57

Operation in the Band 2400 – 2483.5 MHz

The transmitter output power; harmonic and general emissions were measured on an open area test site @ 3 meters. The EUT was placed on a turntable elevated as required above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of frequencies above 1000 MHz were measured using a spectrum analyzer. The amplitude of each emission was then recorded from the analyzer display. Emissions radiated outside of the specified bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits, whichever is the lesser attenuation. Antenna port emission plots were taken of transmitter performance for reference in this and other documentation using test sample #2. The amplitude of each radiated emission was measured on the OATS at a distance of 3 meters from the FSM antenna testing was performed on sample representative of production with integral antenna (sample #1) with worst-case data provided. The amplitude of each radiated emission was maximized by equipment orientation and placement on the turn table, raising and lowering the FSM (Field Strength Measuring) antenna, changing the FSM antenna polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 25 GHz. Emissions were measured in $dB\mu V/m @ 3$ meters.

Plots were taken of transmitter performance (using sample #2) for reference in this and other documentation displaying compliance with the specifications.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564
4405 West 259th Terrace	Model: A04158	FCC II
Louisburg, KS 66053	Test: 210307	IC: 179
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: J
Revision 1	File: A04158 DXX TstRpt 210307	Page 30

N's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 7 Date: June 17, 2021 Page 30 of 57

Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 1 BT BR

1 Frequenc	y Sweep								●1Pk View (●2Pk View 《) 3Pk	View	۶
10 dBm													
M1					M2							МЗ	
0 dBm					Ň							Ň	
-10 dBm					\square	$\left \right $						+	
-20 dBm												\square	
-30 dBm						\dagger							
-40 dBm						4							+
-50 dBm													Ţ
Headel Billy	Madacentration	utionspection management	and the star	hinder	nah filika	H4		in a company and a company	angladina milianissi	the application of the second	Al an	salarayald.	Ynie
-70 dBm													
-80 dBm													
2.4 GHz			1001 pt	t s			8.3	35 MHz/		2	2.48	35 GF	Ηz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.402 GHz	2.1 dBm		
M2		2	2.441 GHz	0.6 dBm		
M3		3	2.48 GHz	-0.4 dBm		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 31 of 57

Figure 6 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 2 BT 2EDR

1 Frequenc	y Sweep							●1Pk View	• 2Pk View () 3Pk	View	V
10 dBm												
M1					м2						МЗ	
0 dBm					Ň						\wedge	
+10 dBm				[\square	
-20 dBm												
-30 dBm					_							╞
-40 dBm					_							+
-50 dBm												
A MA	Marchaleman	youtheline same with	ni na sana sa	Sand and all	6 day 02	Marine Marine and a second second	a	S. March Mathematica	a low he was	rw/	n ale al t) Aanu
oto-ici oti ili ili ili ili ili ili ili ili ili i			and a state of the			an dina series and share	anada a si sa sa sa sa	an da manan a minana manan	an koli atti oral kana sadir.		a ferdir a seafe a se	44.0
-70 dBm					-							
-80 dBm					\dashv							
2.4 GHz			1001 pt	S		8.3	35 MHz/		2	2.483	35 GF	Ηz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.402 GHz	1 dBm		
M2		2	2.441 GHz	-0.5 dBm		
M3		3	2.48 GHz	-1.5 dBm		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 32 of 57

Figure 7 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 3 BT 3EDR

1 Frequenc	y Sweep								●1Pk View	●2Pk View () 3Pk	View
10 dBm												
M1					M2							МЗ
												$\overline{\wedge}$
-10 dBm												
-30 dBm												
-40 dBm						\square						
-50 dBm											+	
wedder www	Marine and a company	unan para ang ang ang ang ang ang ang ang ang an	upper a stand distribution of the	n yn hwllen ar fan de fan d Gelegen de fan	ara, la	per la	Harring and the second se	and the second of the second o	ala aparcolataraija (din	an a teachar a that a teachar a	errend Alexandre	man
-70 dBm												
-80 dBm												
2.4 GHz	I		1001 pt	S		I	8.3	35 MHz/	1	2	2.483	5 GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.402 GHz	1 dBm		
M2		2	2.441 GHz	-0.5 dBm		
M3		3	2.48 GHz	-1.6 dBm		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 33 of 57

Figure 8 Plot of Transmitter Emissions Operation in 2402-2480 MHz Mode 4 BT BLE

1 Frequenc	y Sweep								∎1Pk View (•2Pk View 🤇) 3Pk Vi	iew
10 dBm												
M1					м	2					м	3
0 dBm					7							
+10 dBm−−−−					1	\uparrow						
-20 dBm					+	$\left \right $						+
-30 dBm					\square							+
-40 dBm												+
-50 dBm												
- Arless warme	Mar Martine Martine Martine Contraction	hellen der die Antonie der Scherker	autoriana makit	Marina and	والمراد		Marchine	and white and a	and the second	Contraction of the second	www. Washers	
Achebition	ан — та ороло (1) и и и и и и и и и и и и и и и и и и					0 9-19			and a second state of the second s	footfoont at the root to		
-70 dBm												
-80 dBm												
2.4 GHz			1001 pt	S			8.3	35 MHz/		2	.4835	GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.402 GHz	0.8 dBm		
M2		2	2.442 GHz	0.2 dBm		
M3		3	2.48 GHz	-0.6 dBm		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 34 of 57

Figure 9 Plot of Transmitter Emissions Low Band Edge Mode 1 BT BR

1 Frequence	y Sweep							(∍1Pk View
10 dBm									
									D1
0 dBm									
-10 dBm									
10 0.0									
-20 dBm									
-30 dBm									
-40 dBm									L
-50 dBm									м£
-60 dBm									1 1 T
	M								and
w	www.	municipation	month	www.www.www.	and the hours of the	mythe pathers on	www.whymawrash	and the state of the second	www.www.w
-80 dBm									
2.302 GHz			1001 pt	S	10	.0 MHz/		·	2.402 GHz

-	Гуре	Ref	Trace	X-Value	Y-Value	Function	Func Result
ſ	VI1		1	2.4 GHz	-56.8 dBm		
ſ	D1	M1	1	1.85 MHz	58.7 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 35 of 57

Figure 10 Plot of Transmitter Emissions Low Band Edge Mode 2 BT 2EDR

1 Frequenc	y Sweep								1Pk View
0 dBm									D1
									ļ
-10 dBm									
00 48									
-20 dBm									
-30 dBm									
-40 dBm									
50 10									M1,
-50 dBm									Ţ
-60 dBm									V
									. IM
-70 dBm -80 dBm		<u>n</u>	А			11		A and Mr. Werner	ANNA THAT
momental	moundmentioner	mohuman	when sed betw	man	mound	mmmmphmm	where we we we we want	a Annith . in	
-80 dBm——									
2.302 GHz			1001 pt	S	10	.0 MHz/			2.402 GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.4 GHz	-52.6 dBm		
D1	M1	1	2.25 MHz	53.4 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 36 of 57

Figure 11 Plot of Transmitter Emissions Low Band Edge Mode 3 BT 3EDR

1 Frequenc	y Sweep								1Pk View
0 dBm									D1
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									M1
30 dbiii									T.
-60 dBm									р
									Wh
-70 dBm		η 	<u>A</u>				an a		MW MAN
-70 dBm 	moundary	moundant	recommend have	raman	an a	mahappanalation	www.www.	Adding affine days as	
-80 dBm									
2.302 GHz	I		1001 pt	S	10	.0 MHz/	1	1	2.402 GHz

	Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
I	M1		1	2.4 GHz	-53 dBm		
I	D1	M1	1	2.25 MHz	53.8 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 37 of 57

Figure 12 Plot of Transmitter Emissions Low Band Edge Mode 4 BT BLE

1 Frequenc	y Sweep								1Pk View
0 dBm									D1
									1
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
_									
-50 dBm									M:
-60 dBm									7
00 0011		L.							. A
-70 dBm		Д							MAN MANY
man man man	mmunioun	hannan	MAN MAN	howanit	manum	monorpant	Amphimm	Murran	•
-80 dBm			,						
2.302 GHz			1001 pt	t s	10	.0 MHz/			2.402 GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.4 GHz	-57.8 dBm		
D1	M1	1	2.15 MHz	57.8 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 38 of 57

Figure 13 Plot of Transmitter Emissions High Band Edge Mode 1 BT BR

1 Frequenc	y Sweep								1Pk View
D1									
0 dBm									
-10 dBm									
)									
-20 dBm									
20 dBm									
-30 dBm									
40 dBm									
-50 dBm									
1									
-60 dBm							м	1	
1							1		
-70/800									
-70 CORPUS WARKING	WWWWWWWWWWWWW	ي لين الار م. الا م	and an an an			sha	. (
	1 የአንድት አዎች የ	Maryunyunyunyun	and harden over aprilian	mandaparta	warman	Marthur brokening	mounder	WWWWWWW	montant
-80 dBm									
2.48 GHz			1001 pt	S	10	.0 MHz/			2.58 GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.56 GHz	-63.6 dBm		
D1	M1	1	-79.42 MHz	63 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 39 of 57

Figure 14 Plot of Transmitter Emissions High Band Edge Mode 2 BT 2EDR

1 Frequenc	y Sweep								1Pk View
CQ dBm									
-10 dBm									
10 00									
-20 dBm									
-30 dBm									
40 dBm									
-50 dBm									
-ðo dBm									
ι γ							1		
-70 dBm	hauks . A	nerman				A	M		
	an an arak an arafa na bala	an warmen	Marina	Banananders	Monorality	men Moonsha	million many marked 1	www.uuuu	human
-80 dBm									
2.48 GHz	1	1]	1001 pt	t s	10	.0 MHz/		1	2.58 GHz

Ту	ре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1	1		1	2.484 GHz	-65.6 dBm		
D1		M1	1	-4.15 MHz	63 dB		

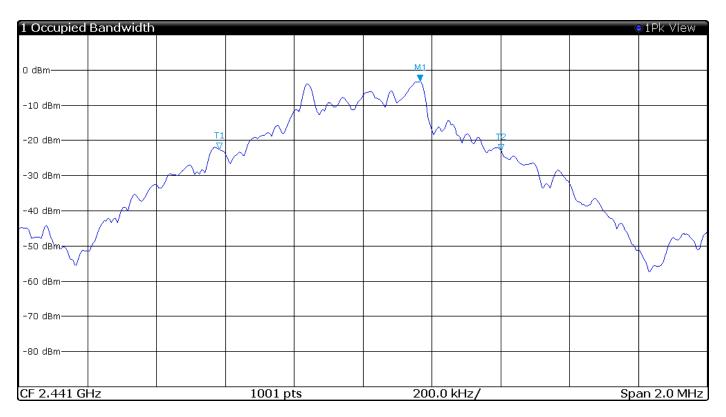
Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 40 of 57

Figure 15 Plot of Transmitter Emissions High Band Edge Mode 3 BR 2EDR

1 Frequenc	y Sweep								1Pk View
DQ dBm									
Lu ubm									
10 40									
-10 dBm									
00 d0m									
-20 dBm									
+30 dBm									
-30 0611									
-40 dBm									
-50 dBm									
50 abiii									
-60 dBm									
-ϐ₽ ၛ <u>β</u> m									
-70 dBm							h		
10 allow MMAN	Maring	Hunnahunah	-	mer. Analytican	and some	mandur	marma hardware	moundaria	March Marson And
-80 dBm			- an entrance of her	an Aba os shafti i safaari.	L bes de land	1.5. A	AALER CLEAR	a farmer work and	and the standard
2.48 GHz			1001 pt	ts	10	.0 MHz/			2.58 GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.484 GHz	-65.7 dBm		
D1	M1	1	-4.15 MHz	63.2 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 41 of 57


Figure 16 Plot of Transmitter Emissions High Band Edge Mode 4 BT BLE

1 Frequenc	y Sweep								1Pk View
Pol-dBm									
o asm									
-10 dBm——									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
- \							M		
-70 dBm Mark	sili						h fl		
-70 aBm	an a strate to be first the strate of the st	r VMMMWMLMWM	where he was a series of the s	montheman	an brown which	un hay been	open which have the	energranitemethyl	www.anglethampering
-80 dBm									
2.48 GHz			1001 pt	S	10	.0 MHz/			2.58 GHz

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.56 GHz	-67.8 dBm		
D1	M1	1	-79.32 MHz	66.4 dB		

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 42 of 57

Figure 17 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 1 BT BR

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.441 GHz	-3.3 dBm	Occ Bw	819 kHz
T1		1	2.441 GHz	-22.5 dBm	Occ Bw Centroid	2.441 GHz
Т2		1	2.441 GHz	-23 dBm	Occ Bw Freq Offset	-8.24 kHz

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 43 of 57

1 Occupied	Bandwidth								1Pk View
0 dBm				M1					
			\wedge	$ \int \mathcal{M} $	\sim				
-10 dBm				\sim	\sim	$\langle \rangle$	™ 2		
-20 dBm——			/			$\neg \lor \lor$			
-30 dBm		Λ)						
-40 dBm	\sim							$\mathcal{M}_{\mathcal{A}}$	
-50 dBm		V					~~~		^
	\bigwedge							V	\sim
-70 dBm									
-80 dBm									
CF 2.402 GI	Hz		1001 pt	S S	300).0 kHz/	I	Spa	an 3.0 MHz

Figure 18 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 2 BT 2EDR

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.402 GHz	-2.7 dBm	Occ Bw	1.16 MHz
T1		1	2.401 GHz	-14.9 dBm	Occ Bw Centroid	2.402 GHz
T2		1	2.403 GHz	-14.3 dBm	Occ Bw Freq Offset	46.91 kHz

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 44 of 57

1. Occupied	Bandwidth								1Pk View
r occupica	Danawiaan								TIK VICW
0 dBm				64.1					
				M1					
-10 dBm			$- \wedge$		$\sim \gamma$		T2		
-20 dBm			$\sum_{j=1}^{11} \sqrt{1}$	~	L V		<u></u> ξ		
			/						
-30 dBm									
-40 dBm							\square		
	M						h	$\sim \sim$	
-50 dBm		\~/					\vdash		
-60/dBm	\sim						V		
\sim .									\sim \vee
-70 dBm——									
-80 dBm									
CF 2.48 GH	Z		1001 pt	t s	300).0 kHz/		Spa	an 3.0 MHz

Figure 19 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 3 BT 3EDR

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.48 GHz	-5.3 dBm	Occ Bw	1.184 MHz
T1		1	2.479 GHz	-19.3 dBm	Occ Bw Centroid	2.48 GHz
T2		1	2.481 GHz	-17.1 dBm	Occ Bw Freq Offset	29.53 kHz

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259 th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 45 of 57

						1Pk View
	-	~ _				
	<u>/~~~</u>	~~~~	т2			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
4			~	$\sum$		
				$\gamma \sim$	$\sim$	
				V		
					Ì	$\sim$
1001 p		200				an 3.0 MHz
		1001 pts				

# Figure 20 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 4 BT BLE

Туре	Ref	Trace	X-Value	Y-Value	Function	Func Result
M1		1	2.402 GHz	-3.6 dBm	Occ Bw	1.029 MHz
T1		1	2.401 GHz	-17.8 dBm	Occ Bw Centroid	2.402 GHz
T2		1	2.403 GHz	-18.1 dBm	Occ Bw Freq Offset	10.66 kHz

Rogers Labs, Inc. 4405 West 259 th Terrace	Garmin International, Inc. Solution States Solution States	SN's: 3354564362 / 3354564378 FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214 Revision 1	Test to: CFR47 15C, RSS-Gen RSS-2 File: A04158 DXX TstRpt 210307	247 Date: June 17, 2021 Page 46 of 57



## Transmitter Emissions Data

#### Table 10 Transmitter Radiated Emissions Mode 1 BT BR

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2402.0	97.5	85.8	83.5	81.9	94.0	-8.2	-12.1
4804.0	49.2	36.1	50.2	37.4	54.0	-17.9	-16.6
7206.0	54.2	41.6	54.8	41.7	54.0	-12.4	-12.3
9608.0	58.2	45.2	59.2	45.4	54.0	-8.8	-8.6
12010.0	61.3	48.5	61.2	48.1	54.0	-5.5	-5.9
14412.0	61.3	48.3	61.7	48.5	54.0	-5.7	-5.5
16814.0	60.2	47.0	60.3	46.9	54.0	-7.0	-7.1
2441.0	97.8	86.3	92.6	81.0	94.0	-7.7	-13.0
4882.0	54.3	41.5	50.1	37.4	54.0	-12.5	-16.6
7323.0	55.2	42.2	54.8	42.0	54.0	-11.8	-12.0
9764.0	58.4	45.7	58.6	45.8	54.0	-8.3	-8.2
12205.0	60.2	47.2	59.7	47.1	54.0	-6.8	-6.9
14646.0	61.4	48.3	60.9	48.2	54.0	-5.7	-5.8
17087.0	59.6	46.6	59.4	46.6	54.0	-7.4	-7.4
2480.0	97.5	86.4	92.3	81.3	94.0	-7.6	-12.7
4960.0	53.5	40.6	49.9	36.5	54.0	-13.4	-17.5
7440.0	55.5	42.4	54.9	42.2	54.0	-11.6	-11.8
9920.0	58.2	45.4	58.5	45.4	54.0	-8.6	-8.6
12400.0	60.7	47.5	60.3	47.6	54.0	-6.5	-6.4
14880.0	61.9	48.9	61.7	48.9	54.0	-5.1	-5.1
17360.0	59.0	46.2	59.3	46.2	54.0	-7.8	-7.8

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc.Garmin International, Inc.SN4405 West 259th TerraceModel: A04158Louisburg, KS 66053Test: 210307Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 47 of 57



#### Table 11 Transmitter Radiated Emissions Mode 2 BT 2EDR

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2402.0	96.5	82.1	92.3	78.5	94.0	-11.9	-15.5
4804.0	52.7	38.1	50.0	36.6	54.0	-15.9	-17.4
7206.0	55.1	41.7	54.7	41.6	54.0	-12.3	-12.4
9608.0	59.0	45.4	59.7	46.2	54.0	-8.6	-7.8
12010.0	60.8	48.1	61.5	48.5	54.0	-5.9	-5.5
14412.0	61.3	48.5	61.4	48.5	54.0	-5.5	-5.5
16814.0	59.6	46.9	60.7	46.9	54.0	-7.1	-7.1
2441.0	97.1	83.0	91.9	78.2	94.0	-11.0	-15.8
4882.0	53.5	38.9	50.2	36.4	54.0	-15.1	-17.6
7323.0	55.5	42.1	54.8	42.0	54.0	-11.9	-12.0
9764.0	58.5	45.8	58.6	45.8	54.0	-8.2	-8.2
12205.0	60.1	47.1	60.4	47.2	54.0	-6.9	-6.8
14646.0	61.2	48.2	61.4	48.3	54.0	-5.8	-5.7
17087.0	59.2	46.5	60.3	46.5	54.0	-7.5	-7.5
2480.0	96.5	82.7	91.3	77.5	94.0	-11.3	-16.5
4960.0	52.9	38.1	49.8	36.2	54.0	-15.9	-17.8
7440.0	55.3	42.3	55.0	42.2	54.0	-11.7	-11.8
9920.0	58.3	45.5	58.9	45.5	54.0	-8.5	-8.5
12400.0	60.4	47.6	60.4	47.6	54.0	-6.4	-6.4
14880.0	62.1	48.9	62.3	48.9	54.0	-5.1	-5.1
17360.0	59.2	46.2	59.3	46.2	54.0	-7.8	-7.8

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Garmin International, Inc. SN Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247 File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 48 of 57



#### Table 12 Transmitter Radiated Emissions Mode 3 BT 3EDR

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2402.0	95.8	82.1	92.1	78.1	94.0	-11.9	-15.9
4804.0	51.9	38.0	49.6	36.4	54.0	-16.0	-17.6
7206.0	54.9	41.7	54.5	41.6	54.0	-12.3	-12.4
9608.0	58.7	45.4	58.6	45.4	54.0	-8.6	-8.6
12010.0	61.2	48.1	60.8	48.1	54.0	-5.9	-5.9
14412.0	61.3	48.5	61.6	48.5	54.0	-5.5	-5.5
16814.0	59.7	46.9	60.0	46.9	54.0	-7.1	-7.1
2441.0	97.0	83.0	92.2	77.8	94.0	-11.0	-16.2
4882.0	53.1	38.8	50.1	36.4	54.0	-15.2	-17.6
7323.0	55.3	42.1	55.7	42.0	54.0	-11.9	-12.0
9764.0	58.3	45.6	58.6	45.8	54.0	-8.4	-8.2
12205.0	60.3	46.9	60.2	47.1	54.0	-7.1	-6.9
14646.0	60.6	48.2	61.3	48.2	54.0	-5.8	-5.8
17087.0	59.1	46.5	59.4	46.5	54.0	-7.5	-7.5
2480.0	96.4	82.6	91.6	77.6	94.0	-11.4	-16.4
4960.0	52.5	37.9	49.9	36.1	54.0	-16.1	-17.9
7440.0	54.8	42.3	54.8	42.2	54.0	-11.7	-11.8
9920.0	58.7	45.5	59.0	45.5	54.0	-8.5	-8.5
12400.0	60.7	47.6	60.5	47.6	54.0	-6.4	-6.4
14880.0	61.7	48.9	61.6	48.9	54.0	-5.1	-5.1
17360.0	59.7	46.2	59.1	46.2	54.0	-7.8	-7.8

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Garmin International, Inc. SN Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247 File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 49 of 57



#### Table 13 Transmitter Radiated Emissions Mode 4 BT BLE

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2402.0	95.8	90.2	90.7	84.4	94.0	-3.8	-9.6
4804.0	52.4	40.7	50.1	36.5	54.0	-13.3	-17.5
7206.0	54.9	41.7	54.7	41.6	54.0	-12.3	-12.4
9608.0	57.9	45.4	58.4	45.3	54.0	-8.6	-8.7
12010.0	61.3	48.1	61.0	48.1	54.0	-5.9	-5.9
14412.0	61.7	48.5	61.1	48.5	54.0	-5.5	-5.5
16814.0	60.2	46.9	59.9	46.9	54.0	-7.1	-7.1
2442.0	97.3	91.7	92.3	86.6	94.0	-2.3	-7.4
4884.0	53.7	43.4	50.4	37.7	54.0	-10.6	-16.3
7326.0	55.3	42.3	54.8	42.1	54.0	-11.7	-11.9
9768.0	58.8	45.8	59.0	45.8	54.0	-8.2	-8.2
12210.0	59.9	47.2	59.5	47.2	54.0	-6.8	-6.8
14652.0	61.5	48.2	61.3	48.2	54.0	-5.8	-5.8
17094.0	59.1	46.5	60.6	46.5	54.0	-7.5	-7.5
2480.0	96.9	91.7	91.8	86.6	94.0	-2.3	-7.4
4960.0	53.4	42.0	50.3	37.4	54.0	-12.0	-16.6
7440.0	55.2	42.5	55.3	42.2	54.0	-11.5	-11.8
9920.0	58.8	45.5	58.3	45.5	54.0	-8.5	-8.5
12400.0	60.8	47.6	60.7	47.6	54.0	-6.4	-6.4
14880.0	62.0	48.9	62.2	48.9	54.0	-5.1	-5.1
17360.0	59.0	46.2	59.6	46.2	54.0	-7.8	-7.8

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Garmin International, Inc. SN Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247 File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 50 of 57



### Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of FCC CFR47 Part 15.249, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5 Intentional Radiator regulations. The EUT worst-case test sample configuration demonstrated minimum average margin of -2.2 dB below the average emission limit for the fundamental. The EUT worst-case configuration demonstrated minimum radiated harmonic emission margin of -5.1 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 51 of 57



## Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Rogers Qualifications
- Annex D Laboratory Certificate of Accreditation

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 52 of 57



### Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16–4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty U _(lab)
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.14
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3354564362 / 3354564378

 4405 West 259th Terrace
 Model: A04158
 FCC ID: IPH-04158

 Louisburg, KS 66053
 Test: 210307
 IC: 1792A-04158

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: June 17, 2021

 Revision 1
 File: A04158 DXX TstRpt 210307
 Page 53 of 57



## Annex B Test Equipment

Equipment	Manufacturer	Model (SN)		al Date(m/d/y	
⊠ LISN		SN-50-25-10(1PA) (160611)		4/21/2020	4/21/2021
⊠ LISN	· ·	FCC-LISN-2.Mod.cd,(126)		10/14/2020	10/14/2021
⊠ Cable		. Sucoflex102ea(L10M)(3030	·		10/14/2021
		. Sucoflex102ea(1.5M)(30306		10/14/2020	10/14/2021
⊠ Cable		. Sucoflex102ea(1.5M)(30307		10/14/2020	10/14/2021
⊠ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021
$\boxtimes$ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021
Antenna	Com Power	AL-130 (121055)	.001-30 MHz	10/14/2020	10/14/2021
$\Box$ Antenna:	EMCO	6509	.001-30 MHz	10/14/2020	10/14/2022
□ Antenna	ARA	BCD-235-B (169)	20-350MHz	10/14/2020	10/14/2021
$\Box$ Antenna:	Schwarzbeck Model	VHBB 9124 (9124-627)		4/21/2020	4/21/2021
🛛 Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/14/2020	10/14/2021
□ Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	10/14/2020	10/14/2022
$\Box$ Antenna:	Schwarzbeck Model	: VULP 9118 A (VULP 9118	A-534)	4/21/2020	4/21/2021
🛛 Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	4/21/2020	4/21/2022
□ Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/14/2020	10/14/2022
🛛 Antenna	Com Power	AH-840 (101046)	18-40 GHz	4/21/2020	4/21/2021
🛛 Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	3/2/2021	3/2/2022
⊠ Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/12/2021	1/12/2022
$\Box$ Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2027
⊠ Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/14/2020	10/14/2021
⊠ Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/14/2020	10/14/2021
⊠ Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/14/2020	10/14/2021
Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	10/14/2020	10/14/2021
□ Power Mete		N1911A with N1921A	0.05-40 GHz	4/21/2020	4/21/2021
□ Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	4/21/2020	4/21/2021
□ Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch		4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	4/21/2020	4/21/2021
□ Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	4/21/2020	4/18/2021
$\boxtimes$ Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	4/21/2020	4/21/2021
$\Box$ Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	4/21/2020	4/21/2021
$\Box$ Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	4/21/2020	4/21/2021
$\Box$ Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	4/21/2020	4/21/2021
$\Box$ Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	4/21/2020	4/21/2021
$\boxtimes$ Weather sta		6312 (A81120N075)		11/4/2020	11/4/2021
seamer stu					
Rogers Labs,	Inc. Gar	min International, Inc.	SN's: 335	54564362 / 3	354564378
4405 331 - 25	oth T	1.1. A.0.41.50			

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 54 of 57



List of Test Eq	uipment		Calibration	Date (m/d/y)	Due
□ Frequency Counter: Leader LDC-825 (8060153				4/21/2020	4/21/2021
□ LISN: Com-Power Model LI-220A			10/14/2020	10/14/2021	
□ LISN: Com-Power Model LI-550C				10/14/2020	10/14/2021
□ ISN: Com-Power Model ISN T-8				4/21/2020	4/21/2021
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08				4/21/2020	4/21/2021
□ Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(3030	072) 9kHz-40 GHz	2 10/14/2020	10/14/2021
□ Cable	Huber & Suhner Inc	. Sucoflex102ea(L1M)(2811	.83) 9kHz-40 GHz	10/14/2020	10/14/2021
□ Cable	Huber & Suhner Inc	. Sucoflex102ea(L4M)(2811	.84) 9kHz-40 GHz	10/14/2020	10/14/2021
□ Cable	Huber & Suhner Inc	Sucoflex102ea(L10M)(317	/546)9kHz-40 GHz	z 10/14/2020	10/14/2021
□ Cable	Time Microwave	4M-750HF290-750 (4M)	9kHz-24 GHz	10/14/2020	10/14/2021
□ RF Filter	Micro-Tronics	BRC17663 (001) 9.3-9.5 nd	otch 30-1800 MHz	2 4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC19565 (001) 9.2-9.6 ne	otch 30-1800 MHz	2 10/16/2018	4/21/2021
□ Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	4/21/2020	4/21/2021
□ Analyzer	HP External Mixers	11571, 11970	25GHz-110GHz	z 4/18/2015	4/18/2025
□ Analyzer	HP	8591EM (3628A00871)		4/21/2020	4/21/2021
□ Wave Form Generator Keysight 33512B (MY57400128)			4/21/2020	4/21/2021	
□ Antenna: Solar 9229-1 & 9230-1			2/22/2021	2/22/2022	
□ CDN: Com-Power Model CDN325E				10/14/2020	10/14/2021
□ Injection Clamp Luthi Model EM101			10/14/2020	10/14/2021	
□ Oscilloscope Scope: Tektronix MDO 4104				2/22/2021	2/22/2022
□ EMC Transient Generator HVT TR 3000				2/22/2021	2/22/2022
□ AC Power Source (Ametech, California Instruments)				2/22/2021	2/22/2022
□ Field Intensity Meter: EFM-018				2/22/2021	2/22/2022
ESD Simulator: MZ-15				2/22/2021	2/22/2022
□ R.F. Power Amp ACS 230-50W				not required	
□ R.F. Power Amp EIN Model: A301				not required	
□ R.F. Power Amp A.R. Model: 10W 1010M7				not required	
$\Box$ R.F. Power Amp A.R. Model: 50U1000				not required	
⊠ Shielded Room				not required	

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Garmin International, Inc. SN Model: A04158 Test: 210307 Test to: CFR47 15C, RSS-Gen RSS-247 File: A04158 DXX TstRpt 210307

SN's: 3354564362 / 3354564378 FCC ID: IPH-04158 IC: 1792A-04158 247 Date: June 17, 2021 Page 55 of 57



## Annex C Rogers Qualifications

### Scot D. Rogers, Engineer

#### **Rogers Labs, Inc.**

Mr. Rogers has approximately 35 years' experience in the field of electronics. Working experience includes six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

#### Positions Held:

Systems Engineer:	A/C Controls Mfg. Co., Inc. 6 Years
Electrical Engineer:	Rogers Consulting Labs, Inc. 5 Years
Electrical Engineer:	Rogers Labs, Inc. Current

#### Educational Background:

Bachelor of Science Degree in Electrical Engineering from Kansas State University Bachelor of Science Degree in Business Administration Kansas State University Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 56 of 57



### Annex D Laboratory Certificate of Accreditation



Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3354564362 / 3354564378
4405 West 259th Terrace	Model: A04158	FCC ID: IPH-04158
Louisburg, KS 66053	Test: 210307	IC: 1792A-04158
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-2	247 Date: June 17, 2021
Revision 1	File: A04158 DXX TstRpt 210307	Page 57 of 57