

ROGERS LABS, INC. 4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report For Grant of Certification Application

CFR Title 47, PART 15C - Intentional Radiators Paragraph 15.225 Industry Canada RSS-210 Issue 10, RSS-Gen Issue 5 License Exempt Intentional Radiator

Model: A04094 FCC ID: IPH-04094 IC: 1792A-04094 NFC Operating in the band 13.110-14.010 MHz (13.56 MHz)

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

FCC Designation: US5305 ISED Registration: 3041A-1 Test Report Number: 210309

Test Date: March 9, 2021

Authorized Signatory: Sot DRogers

Scot D. Rogers Rogers Labs, Inc. 4405 West 259th Terrace

Louisburg, KS 66053

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259 th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r2	2 Page 1 of 38

Table of Contents

TABLE OF CONTENTS		2
REVISIONS		4
EXECUTIVE SUMMARY.		5
OPINION / INTERPRETA	TION OF RESULTS	5
EQUIPMENT TESTED		6
Equipment Function		7
Equipment Configuration		8
APPLICATION FOR CER	TIFICATION	9
APPLICABLE STANDAR	DS	
EQUIPMENT TESTING P	ROCEDURES	10
AC Line Conducted Emissio	n Test Procedure	
Radiated Emission Test Pro	cedure	
•	for Conducted emissions	
	for radiated emissions of tabletop equipment for radiated emissions tested on Open Area Test	
ENVIRONMENTAL CON	DITIONS	
TEST SITE LOCATIONS.		
UNITS OF MEASUREME	NTS	
STATEMENT OF MODIFI	CATIONS AND DEVIATIONS	
INTENTIONAL RADIATO	RS	
Antenna Requirements		
Restricted Bands of Operati	0 n	
Table 1 Radiated Emissions	in Restricted Bands Data	16
Rogers Labs, Inc. 4405 West 259 th Terrace Louisburg, KS 66053	Garmin International, Inc. SI Model: A04094 Test: 210309	N's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094
Phone/Fax: (913) 837-3214 Revision 2	Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2	Date: September 21, 2021 Page 2 of 38

Summary of Results for Ra	adiated Emissions in Restricted Bands	••••••	16
AC Line Conducted EMI	Procedure		17
Figure 1 AC Line Conduct	ed emissions of EUT line 1 (Configuration	on #2, EUT – Computer)	18
Figure 2 AC Line Conduct	ed emissions of EUT line 2 (Configuration	on #2, EUT – Computer)	18
Figure 3 AC Line Conduct	ed emissions of EUT line 1 (Configuration	on #3, EUT – AC Adapter)	19
Figure 4 AC Line Conduct	ed emissions of EUT line 2 (Configuration	on #3, EUT – AC Adapter)	20
Table 2 AC Line Conducte	ed Emissions Data L1 (Configuration #2,	EUT – Computer)	21
Table 3 AC Line Conducte	ed Emissions Data L2 (Configuration #2,	EUT – Computer)	21
Table 4 AC Line Conducte	ed Emissions Data L1 (Configuration #3,	EUT – AC Adapter)	22
Table 5 AC Line Conducte	ed Emissions Data L2 (Configuration #3,	EUT – AC Adapter)	22
Summary of Results for A	C Line Conducted Emissions Results		23
General Radiated Emission	ns Procedure		23
Table 6 General Radiated	Emissions from EUT Data (Highest Emis	ssions)	24
Summary of Results for G	eneral Radiated Emissions		24
Operation in the Band 13.	110 - 14.010 MHz Band		25
Figure 5 Plot of NFC Oper	ration Across Frequency Spectrum		26
Figure 6 Plot of NFC Operation in Authorized Frequency Band		27	
Figure 7 Plot of NFC 99 pe	ercent Occupied Bandwidth		28
Table 7 NFC Transmitter I	Emissions in Frequency Band 13.110-14.	010 MHz	29
Table 8 Transmitter Harmo	onic Radiated Emissions Data		29
Summary of Results for T	ransmitter Radiated Emissions of Inter	ntional Radiator	30
Frequency Stability			30
Measurements Required			30
Test Arrangement			30
Table 9 Frequency Stabilit	y vs. Temperature Results		31
Table 10 Frequency Stabil	ity vs. Input Power Supply Voltage Result	lts	32
NNEX			33
Annex A Measurement Un	certainty Calculations		34
Annex B Test Equipment.			35
ogers Labs, Inc. 05 West 259 th Terrace buisburg, KS 66053	Garmin International, Inc. Model: A04094 Test: 210309	SN's: 3361563901, 38 FCC ID: IPH-0 IC: 1792A-040	04094

Louisburg, KS 66053	Test: 210309	IC
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Da
Revision 2	File: A04094 NFC TstRpt 210309 r2	Pag

FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 3 of 38

Annex C Rogers Qualifications
Annex D Laboratory Certificate of Accreditation

Revisions

Revision r2 Issued September 21, 2021 – updated antenna Gain (Page 7) Revision r1 Issued August 4, 2021

Rogers Labs, Inc.Garmin4405 West 259th TerraceModelLouisburg, KS 66053Test: 2Phone/Fax: (913) 837-3214Test toRevision 2File: A

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 4 of 38

Executive Summary

The following information is submitted for consideration in obtaining Grant of Certification for low power intentional radiator per Title 47 Code of Federal Regulations (47CFR) dated March 9, 2021 Paragraph 15.225, and Innovation, Science and Economic Development (ISED) RSS-210 Issue 10 operation at 13.56 MHz as Near Field Communications Device.

Name of Applicant:	Garmin International, Inc.	
	1200 East 151st Street	
	Olathe, KS 66062	
Model: A04094		
FCC ID: IPH-04094	IC: 1792A-04094	
Frequency Range: 13.	56 MHz	
Operating power: maximum peak power 61.3 dBµV/m @ 3 meters, 99 percent occupied		
bai	ndwidth 16.35 kHz	

Operational communication mode

Mode	Peak Power	Average power	99% OBW
	(dBµV/m@3m)	(dBµV/m@3m)	(kHz)
Mode 0 NFC	61.3	57.2	16.346

This report addresses EUT Operations as Low Power Device using NFC 13.56 MHz transmission

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Emissions as per 47CFR 15.205, RS-210 2.2	-26.3	Complies
Emissions as per 47CFR 15.207, RSS-GEN 8.8	-11.6	Complies
Emissions as per 47CFR 15.209, RSS-GEN 8.9	-11.8	Complies
Fundamental Emission per 47CFR 15.225, RSS-210 B.6	-62.7	Complies

Rogers Labs, Inc.Garmin International, Inc.S4405 West 259th TerraceModel: A04094Louisburg, KS 66053Test: 210309Phone/Fax: (913) 837-3214Test to: CFR47 15.225, RSS-210Revision 2File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 5 of 38

Equipment Tested

Model: A04094

Equipment	Model / PN	Serial Number
EUT	A04094	3361563901
EUT2	A04094	381278190
USB Cable	320-01069-10	N/A
AC Adapter	362-00112-00	N/A
Laptop Computer	Latitude E6520	6CB35Q1
USB Printer	Dell 0N5819	5D1SL61

Test results in this report relate only to the items tested

Operational communication modes

Mode	Transmitter Operation
0	Near Field Communications (NFC)
1	ANT (GFSK)
2	BT BLE (GMSK)

Software Versions 0.23

2.4 GHz antenna system, Internal Planar Inverted F (-4.44 dBi), NFC – Planar coil/inductor

Test results in this report relate only to the items tested. Worst-case configuration data recorded in this report.

Equipment Function

The EUT is a portable body worn digital device. The device displays time, incorporates sensors to log movement and other parameters, receiver circuitry to receive Global Navigation Satellite System (GNSS) data, and includes transmitter functions for communication with compatible equipment. The design provides a single unique connection point for use with the unique USB interface cable and offers no other interface options as presented below in the configuration diagrams. The transmitters provide operation capability as Near Field Communications (NFC) operating at 13.56 MHz. The design also incorporates transmitter functions across the 2402-2480 MHz frequency band. The design provides wireless communications with compatible NFC, ANT, and Bluetooth® (BT) equipment. The product operates from internal rechargeable battery only and requires battery recharge through the provided USB interface cable and compatible USB power source. The design utilizes internal fixed antenna systems and offers no provision for antenna replacement or modification. Two samples were provided for testing, one representative of production design, and the other modified for testing purposes replacing the integral 2.4 GHz antenna with RF connection port. The test samples were provided with software (Version 0.23) enabling testing personnel the ability to enable transmitter functions on defined modulations and channels. The test software enabled near 100% transmit duty cycle for testing purposes. The production product will operate at lower duty cycle to conserve battery life. The antenna modification offered testing facility the ability to connect test equipment to the temporary 2.4 GHz antenna port. The EUT was arranged as described by the manufacturer emulating typical user configurations for testing purposes. For testing purposes, the EUT received powered from freshly charged internal battery and/or AC power configurations and configured to operate in available modes. As requested by the manufacturer and required by regulations, the equipment was tested for compliance using the available configurations with the worst-case data presented. This report documents the testing performed and results for applicable configurations and product modes of operation. Test results in this report relate only to the products described in this report.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2 Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 7 of 38

Equipment Configuration

1) Unit operating off internal battery

2) Unit connected to Computer USB port through cable assembly (GPN: 320-01069-10)

3) Unit connected to AC adapter through USB cable (GPN: 320-01069-10)

Rogers Labs, Inc. 4405 West 259 th Terrace	Garmin International, Inc. Model: A04094	SN's: 3361563901, 381278190 FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r2	2 Page 8 of 38

Application for Certification

Manufacturer:	Garmin International, Inc.
	1200 East 151st Street
	Olathe, KS 66062
Identification:	Model: A04094
FCC ID: IPH-04094	IC: 1792A-04094
Instruction Book:	
	Identification: FCC ID: IPH-04094

Refer to Exhibit for Instruction Manual.

- (4) Description of Circuit Functions:Refer to Exhibit of Operational Description.
- (5) Block Diagram with Frequencies:Refer to Exhibit of Operational Description.
- (6) Report of Measurements:

Report of measurements follows in this Report.

- (7) Photographs: Construction, Component Placement, etc.:Refer to Exhibit for photographs of equipment.
- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from direct current power provided from internal rechargeable battery. The design provides interface option with unique USB cable and compatible equipment as presented in this filing. The EUT offers no other connection ports than those presented in this filing.
- (9) Transition Provisions of CFR47 15.37 are not requested.
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259 th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r.	2 Page 9 of 38

Applicable Standards

In accordance with the Federal Communications CFR47 dated March 9, 2021: Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15C Paragraph 15.225, Industry Canada RSS-210 Issue 10, and RSS-GEN issue 5, the following information is submitted. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI C63.10-2013 Document.

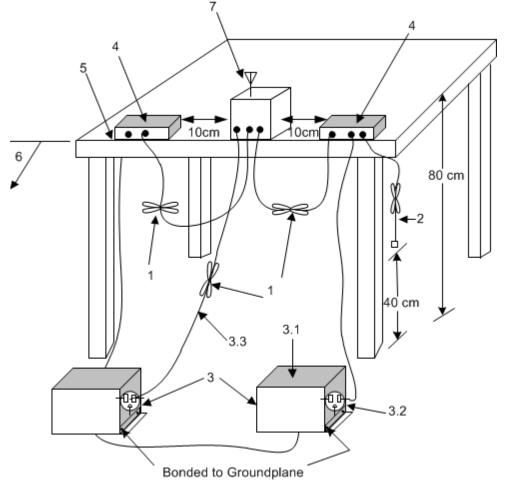
Equipment Testing Procedures

AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as required in 47CFR 15C, RSS-210 Issue 10 and specified in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5meter bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50-µHy choke. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in exhibits for EUT placement used during testing.

Radiated Emission Test Procedure

Radiated emissions testing was performed as required in 47CFR 15C, RSS-210 Issue 10 and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising, and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams two and three showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.

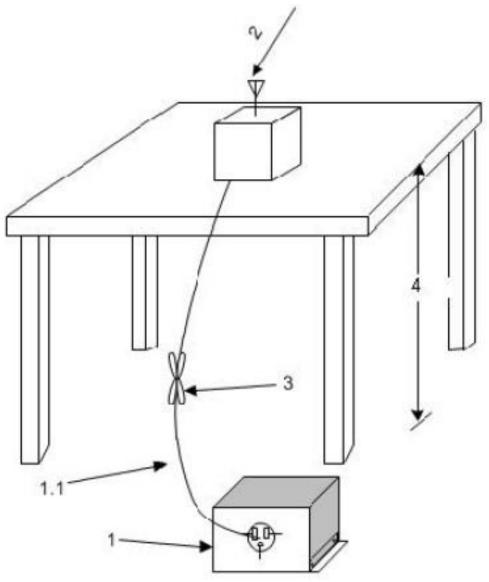

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 **Revision 2**

Garmin International, Inc. Model: A04094 Test: 210309 Phone/Fax: (913) 837-3214 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 10 of 38

Diagram 1 Test arrangement for Conducted emissions

- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
- 2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).


3.1 All other equipment powered from additional LISN(s).

- 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
- 3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4. Non-EUT components of EUT system being tested.
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
- 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259 th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r	2 Page 11 of 38

1—A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).

1.1—LISN spaced at least 80 cm from the nearest part of the EUT chassis.

2—Antenna can be integral or detachable, depending on the EUT (see 6.3.1).

3—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).

4—For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259 th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r.	2 Page 12 of 38

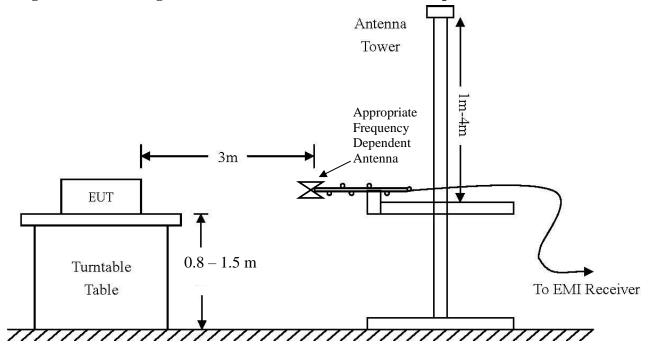


Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Environmental Conditions

Ambient Temperature	23.8° C
Relative Humidity	36%
Atmospheric Pressure	1022.7 mb

Test Site Locations

Conducted EMI	AC line	e conducted emissions testing performed in a shielded screen room		
	located a	at Rogers Labs, Inc., 4405 West 259th Terrace, Louisburg, KS		
Antenna port	Antenna	a port conducted emissions testing was performed in a shielded		
	screen re	oom located at Rogers Labs, Inc., 4405 West 259th Terrace,		
	Louisbu	rg, KS		
Radiated EMI	The radi	ated emissions tests were performed at the 3 meters, Open Area		
	Test Site	e (OATS) located at Rogers Labs, Inc., 4405 West 259th Terrace,		
	Louisbu	rg, KS		
Registered Site inform	nation: I	FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096		
NVLAP Accreditation		Lab code 200087-0		

Units of Measurements

Conducted EMI Data presented in dBµV; dB referenced to one microvolt

Antenna port Conducted Data is in dBm; dB referenced to one milliwatt

Radiated EMI Data presented in $dB\mu V/m$; dB referenced to one microvolt per meter

Note: Radiated limit may be expressed for measurement in $dB\mu V/m$ when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters. Sample calculation demonstrates corrected field strength reading for Open Area Test Site using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured A.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains RFS $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB/m) + Losses (dB) - Gain (dB)$

Rogers Labs, Inc. Garmin International, Inc. 4405 West 259th Terrace Model: A04094 Louisburg, KS 66053 Test: 210309 Phone/Fax: (913) 837-3214 Test to: CFR47 15.225, RSS-210 Revision 2 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 14 of 38

Statement of Modifications and Deviations

No modifications to the EUT were performed or required for the equipment to demonstrate compliance with the CFR47 Part 15C, Industry Canada RSS-210 Issue 10, and RSS-GEN emission requirements. There were no deviations to the specifications.

Intentional Radiators

The following information is submitted supporting demonstration of compliance with the requirements of 47CFR, Subpart C, paragraph 15.225 and RSS-210 Issue 10 the following information is submitted.

Antenna Requirements

The EUT incorporates integral antenna system and offers no provision for connection to alternate system. The antenna connection point complies with the unique antenna connection requirements. The unique antenna connection requirements are fulfilled. There are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 paragraph 6 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values consider the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 **Revision 2**

Garmin International, Inc. Model: A04094 Test: 210309 Phone/Fax: (913) 837-3214 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 15 of 38

Frequency (MHz)	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dBm)	Vertical Margin (dBm)
122.0	20.5	17.0	20.5	17.2	43.5	-26.5	-26.3

Table 1 Radiated Emissions in Restricted Bands Data

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

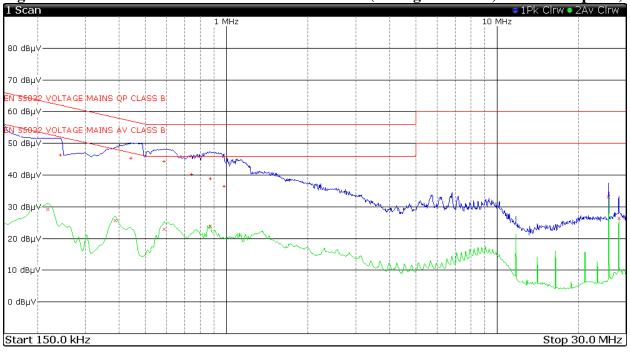
The EUT demonstrated compliance with the radiated emissions requirements of CFR Title 47 Part 15C and RSS-210 Issue 10 Intentional Radiators. The EUT demonstrated a worst-case minimum margin of -26.3 dB below the radiated emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Rogers Labs, Inc.Garmin International, Inc.SN4405 West 259th TerraceModel: A04094SNLouisburg, KS 66053Test: 210309Test: 210309Phone/Fax: (913) 837-3214Test to: CFR47 15.225, RSS-210File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 16 of 38

AC Line Conducted EMI Procedure

The EUT was arranged in typical equipment configurations operating from AC power adapter. Testing was performed with the EUT placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the line-conducted emissions were the procedures of ANSI C63.10-2013 paragraph 6. The AC adapter for the EUT was connected to the LISN for lineconducted emissions testing. A second LISN was positioned on the floor of the screen room 80cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequencies of each of the emissions, which demonstrated the highest amplitudes. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then data was recorded with maximum conducted emissions levels.

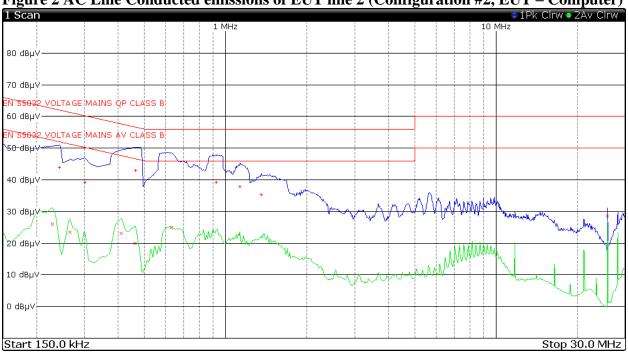

Refer to figures one and two for plots of the EUT – USB Computer interface configuration #2 AC Line conducted emissions. Refer to figures three and four showing plots of the AC Adapter configuration #3 AC Line conducted emissions.

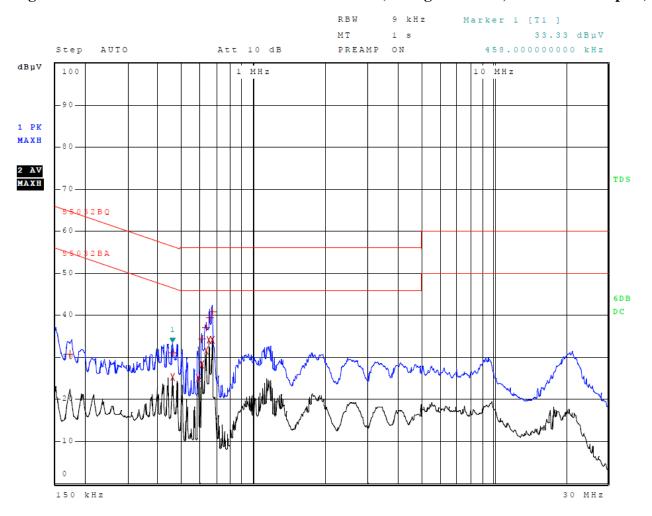
Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 17 of 38

Figure 1 AC Line Conducted emissions of EUT line 1 (Configuration #2, EUT – Computer)




Figure 2 AC Line Conducted emissions of EUT line 2 (Configuration #2, EUT – Computer)

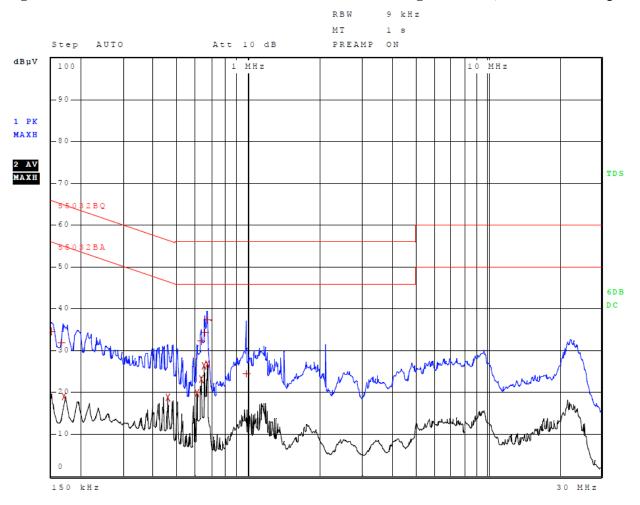
Meas BW: 9 kHz Attenuation: 10 dB Notch Filter 1: Off Filter Type: CISPR(6dB) Preamp: On Notch Filter 2: Off Meas Time: 1 s Preselector: On Input: 2 DC Center Freq: 25.87 MHz Filter Split: Off

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2 Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 18 of 38

Figure 3 AC Line Conducted emissions of EUT line 1 (Configuration #3, EUT – AC Adapter)

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3361563901, 381278190


 4405 West 259th Terrace
 Model: A04094
 FCC ID: IPH-04094

 Louisburg, KS 66053
 Test: 210309
 IC: 1792A-04094

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15.225, RSS-210
 Date: September 21, 2021

 Revision 2
 File: A04094 NFC TstRpt 210309 r2
 Page 19 of 38

Figure 4 AC Line Conducted emissions of EUT line 2 (Configuration #3, EUT – AC Adapter)

Rogers Labs, Inc.Garmin International, Inc.SN's: 336156394405 West 259th TerraceModel: A04094FCC IDLouisburg, KS 66053Test: 210309IC: 1792Phone/Fax: (913) 837-3214Test to: CFR47 15.225, RSS-210Date: SeRevision 2File: A04094 NFC TstRpt 210309 r2Page 20

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 20 of 38

Trace	Frequenc	y	Level		Delta	
2	217.5	kHz	29.24	dBµV	-23.67	dBµV
1	242.3	kHz	46.3	dBµV	-15.72	dBµV
2	386.3	kHz	25.61	dBµV	-22.53	dBµV
1	442.5	kHz	45.38	dBµV	-11.63	dBµV
1	586.5	kHz	44.36	dBµV	-11.64	dBµV
2	586.5	kHz	22.83	dBµV	-23.17	dBµV
1	739.5	kHz	40.25	dBµV	-15.75	dBµV
1	867.8	kHz	38.86	dBµV	-17.14	dBµV
2	867.8	kHz	23.88	dBµV	-22.12	dBµV
1	978	kHz	36.53	dBµV	-19.47	dBµV
2	25.87	MHz	33.11	dBµV	-16.89	dBµV
2	28.22	MHz	26.42	dBµV	-23.58	dBµV

 Table 2 AC Line Conducted Emissions Data L1 (Configuration #2, EUT – Computer)

Other emissions present had amplitudes at least 20 dB below the limit.

Trace	Frequenc	:y	Level		Delta	
2	228.8	kHz	26.1	dBµV	-26.39	dBµV
1	242.3	kHz	43.99	dBµV	-18.03	dBµV
2	264.8	kHz	23.48	dBµV	-27.8	dBµV
1	300.8	kHz	39.19	dBµV	-21.03	dBµV
2	411	kHz	23	dBµV	-24.63	dBµV
2	460.5	kHz	19.91	dBµV	-26.77	dBµV
1	465	kHz	42.88	dBµV	-13.72	dBµV
2	629.3	kHz	24.84	dBµV	-21.16	dBµV
1	919.5	kHz	39.21	dBµV	-16.79	dBµV
1	1.129	MHz	37.84	dBµV	-18.16	dBµV
1	1.351	MHz	35.31	dBµV	-20.69	dBµV
2	25.87	MHz	28.64	dBµV	-21.36	dBµV

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc.Garmin I4405 West 259th TerraceModel: ALouisburg, KS 66053Test: 210Phone/Fax: (913) 837-3214Test to: CRevision 2File: A04

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 21 of 38

Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
1	174.000000000	kHz	30.81	Quasi Peak	-33.95
2	458.000000000	kHz	25.23	Average	-21.50
1	458.000000000	kHz	31.04	Quasi Peak	-25.69
2	586.000000000	kHz	25.05	Average	-20.95
1	606.000000000	kHz	34.29	Quasi Peak	-21.71
2	606.000000000	kHz	28.24	Average	-17.76
1	630.000000000	kHz	37.06	Quasi Peak	-18.94
2	630.000000000	kHz	31.56	Average	-14.44
2	650.000000000	kHz	34.19	Average	-11.81
1	654.000000000	kHz	39.37	Quasi Peak	-16.63
1	670.000000000	kHz	40.81	Quasi Peak	-15.19
2	670.000000000	kHz	34.17	Average	-11.83

Table 4 AC Line Conducted Emissions Data L1 (Configuration #3, EUT – AC Adapter)

Other emissions present had amplitudes at least 20 dB below the limit.

Trace	Frequenc	y	Level (dBµV)	Detector	Delta Limit/dB
1	150.000000000	kHz	34.63	Quasi Peak	-31.37
1	166.000000000	kHz	31.85	Quasi Peak	-33.31
2	170.000000000	kHz	18.96	Average	-36.00
2	458.000000000	kHz	18.84	Average	-27.89
2	606.000000000	kHz	19.93	Average	-26.07
2	630.000000000	kHz	23.25	Average	-22.75
1	630.000000000	kHz	32.33	Quasi Peak	-23.67
2	650.000000000	kHz	26.31	Average	-19.69
1	654.000000000	kHz	34.31	Quasi Peak	-21.69
2	670.000000000	kHz	26.75	Average	-19.25
1	670.000000000	kHz	37.20	Quasi Peak	-18.80
1	978.000000000	kHz	24.45	Quasi Peak	-31.55

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259 th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r2	Page 22 of 38

Summary of Results for AC Line Conducted Emissions Results

The EUT demonstrated compliance with the AC Line Conducted Emissions requirements of 47CFR Part 15C and other applicable emissions requirements. The EUT-CPU configurations #2 worst-case configuration demonstrated a minimum margin of -11.6 dB below the requirement. The EUT-AC adapter configuration #3 worst-case configuration demonstrated a minimum margin of -11.8 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available mode during testing. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated measurements were performed. Final data was taken with the EUT located at the OATS at 3 meters distance between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers above 1 GHz, notch filters and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 23 of 38

Frequency (MHz)	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dBm)	Vertical Margin (dBm)
49.5	30.6	23.4	30.3	25.1	40.0	-16.6	-14.9
53.4	30.1	22.8	29.5	25.5	40.0	-17.2	-14.5
71.0	32.7	22.1	33.0	23.6	40.0	-17.9	-16.4
83.4	28.7	24.9	28.7	25.3	40.0	-15.1	-14.7
139.2	31.8	28.2	22.4	17.4	40.0	-11.8	-22.6
141.8	29.8	25.8	23.4	17.4	40.0	-14.2	-22.6
154.2	29.1	22.9	26.2	17.3	40.0	-17.1	-22.7

Table 6 General Radiated Emissions from EUT Data (Highest Emissions)

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15C paragraph 15.209, RSS-210 Issue 10 and RSS-GEN Intentional Radiators. The EUT demonstrated a minimum margin of -11.8 below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361
4405 West 259 th Terrace	Model: A04094	FCO
Louisburg, KS 66053	Test: 210309	IC:
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Dat
Revision 2	File: A04094 NFC TstRpt 210309 r2	Pag

I's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 24 of 38

Operation in the Band 13.110 - 14.010 MHz Band

The transmitter output power; harmonic and general emissions were measured on an open area test site at 3 and 10 meters. Test procedures of ANSI C63.10-2013 were used during testing. The EUT was placed on a turntable elevated as required above the ground plane and at a distance of 3 and 10 meters from the FSM antenna. The peak and quasi-peak amplitude of frequencies below 1000 MHz were measured using a spectrum analyzer. Plots were taken of transmitter performance for reference in this and other documentation. The amplitude of each radiated emission was measured on the OATS at a distance of 3 and/or 10 meters from the FSM antenna (OATS testing was performed on sample 1 representative of production equipment with integral antenna). The measured amplitude was then corrected for comparison with the limits. Measurements taken at 3 meters of the fundamental and emissions below 30 MHz were corrected using the square of an inverse linear distance extrapolation factor (40 dB/decade) as provided in the standards and requirements. The amplitude of each radiated emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 25 GHz. Emissions were measured in dBµV/m @ 3 meters. Testing performed demonstrated compliance with the following requirements (per CFR47 15.225). Refer to figure five through nine showing the operation in the frequency band.

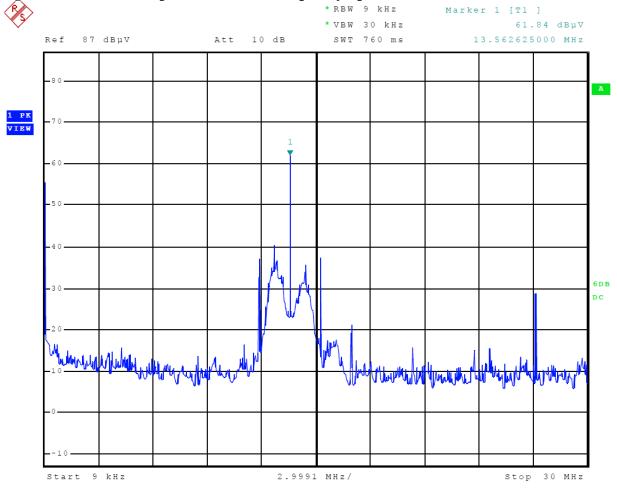
(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters (84 dBµV/M @ 30m).

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters (50.5 dBµV/M @ 30m).

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters (40.5 dBµV/M @ 30m).

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery-operated equipment, the equipment tests shall be performed using a new battery.


(f) In the case of radio frequency powered tags designed to operate with a device authorized under this section, the tag may be approved with the device or be considered as a separate device subject to its own authorization. Powered tags approved with a device under a single application shall be labeled with the same identification number as the device.

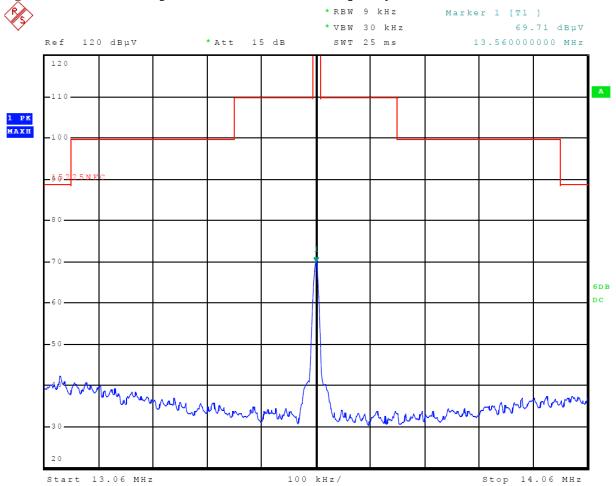
Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Phone/Fax: (913) 837-3214 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 25 of 38

Figure 5 Plot of NFC Operation Across Frequency Spectrum

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3361563901, 381278190


 4405 West 259th Terrace
 Model: A04094
 FCC ID: IPH-04094

 Louisburg, KS 66053
 Test: 210309
 IC: 1792A-04094

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15.225, RSS-210
 Date: September 21, 2021

 Revision 2
 File: A04094 NFC TstRpt 210309 r2
 Page 26 of 38

Figure 6 Plot of NFC Operation in Authorized Frequency Band

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3361563901, 381278190


 4405 West 259th Terrace
 Model: A04094
 FCC ID: IPH-04094

 Louisburg, KS 66053
 Test: 210309
 IC: 1792A-04094

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15.225, RSS-210
 Date: September 21, 2021

 Revision 2
 File: A04094 NFC TstRpt 210309 r2
 Page 27 of 38

Figure 7 Plot of NFC 99 percent Occupied Bandwidth

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3361563901, 381278190

 4405 West 259th Terrace
 Model: A04094
 FCC ID: IPH-04094

 Louisburg, KS 66053
 Test: 210309
 IC: 1792A-04094

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15.225, RSS-210
 Date: September 21, 2021

 Revision 2
 File: A04094 NFC TstRpt 210309 r2
 Page 28 of 38

Table 7 NFC Transmitter Emissions in Frequency Band 13.110-14.010 MHz

Frequency in MHz	Peak Level (dBµV/m)	Quasi-Peak Level (dBµV/m)	Limit (dBµV/m) @ 3m	Margin (dB)
13.560	61.3	57.2	124.0	-62.7

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequencies below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

NOTES:

1. Fundamental radiated emission measurements were performed using a loop antenna. The test sample was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.

2. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst-case emissions. The worst-case emission was found when the front of the EUT was facing the receive antenna.

3. Measurements were performed at 3m and the limit was extrapolated to the measurement distance of 3 m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in 15.31(f)(2). Extrapolation Factor = 20 log10 (30/3)² = 40dB

4. All measurements were recorded using a spectrum analyzer employing peak and quasi-peak detectors.

5. Field Strength Level $[dB\mu V/m] =$ Level read from Analyzer $[dB\mu V] +$ AFCL [dB/m] - Amplifier Gain (dB)

6. AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]

7. Margin [dB] = Field Strength Level [dB μ V/m] – Limit [dB μ V/m]

Frequency (MHz)	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dBm)	Vertical Margin (dBm)
40.7	20.4	15.0	27.8	23.9	40.0	-25.0	-16.1
54.2	14.4	10.0	21.5	18.6	40.0	-30.0	-21.4
67.8	14.3	6.1	17.3	12.9	40.0	-33.9	-27.1
81.3	18.1	12.2	26.5	23.6	40.0	-27.8	-16.4

Table 8 Transmitter Harmonic Radiated Emissions Data

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259 th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r2	Page 29 of 38

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of FCC 47 CFR Part 15.225, Industry Canada RSS-GEN issue 5, RSS-210 Issue 10 Intentional Radiator regulations. The EUT worst-case configuration demonstrated minimum margin of -62.7 dB below the limit for the fundamental. The EUT worst-case configuration demonstrated minimum radiated harmonic emission margin of -16.1 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.


Frequency Stability

Measurements Required

The frequency stability shall be measured with variations of ambient temperature from -30° to +50° centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability, the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value.
- (2) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement

The measurement procedure outlined below shall be followed during measurement of frequency variation over temperature.

Rogers Labs, Inc.	Garmin International, Inc.	SN's: 3361563901, 381278190
4405 West 259th Terrace	Model: A04094	FCC ID: IPH-04094
Louisburg, KS 66053	Test: 210309	IC: 1792A-04094
Phone/Fax: (913) 837-3214	Test to: CFR47 15.225, RSS-210	Date: September 21, 2021
Revision 2	File: A04094 NFC TstRpt 210309 r	2 Page 30 of 38

<u>Step 1:</u> The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

<u>Step 2:</u> With the transmitter inoperative (power switched "OFF"), the temperature of the test chamber shall be adjusted to +25°C. After a temperature stabilization period of one hour at +25°C, the transmitter shall be switched "ON" with standard test voltage applied.

<u>Step 3:</u> The carrier shall be keyed "ON", and the transmitter shall be operated at full radio frequency power output at the duty cycle, for which it is rated, for duration of at least 5 minutes. The radio frequency carrier frequency shall be monitored, and measurements shall be recorded.

<u>Step 4:</u> The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30° C to $+50^{\circ}$ C in 10-degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. An AC Power Supply was used during measurement of frequency variation over input power to the AC power adapter. The frequency was measured and the variation in parts per million calculated. Data was taken per CFR47 Paragraphs 2.1055 and applicable paragraphs of part 15.225 and RSS-210 Issue 10.

Frequency 13.559888 MHz	Frequency Stability Vs. Temperature Ambient Frequency (13.559888 MHz)								
Temperature °C	-30	-20	-10	0	+10	+20	+30	+40	+50
Change (Hz)	28	22	-7	-13	2	-8	-11	-13	-16
%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Limit (%)	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01

Table 9 Frequency Stability vs. Temperature Results

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 31 of 38

Channel Frequency 13.559888 MHz	Frequency Stability Vs. Voltage Variation 120.0Vac volts nominal; Results In Hz change				
Voltage V _{dc}	102.0	120.0	138.0		
Change (Hz)	0	0	0		
%	0.000	0.000	0.000		
Limit (%)	±0.01	±0.01	±0.01		

Table 10 Frequency Stability vs. Input Power Supply Voltage Results

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 15.225 and RSS-210 Issue 10. There are no deviations or exceptions to the specifications.

Rogers Labs, Inc.Garmin International, Inc.SN's: 14405 West 259th TerraceModel: A04094Louisburg, KS 66053Test: 210309Phone/Fax: (913) 837-3214Test to: CFR47 15.225, RSS-210Revision 2File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 32 of 38

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment List
- Annex C Rogers Qualifications
- Annex D Laboratory Certificate of Accreditation

Rogers Labs, Inc.4405 West 259th TerraceLouisburg, KS 66053Phone/Fax: (913) 837-3214Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 33 of 38

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16–4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty U _(lab)
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.14
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 34 of 38

Annex B Test Equipment

<u>Equipment</u>	Manufacturer	Model (SN)	Band Ca	al Date(m/d/y) Due	
\boxtimes LISN		· · · · · ·		4/21/2020	4/21/2021	
🖾 LISN	Compliance Design	FCC-LISN-2.Mod.cd,(126)	.15-30MHz	10/14/2020	10/14/2021	
⊠ Cable	Huber & Suhner Inc	. Sucoflex102ea(L10M)(3030'	73)9kHz-40 GHz	10/14/2020	10/14/2021	
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(30306	9)9kHz-40 GHz	10/14/2020	10/14/2021	
⊠ Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(30307	0)9kHz-40 GHz	10/14/2020	10/14/2021	
⊠ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021	
⊠ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021	
🛛 Antenna	Com Power	AL-130 (121055)	.001-30 MHz	10/14/2020	10/14/2021	
\Box Antenna:	EMCO	6509	.001-30 MHz	10/14/2020	10/14/2022	
□ Antenna	ARA	BCD-235-B (169)	20-350MHz	10/14/2020	10/14/2021	
\Box Antenna:	Schwarzbeck Model	VHBB 9124 (9124-627)		4/21/2020	4/21/2021	
🛛 Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/14/2020	10/14/2021	
□ Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	10/14/2020	10/14/2022	
\Box Antenna:	Schwarzbeck Model	: VULP 9118 A (VULP 9118	A-534)	4/21/2020	4/21/2021	
🛛 Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	4/21/2020	4/21/2022	
□ Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/14/2020	10/14/2022	
🛛 Antenna	Com Power	AH-840 (101046)	18-40 GHz	4/21/2020	4/21/2021	
🛛 Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	3/2/2021	3/2/2022	
⊠ Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/12/2021	1/12/2022	
\Box Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	: 12/22/2017	12/22/2027	
⊠ Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/14/2020	10/14/2021	
⊠ Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/14/2020	10/14/2021	
⊠ Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/14/2020	10/14/2021	
\boxtimes Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	10/14/2020	10/14/2021	
□ Power Meter		N1911A with N1921A	0.05-40 GHz	4/21/2020	4/21/2021	
□ Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	4/21/2020	4/21/2021	
□ Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz		4/21/2021	
□ RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch		4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	4/21/2020	4/21/2021	
□ Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	4/21/2020	4/18/2021	
⊠ Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	4/21/2020	4/21/2021	
□ Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	4/21/2020	4/21/2021	
□ Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	4/21/2020	4/21/2021	
□ Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	4/21/2020	4/21/2021	
□ Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	4/21/2020	4/21/2021	
\boxtimes Weather stat		6312 (A81120N075)		11/4/2020	11/4/2021	
Rogers Labs, Inc. Garmin International, Inc. SN's: 3361563901, 381278190						
		del: A04094	, , , , , , , , , , , , , , , , , , , ,			
Louisburg, KS		t: 210309				
Phone/Fax: (913) 837-3214 Test to: CFR47 15.225, RSS-210 Date: September 21, 20						
Revision 2File: A04094 NFC TstRpt 210309 r2Page 35 of 38						

List of Test Equipment		Calibration	Date (m/d/y)	Due	
□ Frequency Counter: Leader LDC-825 (8060153				4/21/2020	4/21/2021
□ LISN: Com-Power Model LI-220A				10/14/2020	10/14/2021
□ LISN: Com-Power Model LI-550C				10/14/2020	10/14/2021
□ ISN: Com-Power Model ISN T-8				4/21/2020	4/21/2021
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08			4/21/2020	4/21/2021	
□ Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(303	072) 9kHz-40 GHz	10/14/2020	10/14/2021
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(L1M)(2811	183) 9kHz-40 GHz	10/14/2020	10/14/2021
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(L4M)(2811	184) 9kHz-40 GHz	10/14/2020	10/14/2021
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(L10M)(317	7546)9kHz-40 GHz	2 10/14/2020	10/14/2021
□ Cable	Time Microwave	4M-750HF290-750 (4M)	9kHz-24 GHz	10/14/2020	10/14/2021
□ RF Filter	Micro-Tronics	BRC17663 (001) 9.3-9.5 n	otch 30-1800 MHz	2 4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC19565 (001) 9.2-9.6 n	otch 30-1800 MHz	2 10/16/2018	4/21/2021
□ Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	4/21/2020	4/21/2021
□ Analyzer	HP External Mixers	11571, 11970	25GHz-110GHz	2 4/18/2015	4/18/2025
□ Analyzer	HP	8591EM (3628A00871)		4/21/2020	4/21/2021
□ Wave Form	Generator Keysight	33512B (MY57400128)		4/21/2020	4/21/2021
□ Antenna: Solar 9229-1 & 9230-1			2/22/2021	2/22/2022	
□ CDN: Com-Power Model CDN325E			10/14/2020	10/14/2021	
□ Injection Clamp Luthi Model EM101			10/14/2020	10/14/2021	
□ Oscilloscope Scope: Tektronix MDO 4104			2/22/2021	2/22/2022	
EMC Transient Generator HVT TR 3000			2/22/2021	2/22/2022	
□ AC Power Source (Ametech, California Instruments)			2/22/2021	2/22/2022	
□ Field Intensity Meter: EFM-018			2/22/2021	2/22/2022	
\Box ESD Simulator: MZ-15				2/22/2021	2/22/2022
□ R.F. Power Amp ACS 230-50W			not required		
□ R.F. Power Amp EIN Model: A301			not required		
□ R.F. Power Amp A.R. Model: 10W 1010M7				not required	
□ R.F. Power Amp A.R. Model: 50U1000			not required		
⊠ Tenney Temperature Chamber				not required	
Shielded Ro	oom			not required	

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3361563901, 381278190

 4405 West 259th Terrace
 Model: A04094
 FCC ID: IPH-04094

 Louisburg, KS 66053
 Test: 210309
 IC: 1792A-04094

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15.225, RSS-210
 Date: September 21, 2021

 Revision 2
 File: A04094 NFC TstRpt 210309 r2
 Page 36 of 38

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 35 years' experience in the field of electronics. Working experience includes six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer:	A/C Controls Mfg. Co., Inc. 6 Years
Electrical Engineer:	Rogers Consulting Labs, Inc. 5 Years
Electrical Engineer:	Rogers Labs, Inc. Current

Educational Background:

Bachelor of Science Degree in Electrical Engineering from Kansas State University Bachelor of Science Degree in Business Administration Kansas State University Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: A04094 Test: 210309 Test to: CFR47 15.225, RSS-210 File: A04094 NFC TstRpt 210309 r2

SN's: 3361563901, 381278190 FCC ID: IPH-04094 IC: 1792A-04094 Date: September 21, 2021 Page 37 of 38

Annex D Laboratory Certificate of Accreditation

 Rogers Labs, Inc.
 Garmin International, Inc.
 SN's: 3361563901, 381278190

 4405 West 259th Terrace
 Model: A04094
 FCC ID: IPH-04094

 Louisburg, KS 66053
 Test: 210309
 IC: 1792A-04094

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15.225, RSS-210
 Date: September 21, 2021

 Revision 2
 File: A04094 NFC TstRpt 210309 r2
 Page 38 of 38