

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC TEST REPORT

Prepared for:

Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

A04041

Test Report No:

R20190619-20-E1B

Approved By:

Nic Schnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

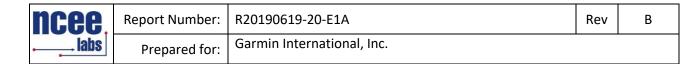
8 March 2021

Total Pages:

43

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report ϵ

ncee.	Report Number:	R20190619-20-E1A	Rev	В
Iabs	Prepared for:	Garmin International, Inc.		


REVISION PAGE

Rev. No.	Date	Description
0	13 July 2020	Original – NJohnson
		Prepared by KVepuri/CFarrington
A	18 January 2021	 Added conducted spurious emissions to section 4.1 Added limit calculation to section 4.1 Bandwidth table was updated in section 4.3 Added supplemental plots in section 4.3 Frequency accuracy with voltage variation was added to section 4.5
В	8 March 2021	Notes that spurious emissions was investigated with both FM modulation and analog modulation.

CONTENTS

Revi	sion Page	
1.0	Sum	amary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Labo	pratory description7
	3.1	Laboratory description7
	3.2	Test Personnel7
	3.3	Test equipment8
4.0	Deta	iled results9
	4.1	Radiated Spurious Emissions and conducted spurious9
	4.2	Output Power17
	4.3	Bandwidth and emissions mask
	4.4	Modulation charecteristics
	4.5	Frequecy Accuracy
Арр	endix A	: Sample Calculation
Арр	endix B	- Measurement Uncertainty42
REP		ID43

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. The EUT has been tested according to the following specifications:

APPLIED STANDARDS AND REGULATIONS				
Standard Section	Test Type	Result		
FCC Part 2.1046 FCC Part 95.2767	Output Power	PASS		
FCC Part 2.1033 (c)(14) FCC Part 2.1053	Conducted Spurious Emissions	PASS		
FCC Part 2.1053 FCC Part 95.2779	Radiated Spurious Emissions	PASS		
FCC Part 2.1049 FCC Part 95.2773, 95.2779	Emissions Masks/ Occupied Bandwidth	PASS		
FCC Part 2.1055 (a)(1), (b) FCC Part 95.2765	Frequency Stability Under Voltage and Temp Variation	PASS		
FCC Part 15.209	Receiver Spurious Emissions	PASS		

See Section 4 for details on the test methods used for each test.

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

The Equipment Under Test (EUT) was a portable transceiver from Garmin.

Model	A04041
EUT Received	17 June 2020
EUT Tested	17 June 2020- 11 January 2021
Serial No.	00114, 00115, 00156 (Used for Conducted Radio Measurements)
Operating Band	151.820 MHz – 154.600 MHz
Device Type	VHF
Power Supply	12V Battery

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual. The serial numbers are assigned by test lab.

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency (MHz)
Channel 1	151.820
Channel 2	151.880
Channel 3	151.940
Channel 4	154.570
Channel 5	154.600

These channels are described in FCC Part 95.2763 "MURS Channels"

This EUT was set to transmit in a worse-case scenario with modulation on.

The EUT was tested using digital modulation and throughout the entire frequency range of analog modulation. It was found that 2.9 kHz analog modulation produced the widest bandwidth and that was used for bandwidth and emissions mask measurements as well as output power, which did not deviate by more than 0.1 dB between modes.

Spurious emissions were also investigated with digital + analog modulation and with only digital (FM) modulation. It was found that the results did not deviate by more than 0.1 dB between mdoes.

2.3 DESCRIPTION OF SUPPORT UNITS

NA

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation N	lo: US1060
Industry Canada Test Site Registration I	No: 4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

All testing was performed by Karthik Vepuri, and Fox Lane of NCEE Labs. The results were reviewed by Nic Johnson.

ncee .	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer	N9038A	MY59050109	April 23, 2019	April 23, 2021
Keysight EXA Signal Analyzer	N9010A	MY56070862	December 14, 2018	December 14, 2021
HP RF Communications Test Set**	8920B	4915	December 12, 2018	December 15, 2021
Tektronix USB Power Meter	PSM3110	118674	March 10, 2020	March 10, 2021
SunAR RF Motion	JB1	A091418	March 6, 2020	March 6, 2021
EMCO Horn Antenna	3115	6415	March 16, 2020	March 16, 2022
EMCO Horn Antenna	3116	2576	March 9, 2020	March 9, 2022
Rohde & Schwarz LISN	ESH3-Z5	836679/010	July 25, 2019	July 25, 2020
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	April 14, 2020	April 14, 2022
Trilithic High Pass Filter*	6HC330	23042	April 14, 2020	April 14, 2022
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 14, 2020	April 14, 2022
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	April 14, 2020	April 14, 2022
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	April 14, 2020	April 14, 2022
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	April 14, 2020	April 14, 2022
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	April 14, 2020	April 14, 2022
N connector bulkhead (control room)*	PE9128	NCEEBH2	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

**Owned and maintained by the manufacturer

4.0 DETAILED RESULTS

4.1 RADIATED SPURIOUS EMISSIONS AND CONDUCTED SPURIOUS

Test Method: ANSI C63.26:2015:

1. Section 5.5, "Radiated Emissions Testing"

Limits for spurious emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 95.2779 as followed:

Transmitting Frequency (MHz)	Frequency Band	Limit (dB)
151.820 151.880	≥12.5kHz removed from center	50 + 10log(D)
151.940	frequency	50 + 10log(P)
154.570 154.600	≥50kHz removed from center frequency	43 + 10log(P)

Where P is equal to the output power of the transmitter in Watts.

Rated output power of transmitter is 1.5 W thus making the worst-case radiated emissions limit 44.76dB. Emissions were also compared to FCC Part 15 limits. Worst case limits were considered.

Limit = $50 + 10\log(P) = 51.76$; P = 1.5 WConducted Limit in dBm=P (dBm)-51.76=31.76-51.76=-20 dBmRadiated Limit @ 3 m Test Distance=- $20 dBm+95.23=75.23 dB\mu V/m$

Limit = $43 + 10\log(P) = 44.76$; P = 1.5 WConducted Limit in dBm=P (dBm)-44.76=31.76-44.76=-13 dBmRadiated Limit @ 3 m Test Distance=-13 dBm+ $95.23=82.23 dB\mu V/m$

Test procedures for conducted spurious emissions:

The EUT was connected to a spectrum analyzer directly with a low-loss shielded coaxial cable and sufficient attenuator with following settings:

120 kHz RBW and 1 MHz VBW for 30 MHz -1 GHz.

1 MHz RBW and 8 MHz VBW for 1 GHz – 2 GHz.

В

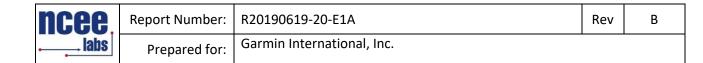
Test procedures for radiated spurious emissions:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10-meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.


e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

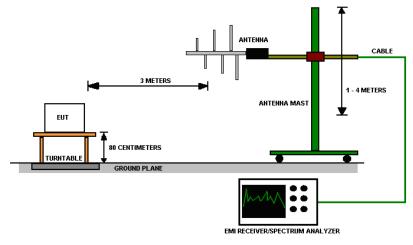


Figure 1 - Radiated Emissions Test Setup

EUT operating conditions

EUT was powered by 12V battery. Device was set to transmit in the lowest and highest frequencies in its operating range.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
	Prepared for:	Garmin International, Inc.		

Conducted spurious test results:

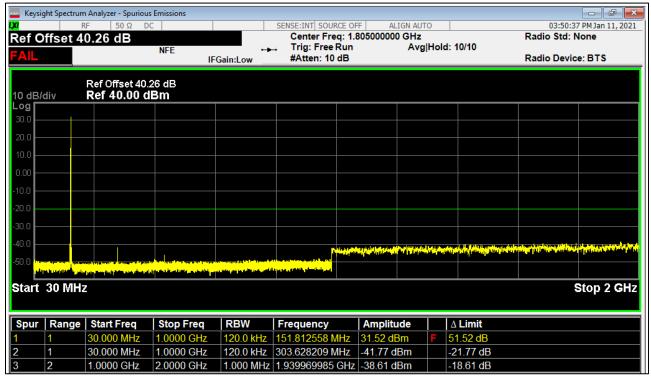


Figure 2 – Conducted Spurious Emissions, 151.82 MHz

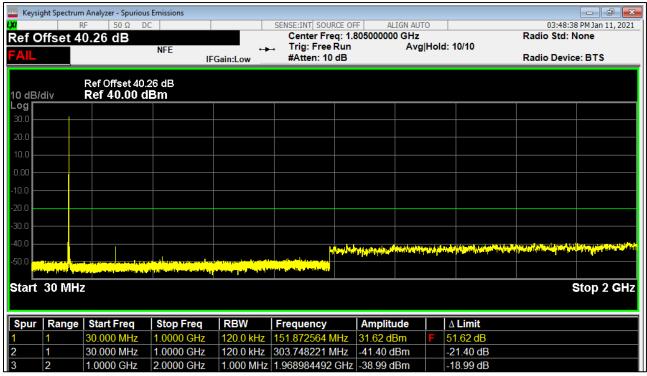


Figure 3 – Conducted Spurious Emissions, 151.88 MHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 12 of 43

ncee.	Report Number:	R20190619-20-E1A	Rev	В
	Prepared for:	Garmin International, Inc.		

🔤 Keysi	ght Spectru	n Analyzer - Spurious	Emissions							
<mark>IXI</mark>		RF 50 Ω D	C		SENSE:INT SOUR	CE OFF AL			03:52:27 Radio Std: N	7 PM Jan 11, 2021
RerO	unset 4	0.26 dB	NFE		Tains Encol		Avg Hold:	10/10	Raulo Stu. N	ione
FAIL				Gain:Low	#Atten: 10	dB			Radio Devic	e: BTS
		Ref Offset 40.	26 dB							
10 dB/	div	Ref 40.00 d								
Log										
30.0										
20.0										
10.0										
0.00										
-10.0										
-20.0										
-30.0										
-40.0	<mark>_</mark>				<u> </u>	and the second second	unan <mark>an an a</mark>	and the second second	en vised af the state of the state	alanan waaraa ka k
-50.0	ting to the				territida gitale a Londo					
		<mark>tille, possible se di sur ara</mark>								
Start	30 MH	Z								Stop 2 GHz
Spur	Range	Start Freq	Stop Freq	RBW	Frequency	Amplitu	ude 🛛 🕹	Limit		
1	1	30.000 MHz	1.0000 GHz	120.0 kHz	151.932570 N			1.46 dB		
2	2	1.0000 GHz	2.0000 GHz	1.000 MHz	1.997498749	GHz -38.73 d	Bm -1	18.73 dB		

Figure 4 – Conducted Spurious Emissions, 151.94 MHz

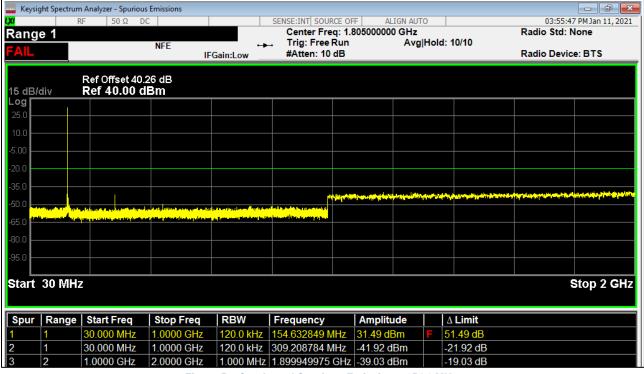


Figure 5 – Conducted Spurious Emissions, 154.6 MHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 13 of 43

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

	•	Analyzer - Spurious									
ange	1 R	F 50 Ω DC			SENSE:INT SOURC	E OFF AL	IGN AUTO 0 GHz)		03:59:2 Radio Std:	9 PM Jan 11, 202 Vone
			NFE	· →	. Trig: Free R #Atten: 10 d		Avg	lold	: 10/10	Radio Devid	A DTC
	_		IF	Gain:Low	#Atten: 10 d	D				Radio Devid	e: D13
		Ref Offset 40.2									
5 dB/di	v	Ref 40.00 d	Bm								_
og 25.0											
10.0											
.00											
0.0											
5.0											
50.0					M**	find the find on the line of the	and when a	ini janos		n w party and the state of the state	in the second states
			and the second second second	1 C 1 C 1							
0.0											
0.0											
95.0											
tart 3	i0 MHz										Stop 2 GH
Spur I	Range	Start Freq	Stop Freq	RBW	Frequency	Amplitu	Ide		∆ Limit		
1		30.000 MHz	1.0000 GHz	120.0 kHz	154.572843 Mł	lz 31.98 dł	Bm	F	51.98 dB		
1		30.000 MHz	1.0000 GHz		309.148778 MI				-21.99 dB		
1		30.000 MHz	1.0000 GHz		463.724714 MH				-28.44 dB		
2)	1.0000 GHz	2.0000 GHz	1 000 MHz	1.986493247	H7 38 63 d	Rm		-18.63 dB		

Figure 6 – Conducted Spurious Emissions, 154.57 MHz

Note: The conducted spurious emissions plots show fundamental to be over the spurious limit, which is expected. The worst-case spurious measurements are presented in the tables under the graphs in white. All other emissions were found to be at least 10dB below the limit.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

Radiated spurious test results:

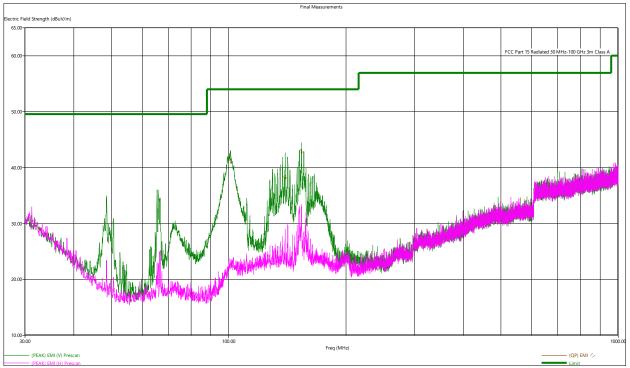


Figure 7 – Receiver Spurious Emissions

Quasi-Peak Data								
Frequency	Level	Limit	Margin	Height	Angle	Pol		
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
101.224320	41.06	53.98	12.92	108	62	V		
139.712640	38.23	53.98	15.75	110	195	V		
153.849840	42.84	53.98	11.14	107	131	V		

No emissions were found within 10dB of the limit.

Peak Spurious Emissions – 151.82 MHz							
Frequency	Level	Limit	Margin				
MHz	dBµV/m	dBµV/m	dB				
303.660	55.129	75.23	20.101				
455.464	56.871	75.23	18.359				
755.100	44.572	75.23	30.658				
1366.380	56.487	75.23	18.743				

All other emissions were found to be at least 10dB below the limit.

Limit = 50 + 10log(P) = 51.76; P = 1.5 W Limit in dBm=P (dBm)-51.76=31.76-51.76=-20 dBm Limit @ 3 m Test Distance=-20 dBm+95.23=75.23 dB μ V/m

Peak Spurious Emissions – 154.60 MHz							
Frequency	Level	Limit	Margin				
MHz	dBµV/m	dBµV/m	dB				
309.210	51.642	82.23	30.588				
463.810	65.296	82.23	16.934				
773.000	47.559	82.23	34.671				
1391.400	58.778	82.23	23.452				

All other emissions were found to be at least 10dB below the limit.

Limit = 43 + 10log(P) = 44.76; P = 1.5 W Limit in dBm=P (dBm)-44.76=31.76-44.76=-13 dBm Limit @ 3 m Test Distance=-13 dBm+95.23=82.23 dBµV/m

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

4.2 OUTPUT POWER

Test Method:

ANSI C63.26:

Section(s) 5.2.4.2 "General procedure for measuring average power with an average power meter"

FCC Part 95.2767 MURS transmitting power limit:

Each MURS transmitter type must be designed such that the transmitter power output does not exceed 2 Watts under normal operating conditions.

Test procedures:

The EUT was connected to a RF power meter directly with a low-loss shielded coaxial cable.

Deviations from test standard:

No deviation.

Test setup:

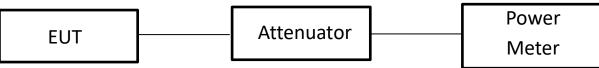


Figure 8 – Peak Output Power Measurements Test Setup

EUT operating conditions:

EUT was connected to a 12V battery. Device was set to transmit in each of its five allocated frequencies.

Test results:

CHANNEL FREQUENCY (MHz)	OUTPUT POWER (dBm)	OUTPUT POWER (W)	Method	RESULT
151.820	31.52	1.42	Conducted	PASS
151.880	31.69	1.48	Conducted	PASS
151.940	31.64	1.46	Conducted	PASS
154.570	31.72	1.49	Conducted	PASS
154.600	31.68	1.47	Conducted	PASS

4.3 BANDWIDTH AND EMISSIONS MASK

Test Method: ANSI C63.26, 1. Section(s) 5.4.3, 5.4.4

Limits: FCC Part 95.2773 MURS authorized bandwidths:

Each MURS transmitter type must be designed to meet the emission bandwidth limitations in this section.

(a) The occupied bandwidth of emissions transmitted on the center frequencies 151.820 MHz, 151.880 MHz, and 151.940 MHz must not exceed 11.25 kHz.

(b) The occupied bandwidth of emissions transmitted on the center frequencies 154.570 MHz and 154.600 MHz must not exceed 20.0 kHz.

FCC Part 95.2773 MURS authorized bandwidths:

Channel Center Frequencies	Paragraphs
151.820, 151.880 and 151.940	(1), (2)
154.570 & 154.600, without audio filter	(5), (6), (7)

(1) 7.27(fd-2.88 kHz) dB on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 5.625 kHz, but not more than 12.5 kHz.

(2) $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation, on any frequency removed from the channel center frequency by more than 12.5 kHz.

(5) 83 log (fd \div 5) dB on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) that is more than 5 kHz, but not more than 10 kHz.

(6) 29 log (fd2 \div 11) dB or 50 dB, whichever is the lesser attenuation on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 10 kHz, but not more than 50 kHz.

(7) $43 + 10 \log(P) dB$ on any frequency removed from the channel center frequency by more than 50 kHz.

Test procedures:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1 kHz RBW and 10 kHz VBW. The bandwidth measurements were done using the automatic bandwidth measurement of the receiver.

Deviations from test standard:

No deviation

Test setup:

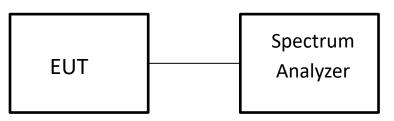


Figure 9 – Measurements Test Setup

EUT operating conditions:

EUT was powered by a 12V battery. Device was set to transmit in each of its five allocated frequencies.

CHANNEL FREQUENCY (MHz)	99% Occupied BW (kHz)
151.820	7.417
151.880	7.423
151.940	7.400
154.570	7.418
154.600	7.430

Test results:

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

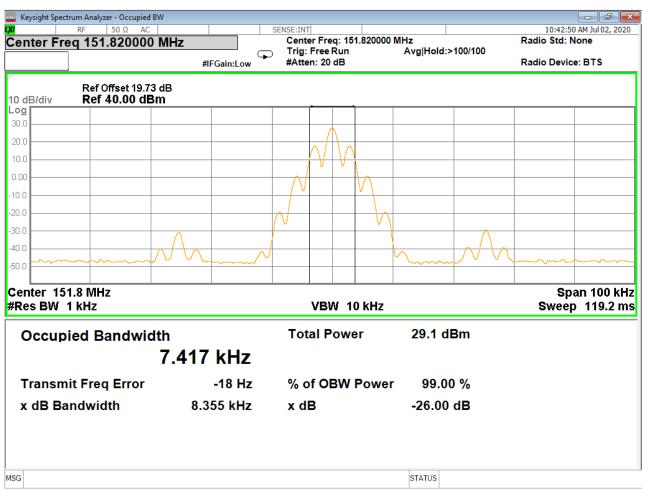


Figure 10 - Bandwidth, 151.820 MHz

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

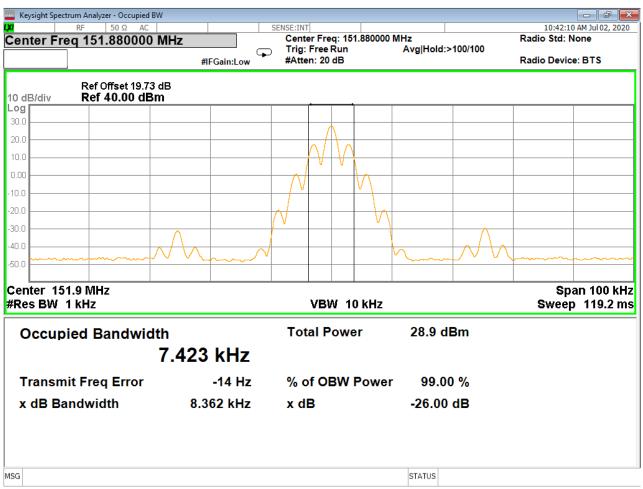


Figure 11 - Bandwidth, 151.880 MHz

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

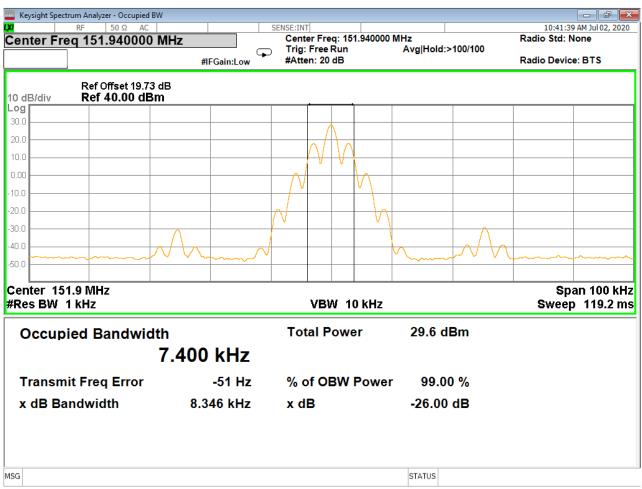


Figure 12 - Bandwidth, 151.940 MHz

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

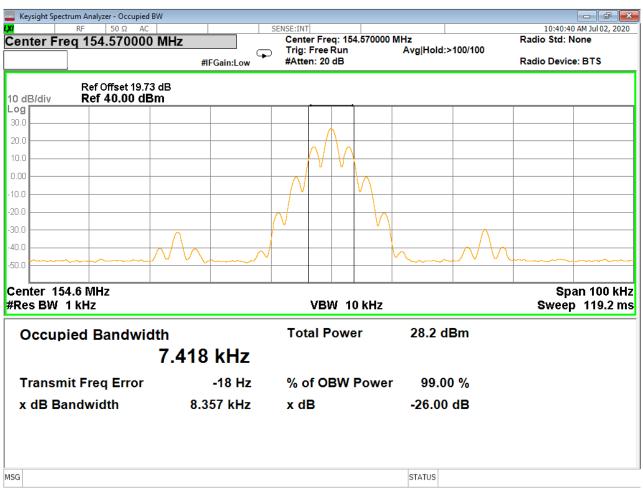


Figure 13 - Bandwidth, 154.570 MHz

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

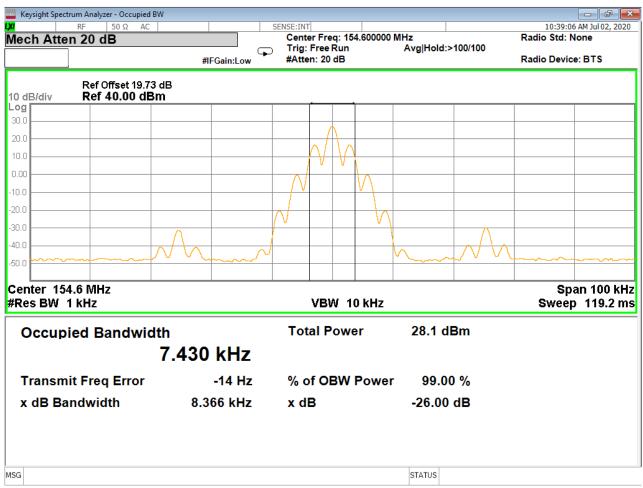


Figure 14 - Bandwidth, 154.600 MHz

ncee.	Report Number:	R20190619-20-E1A	Rev	В
iabs	Prepared for:	Garmin International, Inc.		

	trum Analyzer - Spectrur		-							
	RF 50 Ω D0			SENSE:INT		0000 MH-			10:13:59 Radio Std: N	AM Jul 02, 202
	eq 151.82000	U MHZ		Center Freq: 151.820000 MHz						lone
ASS			IFGain:Low		n: 20 dB				Radio Devic	e: BTS
	Ref Offset 19.7 w1 Ref 34.7 dB									
g .7										Absolute L
./										
.7					ᢖᢢ᠓ᠷᡫ᠊᠆᠆					
73					/ [[[]]]]] \					
27										
.3				/						Deletive I
										Relative L
.3						л				
.3				Ward !!		when the h	۱			
.3		and the second	and the second	· N	' \M		Wow was	and Monday	പ്പം	Spect
.3	goodbold of trading of								የማድረሻ የሚያስት ነው።	᠋ᡁ᠘᠘ᠰ᠆ᢧ᠕ᢇ
enter 15	1.8 MHz		_						Spa	an 200 ki
otal Powe	er Ref 31.7	6 dBm / 0.001	MH7							
		0 00117 0.001	IVII 12							
				Lower	<-	⊃eak ->	Upper			
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)		
	12.50 kHz	300.0 Hz	-38.50	(-6.57)	-11.64 k	-44.23	(-6.05)	12.50 k	^	
5.625 kHz			00.40	(-11.19)	-25.63 k	-28.74	(-10.50)	25.19 k		
	100.0 kHz	1.000 kHz	-29.43	(-11.19)						
12.50 kHz	100.0 kHz 50.00 kHz	1.000 kHz 300.0 Hz	-29.43	(-11.19) ()			()			
12.50 kHz 24.14 kHz							() ()			
12.50 kHz 24.14 kHz 50.00 kHz	50.00 kHz 100.0 kHz	300.0 Hz		()						
12.50 kHz 24.14 kHz 50.00 kHz 8.000 MHz	50.00 kHz 100.0 kHz 12.50 MHz	300.0 Hz 30.00 kHz		() ()			()			
5.625 kHz 12.50 kHz 24.14 kHz 50.00 kHz 8.000 MHz 12.50 MHz 12.50 MHz	50.00 kHz 100.0 kHz 12.50 MHz 15.00 MHz	300.0 Hz 30.00 kHz 1.000 MHz		() ()			() ()			

Figure 15 – Emissions Mask, 151.820 MHz

(1) 7.27(fd–2.88 kHz) dB on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 5.625 kHz, but not more than 12.5 kHz.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
. labs	Prepared for:	Garmin International, Inc.		

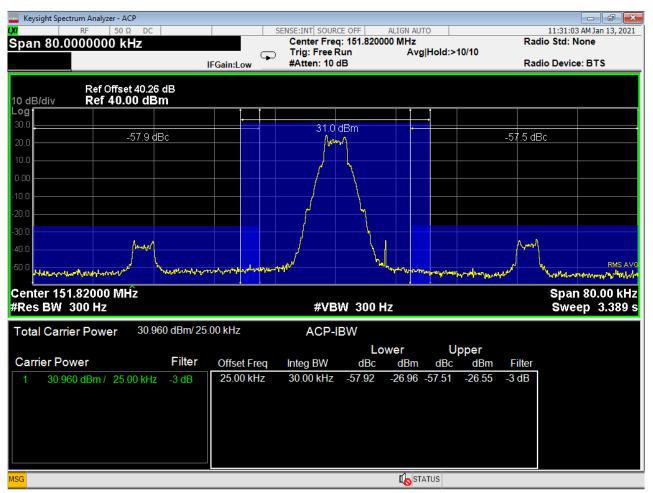


Figure 16 – Emissions Mask, 151.820 MHz

(2) 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation, on any frequency removed from the channel center frequency by more than 12.5 kHz.

Worst case Limit = 50 + 10log(P) = 51.76; P = 1.5 W

Worst case is 57.5 dBc; So, Pass.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
iabs	Prepared for:	Garmin International, Inc.		

Keysight Spect	rum Analyzer - Spectrur	m Emission Mask								- F
	RF 50 Ω D			SENSE:IN						AM Jul 02, 202
enter Fre	q 151.88000	0 MHz			ter Freq: 151.88		400 00% -		adio Std: N	one
SS			IFGain:Low		: Free Run en: 20 dB	AV	g: 100.00% c		adio Device	BTS
	Ref Offset 19. ∞1 Ref 34.7 dE									64
g .7										Absolute t
.7										
73					<u>_/ {\ \\</u>					
27					/					
.3					/ \ \					Rolativa I
										rteidtive L
.3						л				
.3				Charlen 1			n –			
.3	The Dillow of th	Janaby Law	كالمرسمان مراد	//			Մուսոնիութերվ	What have been	Charles for	Spect
.3	,002			-41						n Or Loc-C
enter 15	1.9 MHz								Spa	n 200 kł
tal Powe	rRef 31.7	6 dBm / 0.00 ⁴	1 MHz							
		0 00117 0.00	1 101112							
				Lower	<-	Peak ->	Upper			
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)		
5.625 kHz	12.50 kHz	300.0 Hz	-37.66	(-5.73)	-11.64 k	-44.27	(-6.10)	12.50 k	^	
12.50 kHz	100.0 kHz	1.000 kHz	-29.52	(-11.28)	-25.63 k	-28.13	(-9.89)	25.63 k		
24.14 kHz	50.00 kHz	300.0 Hz		()			()			
	100.0 kHz	30.00 kHz		()			()			
50.00 kHz	100.0 1012						()			
		1.000 MHz		()			()			
8.000 MHz 12.50 MHz	12.50 MHz 15.00 MHz	1.000 MHz 1.000 MHz		() ()			()			
50.00 kHz 8.000 MHz 12.50 MHz 12.50 MHz	12.50 MHz 15.00 MHz									

Figure 17 - Emissions Mask, 151.880 MHz

(1) 7.27(fd–2.88 kHz) dB on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 5.625 kHz, but not more than 12.5 kHz.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
. labs	Prepared for:	Garmin International, Inc.		

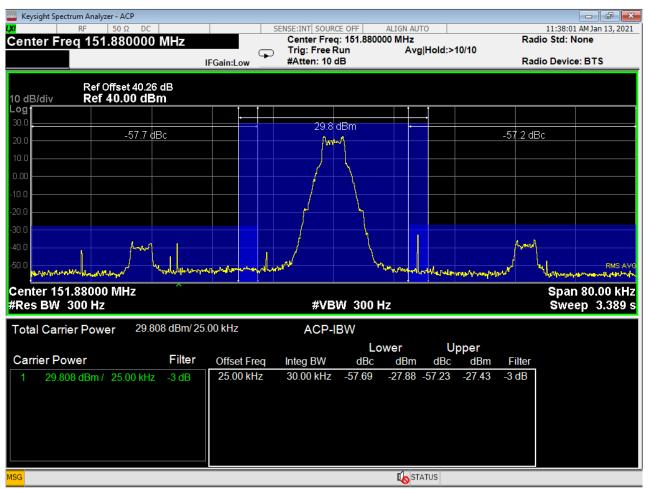


Figure 18 - Emissions Mask, 151.880 MHz

(2) 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation, on any frequency removed from the channel center frequency by more than 12.5 kHz.

Worst case Limit = 50 + 10log(P) = 51.76; P = 1.5 W

Worst case is 57.2 dBc; So, Pass.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
iabs	Prepared for:	Garmin International, Inc.		

Keysight Specti	rum Analyzer - Spectrur	m Emission Mask								
	RF 50 Ω D			SENSE:IN					10:21:39 AM Jul 02	, 202
nter Fre	q 151.94000	0 MHz			ter Freq: 151.94 : Free Run		g: 100.00% c		Radio Std: None	
SS			IFGain:Low		en: 20 dB	AV	g. 100.00 % C		Radio Device: BTS	
	Ref Offset 19. ∞1 Ref 34.7 dB									
g .7									ADSU	iute L
.7					᠆᠋ᡰᠷ᠋᠓ᠷᡫ					
73					<u>_/ 49001 \</u>					
27					/					
.3					/ 🕅 🕅 🔪				D-la	41 I
									nciu	IIVE L
.3						л				
.3			- <u>-</u>	www.	¥ ₩.\	աներությունը է	л —			
.3		լ	wwww				www.www.		A la	Spect
.3	un tw ^R bywww								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
enter 151	I.9 MHz								Span 200	k
									•	
tal Powe	r Dof 21.7	6 dBm / 0.001	MH-							
	I KEI 51.70	0 00117 0.00								
				Lower	<-	Peak ->	Upper			
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)		
5.625 kHz	12.50 kHz	300.0 Hz	-38.75	(-6.57)	-11.68 k	-38.77	(-6.59)	11.68 k	^	
	100.0 kHz	1.000 kHz	-29.85	(-11.61)	-25.19 k	-28.72	(-10.48)	25.63 k		
12.50 kHz	100.0 KHZ						()			
12.50 kHz 24.14 kHz	50.00 kHz	300.0 Hz		()						
		300.0 Hz 30.00 kHz		()			()			
24.14 kHz	50.00 kHz						() ()			
24.14 kHz 50.00 kHz	50.00 kHz 100.0 kHz	30.00 kHz		()						
24.14 kHz 50.00 kHz 8.000 MHz	50.00 kHz 100.0 kHz 12.50 MHz	30.00 kHz 1.000 MHz		() ()			()			

Figure 19 - Emissions Mask, 151.940 MHz

(1) 7.27(fd–2.88 kHz) dB on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 5.625 kHz, but not more than 12.5 kHz.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
. labs	Prepared for:	Garmin International, Inc.		

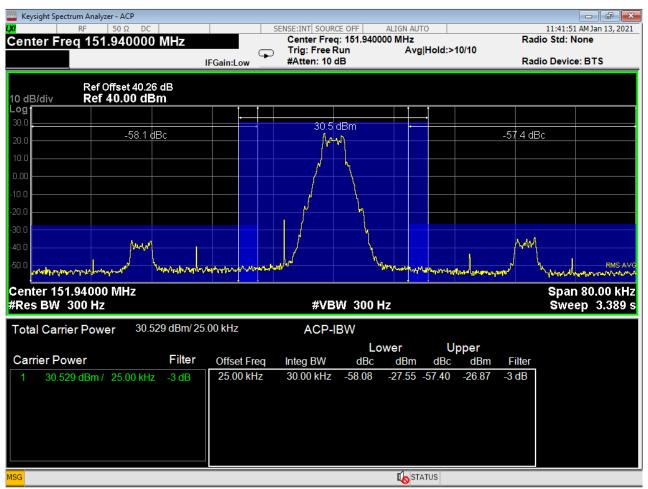


Figure 20 - Emissions Mask, 151.940 MHz

(2) 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation, on any frequency removed from the channel center frequency by more than 12.5 kHz.

Worst case Limit = 50 + 10log(P) = 51.76; P = 1.5 W

Worst case is 57.4 dBc; So, Pass.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
iabs	Prepared for:	Garmin International, Inc.		

Keysight Spect	rum Analyzer - Spectrur										
	RF 50 Ω D			SENSE:INT						14 AM Jul 02, 202	
enter Fre	q 154.57000	0 MHz		Center Freq: 154.570000 MHz , Trig: Free Run Avg: 100.00% of 100					Radio Std: None		
ASS			IFGain:Low		n: 20 dB		g. 100.0078		Radio Devi	ice: BTS	
	Ref Offset 19. ∞1 Ref 34.7 dB										
og										Absolute Li	
4.7					1						
4.7											
.73					L						
.27					AVVIA						
					111 1 111					Relative Li	
5.3				1							
5.3							1				
5.3					· 1						
5.3		a a short		Should		hand		Augune Harry	^	Spect	
որույնու հեր	when he would write	Mund	and an agent of the		Ţ	Additional of the	My Vanval 40	where a second second	ብመት-አምኒን	allow and and a state of the	
5.3											
enter 154	4.6 MHz								S	pan 200 kH	
									-		
otal Powe	er Ref 31.7	6 dBm / 0.001	MHz								
		0 0.001									
				Lower	<-	- Peak ->	Upper				
Start Freq	Stop Freq	Integ BW	dBm	$\Delta Lim(dB)$	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)			
10.00 kHz	20.00 kHz	300.0 Hz	-37.98	(-44.74)	-11.65 k	-38.60	(-45.36)	11.60 k	^		
20.00 kHz	50.00 kHz	300.0 Hz	-28.96	(-25.72)	-32.60 k	-27.16	(-23.92)	32.60 k			
20.00 KHZ	100.0111	1.000 kHz	-40.84	(-27.84)	-76.25 k	-41.05	(-28.05)	76.00 k			
50.00 kHz	100.0 kHz	1.000 KHZ		· · ·							
	100.0 kHz 100.0 kHz	30.00 kHz		()			()				
50.00 kHz	100.0 kHz						() ()				
50.00 kHz 50.00 kHz 8.000 MHz 12.50 MHz	100.0 kHz 12.50 MHz 15.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz		()							
50.00 kHz 50.00 kHz 8.000 MHz	100.0 kHz 12.50 MHz 15.00 MHz	30.00 kHz 1.000 MHz		() ()			()		м		

Figure 21 - Emissions Mask, 154.570 MHz

(5) 83 log (fd ÷ 5) dB on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) that is more than 5 kHz, but not more than 10 kHz.

(6) 29 log (fd2 ÷ 11) dB or 50 dB, whichever is the lesser attenuation on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 10 kHz, but not more than 50 kHz.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
. labs	Prepared for:	Garmin International, Inc.		

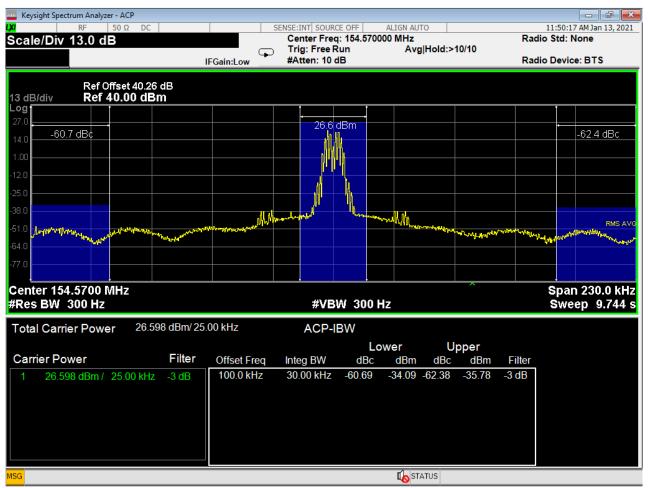


Figure 22 - Emissions Mask, 154.570 MHz

(7) 43 + 10 log(P) dB on any frequency removed from the channel center frequency by more than 50 kHz.

Worst case Limit = 43 + 10log(P) = 44.76; P = 1.5 W

Worst case is 60.7 dBc; So, Pass.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
iabs	Prepared for:	Garmin International, Inc.		

										- 0	
	RF 50 Ω D			SENSE:INT		0000 MU-					1 Jul 02, 202
nter Fred	ı 154.60000	0 MHZ		Center Freq: 154.600000 MHz Trig: Free Run Avg: 100.00% of 100					Radio Std: None		
SS			FGain:Low		n: 20 dB		g		Radio [Device: E	BTS
	Ref Offset 19. Ref 34.7 dB										
.7											Absolute L
.7											
73											
27					<u>A/V/VIA</u>						
.3					/V VI						Relative Li
-				A	1 1						
.3					1 +						
.3											
				table bl		بالراة الاستقاسات	A			- B	
.3	- Autorita	MANNIN .	many marine	MY LAWRENCE	1	Jana Maria Maria	A second second	- Contornal			Spectr
wouther	warthouse		the part of the second	Alger	1	and the second	and the second second	and the stand of the second second	and the particular	Mil Vrany	Spects Mulyhuritay
.3 .3	w. Am wow	John Mary Mary	h here with here with				a frank an area	and freeded and and and and and and and and and an	⊷õõ®°Iroµ∫Iri	77 Vrag	Specti Նուրեպություն
wouther			Harring I have a				h have a have been all have	en han	-waren - warden	Span	_{Spect} ایری، طریای مالیمی 200 kH
.3			har				d how we have down	and the stand of the second se	⊷∧∿≉°№-₽√}+	Span	Spects
.3	6 MHz	a dBm / 0.001					d have all an deter	H (Lodanda, and Andread An Andread Andread And	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Span	Specifi P. Welly Mary 200 KH
.3 enter 154.0	6 MHz						d'horrow have been	ng h-t	-ww-r-p-p-	Span	Specifi In Tridy In Alway 200 kH
a monter 154.0	6 MHz Ref 31.70	6 dBm / 0.001	MHz	Lower	<-	Peak ->	Upper	M. Trada and a star and a star	-AU-P-10-10-10-10-10-10-10-10-10-10-10-10-10-	Span	Specifi In Jurid of Indian
.3 enter 154.0	6 MHz			Lower ΔLim(dB)				Freq (Hz)	~^\;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Span	Spect Իրավչիրանգչ 200 kH
anter 154.0	6 MHz Ref 31.70	6 dBm / 0.001	MHz		<-	Peak -> dBm -35.42	Upper	Freq (Hz)		Span	Spect Churdy And Mary 200 kH
3 enter 154.0 otal Power Start Freq 10.00 kHz 20.00 kHz	6 MHz Ref 31.70 Stop Freq 20.00 kHz 50.00 kHz	6 dBm / 0.001 Integ BW 300.0 Hz 300.0 Hz	MHz dBm -38.85 -25.74	$\Delta Lim(dB)$	Freq (Hz) -11.70 k -31.85 k	Peak -> dBm -35.42 -29.56	Upper ΔLim(dB)	11.55 I 25.40 I	k	Span	Spect
3 enter 154.0 otal Power Start Freq 10.00 kHz 20.00 kHz 50.00 kHz	6 MHz 8 MHz 8 Stop Freq 20.00 kHz 50.00 kHz 100.0 kHz	6 dBm / 0.001 Integ BW 300.0 Hz 300.0 Hz 1.000 kHz	MHz dBm -38.85	∆Lim(dB) (-45.61)	-11.70 k	Peak -> dBm -35.42	Upper ΔLim(dB) (-42.18)	11.55	k	Span	Spect
3 enter 154.0 otal Power Start Freq 10.00 kHz 20.00 kHz 50.00 kHz 50.00 kHz	6 MHz 8 Stop Freq 20.00 kHz 50.00 kHz 100.0 kHz 100.0 kHz	6 dBm / 0.001 Integ BW 300.0 Hz 300.0 Hz 1.000 kHz 30.00 kHz	MHz dBm -38.85 -25.74	ΔLim(dB) (-45.61) (-22.50)	Freq (Hz) -11.70 k -31.85 k	Peak -> dBm -35.42 -29.56	Upper ΔLim(dB) (-42.18) (-26.32)	11.55 I 25.40 I	k	Span	Spect
3 enter 154.0 Start Freq 10.00 kHz 20.00 kHz 50.00 kHz 50.00 kHz 8.000 MHz	6 MHz 8 Stop Freq 20.00 kHz 50.00 kHz 100.0 kHz 100.0 kHz 12.50 MHz	6 dBm / 0.001 Integ BW 300.0 Hz 300.0 Hz 1.000 kHz 30.00 kHz 1.000 kHz	MHz dBm -38.85 -25.74 -41.62	ΔLim(dB) (-45.61) (-22.50) (-28.62) () ()		Peak -> dBm -35.42 -29.56 -40.96	Upper ΔLim(dB) (-42.18) (-26.32) (-27.96) () ()	11.55 I 25.40 I	k	Span	Spect
3 enter 154.0 otal Power Start Freq 10.00 kHz 20.00 kHz 50.00 kHz 50.00 kHz	6 MHz 8 Stop Freq 20.00 kHz 50.00 kHz 100.0 kHz 100.0 kHz	6 dBm / 0.001 Integ BW 300.0 Hz 300.0 Hz 1.000 kHz 30.00 kHz	MHz dBm -38.85 -25.74 -41.62	ΔLim(dB) (-45.61) (-22.50) (-28.62) ()		Peak -> dBm -35.42 -29.56 -40.96 	Upper ΔLim(dB) (-42.18) (-26.32) (-27.96) ()	11.55 I 25.40 I	k	Span	Spect

Figure 23 - Emissions Mask, 154.600 MHz

(5) 83 log (fd ÷ 5) dB on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) that is more than 5 kHz, but not more than 10 kHz.

(6) 29 log (fd2 ÷ 11) dB or 50 dB, whichever is the lesser attenuation on any frequency removed from the channel center frequency by a displacement frequency (fd in kHz) that is more than 10 kHz, but not more than 50 kHz.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
. labs	Prepared for:	Garmin International, Inc.		

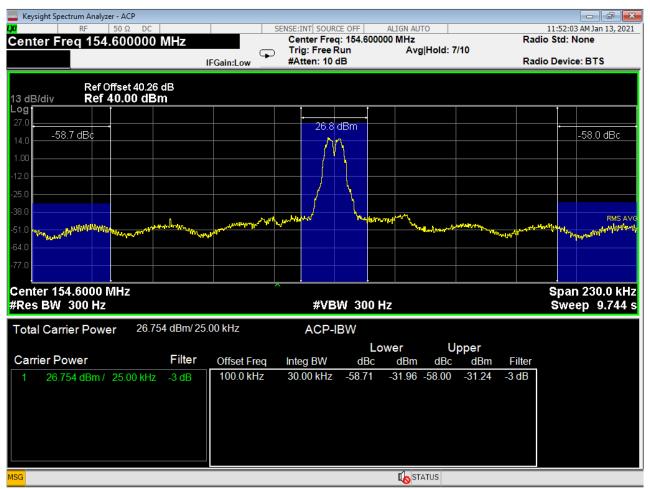


Figure 24 - Emissions Mask, 154.600 MHz

(7) 43 + 10 log(P) dB on any frequency removed from the channel center frequency by more than 50 kHz.

Worst case Limit = 43 + 10log(P) = 44.76; P = 1.5 W

Worst case is 58.0 dBc; So, Pass.

4.4 MODULATION CHARECTERISTICS

Test Method: ANSI C63.26: Section(s) 5.3.2 "Modulation limiting test methodology" and 5.3.3" Audio frequency response"

Limits:

A maximum deviation of ±75 kHz is permitted when frequency modulation is employed.

-Voice modulated communication equipment. A curve or equivalent data showing the frequency response

of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to

have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed

between the modulation limiter and the modulated stage shall be submitted.

- Equipment which employs modulation limiting. A curve or family of curves showing the percentage of

modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Test procedures:

Refer to Section 5.3.3 of C63.26, 2015. The equipment is required to have an audio filter and the test was performed on the audio filter and all circuitry.

Deviations from test standard:

No deviation.

Test setup:

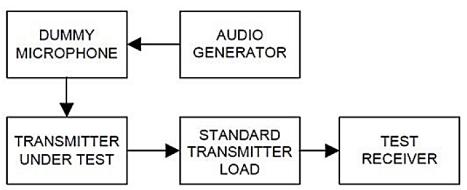


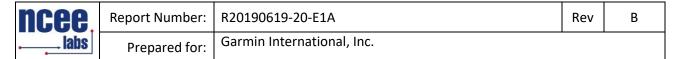
Figure 25 – Modulation Limiting and Audio Frequency Response Test Setup

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 43

ncee	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		

EUT operating conditions:


The EUT was powered by 12 VDC battery power unless specified and set to transmit continuously.

Test results:

Figure 26 – Modulation Limiting, Mid Channel

	Modulation Limit										
Modulation	Peak	Peak Frequency Deviation (kHz)									
Level (dBm)	300Hz	1000Hz	2500Hz	3000Hz	(kHz)						
-35	1.75	3.717	4.081	3.762	±75						
-30	2.474	3.878	4.211	3.936	±75						
-25	2.642	3.823	4.233	3.94	±75						
-20	2.611	3.815	4.201	3.941	±75						
-15	2.673	3.895	4.238	3.902	±75						
-10	2.591	3.907	4.259	3.958	±75						

Audio Frequency Response									
Modulation Frequency (kHz)	Max Deviation (kHz)	Audio Frequency Response (dB)							
0.10	0.632	-9.706							
0.20	0.977	-5.922							
0.30	1.291	-3.502							
0.40	1.651	-1.365							
0.50	1.775	-0.736							
0.60	1.883	-0.223							
0.70	1.920	-0.054							
0.80	1.852	-0.367							
0.90	1.891	-0.186							
1.00	1.932	0.000							
1.50	2.044	0.489							
2.00	2.057	0.545							
2.50	2.101	0.728							
3.00	1.943	0.049							
3.50	0.384	-14.034							
4.00	0.363	-14.522							
4.50	0.387	-13.966							
5.00	0.369	-14.380							

Audio Frequency Response

Test Method:ANSI C63.26,1.Section(s) 5.6.3 "Procedure for frequency stability testing"

Limits: FCC Part 95.2765 MURS frequency accuracy:

Each MURS transmitter type must be designed to meet the applicable frequency tolerance and stability requirements of this section.

MURS transmitters that operate with an emission bandwidth greater than 6.25 kHz must be designed such that the carrier frequencies remain within ± 2.0 ppm of the channel center frequencies specified in §95.2763 during normal operating conditions.

Test procedures:

Radiated power was measured on a spectrum analyzer with resolution bandwidth and video bandwidth set to 500 Hz and 1 kHz respectively. The frequency error functionality on the receiver was used. The temperature was varied from -30°C to -50°C.

Deviations from test standard:

No deviation

Test setup:

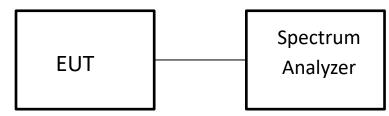
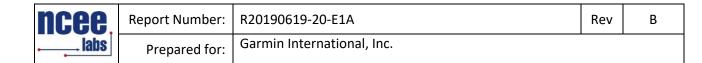


Figure 27 – Measurements Test Setup

EUT operating conditions:

EUT was powered by a 12V battery. Device was set to transmit in each of its five allocated frequencies.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
labs	Prepared for:	Garmin International, Inc.		


Test results:

			rrequ	iency a	אמאמא	у, гет	peratu	re var	ation			
Temp in C°	-30	-20	-10	0	10	20	30	40	50			
Freq (MHz)									limit (Hz)	limit (ppm)	Result	
151.820	29	36	48	44	58	54	56	56	52	303.64	2	Pass
151.940	36	36	43	53	59	58	58	56	64	303.88	2	Pass
154.600	37	50	38	57	54	57	58	54	64	309.20	2	Pass

Frequency Stability, Temperature Variation

Frequency Stability, Voltage Variation

Voltage in VDC	10.2	12	13.8			
Freq (MHz)	De	eviation (F	łz)	limit (Hz)	limit (ppm)	Result
151.820	57	33	16	303.64	2	Pass
151.940	35	30	51	303.88	2	Pass
154.600	30	25	27	309.20	2	Pass

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee.	Report Number:	R20190619-20-E1A	Rev	В
	Prepared for:	Garmin International, Inc.		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = 10^[Power (dBm)/10] / 1000 Voltage (dB μ V) = Power (dBm) + 107 (for 50 Ω measurement systems) Field Strength (V/m) = 10^[Field Strength (dB μ V/m) / 20] / 10^6 Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±3.82 dB
Radiated Emissions, 3m	1GHz - 18GHz	±4.44 dB
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB
Antenna port conducted	9 kHz – 25 GHz	±0.50 dB

Values were calculated per CISPR 16-4-2:2011

Expanded uncertainty values are calculated to a confidence level of 95%.

	Report Number:	R20190619-20-E1A	Rev	В
	Prepared for:	Garmin International, Inc.		

REPORT END