4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com # **DXX Test Report** Prepared for: Garmin Address: 1200 E. 151st Street Olathe, Kansas 66062 Product: A03985 Test Report No: R20200722-20-E1A Approved by: Nic S. Johnson, NCE **Technical Manager** **INARTE Certified EMC Engineer #EMC-003337-NE** DATE: 1 June 2021 Total Pages: 42 The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested. | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | # REVISION PAGE | Rev. No. | Date | Description | | | |----------|---------------------|---|--|--| | 0 | Original – NJohnson | | | | | | | Prepared by KVepuri/FLane/SProbst | | | | Α | 1 June 2021 | Removed some non-applicable plots and data from Section 4.4 | | | CONTENTS Report Number: Prepared for: R20200722-20-E1 Garmin Rev Α | Rev | ision Pa | ge | 2 | |-----|----------|--|----| | 1.0 | Sun | nmary of test results | 4 | | 2.0 | EUT | Description | 5 | | | 2.1 | Equipment under test | 5 | | | 2.2 | Description of test modes | 5 | | | 2.3 | Description of support units | 5 | | 3.0 | Lab | oratory and General Test Description | 6 | | | 3.1 | Laboratory description | 6 | | | 3.2 | Test personnel | 6 | | | 3.3 | Test equipment | 7 | | | 3.4 | General Test Procedure and Setup for Radio Measuremnts | 8 | | 4.0 | Res | ultS | 9 | | | 4.1 | Output Power | 12 | | | 4.2 | Bandwidth | 13 | | | 4.3 | Duty Cycle | 14 | | | 4.4 | Radiated emissions | 15 | | | 4.5 | Band edges | 21 | | | 4.6 | Power Spectral Density | 22 | | | 4.7 | Conducted AC Mains Emissions | 23 | | App | endix A | : Sample Calculation | 26 | | Арр | endix B | - Measurement Uncertainty | 28 | | App | endix C | – Graphs and Tables | 29 | | REF | ORT E | ND | 42 | ### 1.0 SUMMARY OF TEST RESULTS The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section (Please see the checked box below for the rule part used): Rev Α ## FCC Part 15.247 ⊠ The EUT has been tested according to the following specifications: - (1) US Code of Federal Regulations, Title 47, Part 15 - (2) ISED RSS-Gen, Issue 5 - (3) ISED RSS-247, Issue 2 | APPLIED STANDARDS AND REGULATIONS | | | | | | | |---|-----------------------------------|--------|--|--|--|--| | Standard Section | Test Type | Result | | | | | | FCC Part 15.35
RSS Gen, Issue 5, Section 6.10 | Duty Cycle | Pass | | | | | | FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2 | Peak output power | Pass | | | | | | FCC Part 15.247(a)(1)
RSS-247 Issue 2 Section 5.2 | Bandwidth | Pass | | | | | | FCC Part 15.209
RSS-Gen Issue 4, Section 7.1 | Receiver Radiated Emissions | Pass | | | | | | FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 4, Section 8.9 | Transmitter Radiated
Emissions | Pass | | | | | | FCC Part 15.247(a)(1)
RSS-247 Issue 2 Section 5.2 | Power Spectral Density | Pass | | | | | | FCC Part 15.209, 15.247(d)
RSS-247 Issue 2 Section 11.13 | Band Edge Measurement | Pass | | | | | | FCC Part 15.207
RSS-Gen Issue 4, Section 7.1 | Conducted Emissions | Pass | | | | | See Section 4 for details on the test methods used for each test. The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 4 of 42 | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | ### 2.0 EUT DESCRIPTION #### 2.1 EQUIPMENT UNDER TEST ### **Summary and Operating Condition:** | EUT | A03985 | |---------------------------|--| | EUT Received | 22 February 2021 | | EUT Tested | 22 February 2021- 6 April 2021 | | Serial No. | 00199 (Assigned by the test lab; EUT receive date:2/22/2021) | | Operating Band | 2400 – 2483.5 MHz | | Device Type | ⊠ GMSK | | Power Supply /
Voltage | PSAF10R-050Q; SN: P161400162A1 | NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual. ### 2.2 DESCRIPTION OF TEST MODES The operating range of the EUT is dependent on the device type found in section 2.1: For Bluetooth Transmissions: | Channel | Frequency | | | |---------|---------------|--|--| | Low | 2402 MHz | | | | Mid | 2440/2441 MHz | | | | High | 2480 MHz | | | These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations. #### 2.3 DESCRIPTION OF SUPPORT UNITS None The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 5 of 42 3.0 | Report Number: | R20200722-20-E1 | Rev | A | |----------------|-----------------|-----|---| | | | | | Prepared for: | Garmin # LABORATORY AND GENERAL TEST DESCRIPTION #### 3.1 LABORATORY DESCRIPTION All testing was performed at the following Facility: The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521 A2LA Certificate Number: 1953.01 FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177 Environmental conditions varied slightly throughout the tests: Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius ### 3.2 TEST PERSONNEL | No. | PERSONNEL | TITLE | ROLE | |-----|----------------|-------------------|--------------------| | 1 | Nic Johnson | Technical Manager | Review/editing | | 2 | Karthik Vepuri | Test Engineer | Testing and report | | 3 | Fox Lane | Test Engineer | Testing and report | ### Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel. The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 6 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: Garmin ### 3.3 TEST EQUIPMENT | DESCRIPTION AND
MANUFACTURER | I MODELNO I | | LAST
CALIBRATION
DATE | CALIBRATION
DUE DATE | |--|---------------|------------|-----------------------------|-------------------------| | Keysight MXE Signal Analyzer (44GHz)* | N9038A | MY59050109 | December 5, 2019 | December 5, 2021 | | Keysight MXE Signal Analyzer (26.5GHz)* | N9038A | MY56400083 | May 5, 2020 | May 5, 2022 | | SunAR RF Motion | JB1 | A091418 | March 6, 2020 | March 6, 2022 | | EMCO Horn Antenna | 3115 | 6415 | March 16, 2020 | March 16, 2022 | | EMCO Horn Antenna | 3116 | 2576 | March 9, 2020 | March 9, 2022 | | Com-Power LISN 50μH / 250μH - 50Ω | LI-220C | 20070017 | September 22, 2020 | September 22, 2021 | | 8447F POT H64 Preamplifier** | 8447F POT H64 | 3113AD4667 | February 1, 2021 | February 1, 2022 | | Rohde & Schwarz Preamplifier** | TS-PR18 | 3545700803 | April 14, 2020 | April 14, 2022 | | Trilithic High Pass Filter** | 6HC330 | 23042 | April 14, 2020 | April 14, 2022 | | RF Cable (preamplifier to antenna)** | MFR-57500 | 01-07-002 | April 14, 2020 | April 14, 2022 | | RF Cable (antenna to 10m chamber bulkhead)** | FSCM 64639 | 01E3872 | April 14, 2020 | April 14, 2022 | | RF Cable (10m chamber bulkhead to control room bulkhead)** | FSCM 64639 | 01E3874 | April 14, 2020 | April 14, 2022 | | RF Cable (control room bulkhead to test receiver)** | FSCM 64639 | 01F1206 | April 14, 2020 | April 14, 2022 | | N connector bulkhead (10m chamber)** | PE9128 | NCEEBH1 | April 14, 2020 | April 14, 2022 | | N connector bulkhead (control room)** | PE9128 | NCEEBH2 | April 14, 2020 | April 14, 2022 | | TDK Emissions Lab Software | V11.25 | 700307 | NA | NA | ^{**}Internal Characterization #### Notes All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities. The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 | | 1Cee . | Report Number: | R20200722-20-E1 | Rev | А | |---|---------------|----------------|-----------------|-----|---| | • | labs | Prepared for: | Garmin | | | ### 3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS Measurement type presented in this report (Please see the checked box below): ### Conducted The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. Figure 1 - Bandwidth Measurements Test Setup ### All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. Figure 2 - Radiated Emissions Test Setup The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 ## 4.0 RESULTS **Summary of results:** The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Prepared for: Garmin | | DTS Radio Measurements | | | | | | | |--|------------------------|--------------------------------|----------------------------|----------------------------|---------------------------------|-------------------|--------| | CHANNEL | Mode | Occupied
Bandwidth
(kHz) | 6 dB
Bandwidth
(kHz) | Output Power
EIRP (dBm) | OUTPUT
POWER
EIRP
(mW) | PSD EIRP
(dBm) | RESULT | | Low | BLE | 1071.90 | 696.00 | 6.133 | 4.105 | -10.209 | PASS | | Mid | BLE | 1076.20 | 708.60 | 5.561 | 3.598 | -10.827 | PASS | | High | BLE | 1079.00 | 704.60 | 4.776 | 3.003 | -11.611 | PASS | | Peak Output Power Limit = 30 dBm; PSD Limit = 8 dBm Occupied Bandwidth = N/A; 6 dB Bandwidth Limit >500 kHz EIRP = Raw Output power (dBm) + Transducer(dB) Cable Loss(dB) + 107.00 - 95.23 This equation also applies to PSD EIRP. | | | | | | lucer(dB) +
3 | | | Frequency | Cable (dB) | | |-----------|------------|------| | 2402 | 28.357 | 5.96 | | 2440 | 28.267 | 5.89 | | 2480 | 28.369 | 6.04 | | 240 | U | 20. | .503 | 0.04 | | | | | | |---------------------------|------------------------------|---|--|---------------------|---------------------------|-------------------|--------|--|--| | | | | | | | | | | | | CHANNEL | HANNEL Mode /N | | Band edge /Measurement Frequency (MHz) Relative Highest out of band level (dBm) Relative Highest (dBm) | | Delta
(dB) | Min Delta
(dB) | Result | | | | Low | BLE | 2399.810000 | -53.82 | -5.92 | 47.79 | 20.00 | PASS | | | | High | BLE | 2483.500000 | -63.06 | -7.37 | 55.69 | 20.00 | PASS | | | | Peak Restricted Band-Edge | | | | | | | | | | | CHANNEL Mode | | Band edge /Measurement Frequency (MHz) Highest out of band level (dBuV/m @ 3m) | | Measurement
Type | Limit
(dBuV/m
@ 3m) | Margin | Result | | | | Low | BLE | 2389.170000 | 53.36 | Radiated | 73.98 | 20.62 | PASS | | | | High | BLE | 2483.500000 | 60.22 | Radiated | 73.98 | 13.76 | PASS | | | | *Limit shown | is the peak lin | nit taken from FCC F | Part 15.209 | | | | | | | | | Average Restricted Band-Edge | | | | | | | | | The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 10 of 42 Prepared for: Garmin | CHANNEL | Mode | Band edge
/Measurement
Frequency
(MHz) | Highest out of band level (dBuV/m @ 3m) | Measurement
Type | Limit
(dBuV/m
@ 3m) | Margin | Result | |---------|------|---|---|---------------------|---------------------------|--------|--------| | Low | BLE | 2389.170000 | 37.96 | Radiated | 53.98 | 16.02 | PASS | | High | BLE | 2483.500000 | 44.82 | Radiated | 53.98 | 9.16 | PASS | ^{*}Limit shown is the Average limit taken from FCC Part 15.209, values taken from peak measurements added with the Duty Cycle Correction Factor. *Limit shown is the average limit taken from FCC Part 15.209 | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Propaged for: | Garmin | | | ### 4.1 OUTPUT POWER **Test Method**: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. ### Limits of power measurements: ### For FCC Part 15.247 Device: The maximum allowed peak output power is 30 dBm. ### Test procedures: Details can be found in section 3.4 of this report. #### **Deviations from test standard:** No deviation. ### Test setup: Details can be found in section 3.4 of this report. ### **EUT operating conditions:** Details can be found in section 2.1 of this report. ### Test results: ### **Pass** ### Comments: - 1. All the output power plots can be found in the Appendix C. - 2. All data is in the table in results section 4.0. - 3. All the measurements were found to be compliant. Page 12 of 42 | Report Number: | R20200722-20-E1 | Rev | Α | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | #### 4.2 BANDWIDTH **Test Method**: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. #### Limits of bandwidth measurements: #### For FCC Part 15.247 Device: The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz. ### Test procedures: Details can be found in section 3.4 of this report. ### **Deviations from test standard:** No deviation. #### Test setup: Test setup details can be found in section 3.4 of this report. ### **EUT operating conditions:** Details can be found in section 2.1 of this report. ### Test results: ### **Pass** ### Comments: - 1. All the bandwidth plots can be found in the Appendix C. - 2. All data is in the table in results section 4.0. - 3. All the measurements were found to be compliant. Lincoln, NE 68521 Page 13 of 42 ### 4.3 DUTY CYCLE ### Test Method: The worst-case duty cycle provided by the manufacturer was 17%. Duty Cycle Correction Factor (DCCF) is given by the following equation given in C63.10 Section 7.5: DCCF = 20 * Log(0.17) = -15.4dB Prepared for: | Garmin ### 4.4 RADIATED EMISSIONS **Test Method**: ANSI C63.10-2013, Section 6.5, 6.6 #### Limits for radiated emissions measurements: Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed: | FREQUENCIES
(MHz) | FIELD
STRENGTH
(µV/m) | MEASUREMENT
DISTANCE (m) | |----------------------|-----------------------------|-----------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 3 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | #### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m). - 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation. - 4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented. Report Number: R20200722-20-E1 Rev A Prepared for: Garmin ### Test procedures: - a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement. - d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading. - e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions. - h. For the preview scans, the EUT was tested with all radios transmitting simultaneously and independently to identify the highest peaks. Prepared for: Garmin ### Test setup: Figure 3 - Radiated Emissions Test Setup ### NOTE: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz. - 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver. ### **Deviations from test standard:** No deviation. ### **EUT operating conditions** Details can be found in section 2.1 of this report. The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 17 of 42 ### Test results: Figure 4 - Radiated Emissions Plot, Receive Figure 5 - Radiated Emissions Plot, Low Channel | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | | Quasi-Peak Measurements, 30MHz – 1GHz, BLE, Low | | | | | | | | |---|--------|--------|--------|--------|--------|------|---------| | Frequency | Level | Limit | Margin | Height | Angle | Pol. | Channel | | MHz | dBμV/m | dBμV/m | dB | cm | deg | | | | 312.009120 | 38.62 | 46.02 | 7.40 | 117.00 | 100.00 | Н | Low | | 359.988720 | 42.66 | 46.02 | 3.36 | 106.00 | 46.00 | Н | Low | | 120.005280 | 41.34 | 43.52 | 2.18 | 109.00 | 65.00 | V | Low | The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above. For the 30MHz – 1 GHz frequency range, the low middle and highest channels were investigated. The difference was less than 1 dB, so the full data from the low channel is presented. | Peak Measurements, 1GHz - 25GHz, GMSK | | | | | | | | |---------------------------------------|--------|--------|--------|--------|-------|------|---------| | Frequency | Level | Limit | Margin | Height | Angle | Pol. | Channel | | MHz | dBμV/m | dBμV/m | dB | cm | deg | | | | 2401.754000 | 101.12 | NA | NA | 144 | 208 | V | Low | | 2440.344000 | 99.80 | NA | NA | 135 | 197 | V | Mid | | 2480.266000 | 99.67 | NA | NA | 166 | 201 | V | High | | 4530.946000 | 50.52 | 73.98 | 23.46 | 488 | 357 | V | Low | | 4531.136000 | 49.50 | 73.98 | 24.48 | 336 | 353 | V | High | | 4803.410000 | 45.42 | 73.98 | 28.56 | 507 | 142 | V | Low | | 4959.462000 | 47.58 | 73.98 | 26.40 | 538 | 161 | V | High | | 5739.394000 | 43.16 | 73.98 | 30.82 | 559 | 347 | V | Low | | 7205.810000 | 52.34 | 73.98 | 21.64 | 560 | 60 | V | Low | | 7439.196000 | 59.17 | 73.98 | 14.81 | 123 | 114 | Н | High | | 7551.432000 | 54.03 | 73.98 | 19.95 | 116 | 352 | V | Low | | 7551.532000 | 55.32 | 73.98 | 18.66 | 121 | 4 | V | High | | 10572.196000 | 53.57 | 73.98 | 20.41 | 112 | 82 | V | High | | 7321.034000 | 54.03 | 73.98 | 19.95 | 179 | 94 | Н | Mid | | 4523.324000 | 49.95 | 73.98 | 24.03 | 375 | 345 | V | Mid | | 4880.648000 | 47.62 | 73.98 | 26.36 | 386 | 158 | V | Mid | | 7539.118000 | 53.46 | 73.98 | 20.52 | 120 | 351 | V | Mid | The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prenared for: | Garmin | | | | Average Measurements, 1GHz - 25GHz, GMSK | | | | | | | | |--|--------|--------|--------|--------|-------|----------|---------| | Frequency | Level | Limit | Margin | Height | Angle | Pol. | Channel | | MHz | dBμV/m | dBμV/m | dB | cm | deg | | | | 2401.754000 | 85.72 | NA | NA | 144 | 208 | V | Low | | 2440.344000 | 84.40 | NA | NA | 135 | 197 | ٧ | Mid | | 2480.266000 | 84.27 | NA | NA | 166 | 201 | ٧ | High | | 4530.946000 | 35.12 | 53.98 | 18.86 | 488 | 357 | V | Low | | 4531.136000 | 34.10 | 53.98 | 19.88 | 336 | 353 | V | High | | 4803.410000 | 30.02 | 53.98 | 23.96 | 507 | 142 | V | Low | | 4959.462000 | 32.18 | 53.98 | 21.80 | 538 | 161 | V | High | | 5739.394000 | 27.76 | 53.98 | 26.22 | 559 | 347 | V | Low | | 7205.810000 | 36.94 | 53.98 | 17.04 | 560 | 60 | V | Low | | 7439.196000 | 43.77 | 53.98 | 10.21 | 123 | 114 | Н | High | | 7551.432000 | 38.63 | 53.98 | 15.35 | 116 | 352 | V | Low | | 7551.532000 | 39.92 | 53.98 | 14.06 | 121 | 4 | V | High | | 10572.196000 | 38.17 | 53.98 | 15.81 | 112 | 82 | V | High | | 7321.034000 | 38.63 | 53.98 | 15.35 | 179 | 94 | Н | Mid | | 4523.324000 | 34.55 | 53.98 | 19.43 | 375 | 345 | V | Mid | | 4880.648000 | 32.22 | 53.98 | 21.76 | 386 | 158 | V | Mid | | 7539.118000 | 38.06 | 53.98 | 15.92 | 120 | 351 | V | Mid | Duty Cycle Correction Factor from section 4.3 was applied to peak measurements to get average measurements. The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. | Report Number: | R20200722-20-E1 | Rev | Α | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | #### 4.5 BAND EDGES **Test Method**: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. #### Limits of band-edge measurements: #### For FCC Part 15.247 Device: For emissions outside of the allowed band of operation (2400.0MHz – 2480.0MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209. ### Test procedures: The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report. #### **Deviations from test standard:** No deviation. ### Test setup: Test setup details can be found in section 3.4 of this report. #### **EUT operating conditions:** Details can be found in section 2.1 of this report. #### Test results: ### **Pass** ### Comments: - 1. All the band edge plots can be found in the Appendix C. - 2. All data is in the table in results section 4.0. - If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge. - 4. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device. Page 21 of 42 | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | #### **POWER SPECTRAL DENSITY** 4.6 Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. ### Limits of power measurements: #### For FCC Part 15.247 Device: The maximum PSD allowed is 8 dBm. #### Test procedures: Details can be found in section 3.4 of this report. ### **Deviations from test standard:** No deviation. ### Test setup: Details can be found in section 3.4 of this report. ### **EUT** operating conditions: Details can be found in section 2.1 of this report. #### Test results: ### **Pass** Comments: - 4. All the Power Spectral Density (PSD) plots can be found in the Appendix C. - 5. All the measurements were found to be compliant. - 6. The measurements are reported on the graph. Page 22 of 42 | Report Number: | R20200722-20-E1 | Rev | Α | |----------------|-----------------|-----|---| | | | | | Prepared for: | Garmin ### 4.7 CONDUCTED AC MAINS EMISSIONS Test Method: ANSI C63.10-2013, Section(s) 6.2 #### Limits for conducted emissions measurements: | FREQUENCY OF EMISSION (MHz) | CONDUCTED LIMIT
(dBµV) | | |-----------------------------|---------------------------|----------| | | Quasi-peak | Average | | 0.15-0.5 | 66 to 56 | 56 to 46 | | 0.5-5 | 56 | 46 | | 5-30 | 60 | 50 | #### Notes: - 1. The lower limit shall apply at the transition frequencies. - 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz - 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above. #### **Test Procedures:** - a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground. - c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported. - d. Results were compared to the 15.207 limits. ### **Deviation from the test standard:** No deviation #### **EUT operating conditions:** Details can be found in section 2.1 of this report. . The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 23 of 42 **36** labs Report Number: R20200722-20-E1 Rev A Prepared for: | Garmin #### **Test Results:** Figure 6 - Conducted Emissions Plot, TX, Line Figure 7 - Conducted Emissions Plot, TX, Neutral The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 24 of 42 Prepared for: | Garmin Figure 8 - Conducted Emissions Plot, RX, Line Figure 9 - Conducted Emissions Plot, RX, Neutral The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 25 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: Garmin ### APPENDIX A: SAMPLE CALCULATION ### **Field Strength Calculation** The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: $$FS = RA + AF - (-CF + AG) + AV$$ where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable) Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m. $$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$$ The 48.1 dBμV/m value can be mathematically converted to its corresponding level in μV/m. Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window. The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 26 of 42 | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prenared for: | Garmin | | | ### **EIRP Calculations** In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation; EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] 2 / 30 Power (watts) = 10^{Power} (dBm)/10] / 1000 Voltage $(dB\mu V)$ = Power (dBm) + 107 (for 50 Ω measurement systems) Field Strength $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$ Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3): $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ 10log(10^9) is the conversion from micro to milli Lincoln, NE 68521 Page 27 of 42 | Report Number: | R20200722-20-E1 | Rev | А | |----------------|-----------------|-----|---| | Prepared for: | Garmin | | | ### APPENDIX B - MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been for tests performed in this test report: | Test | Frequency Range | Uncertainty Value (dB) | |-----------------------------|-----------------|------------------------| | Radiated Emissions, 3m | 30MHz - 1GHz | 3.82 | | Radiated Emissions, 3m | 1GHz - 18GHz | 4.44 | | Emissions limits, conducted | 30MHz – 18GHz | ±3.30 dB | Expanded uncertainty values are calculated to a confidence level of 95%. The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 28 of 42 Report Number: R20200722-20-E1 Rev Α Prepared for: 0 for: | Garmin ### APPENDIX C - GRAPHS AND TABLES **01 Power Low Channel** Output Power EIRP(dBm) = SA Level(dBm) + Transducer(dB) + Cable(dB) - EIRP conversion from 3 meter FS (dBm) to EIRP (dBm) 6.133 dBm = -39.954 dBm + 28.357 dB + 5.96 dB + 11.77 The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 29 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: Garmin **02 Power Mid Channel** Output Power EIRP(dBm) = SA Level(dBm) + Transducer(dB) + Cable(dB) - EIRP conversion from 3 meter FS (dBm) to EIRP (dBm) 5.561 dBm = -40.366 dBm + 28.267 dB + 5.89 dB + 11.77 The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 30 of 42 Prepared for: Garmin **03 Power High Channel** Output Power EIRP(dBm) = SA Level(dBm) + Transducer(dB) + Cable(dB) - EIRP conversion from 3 meter FS (dBm) to EIRP (dBm) 4.776 dBm = -41.403 dBm + 28.369 dB + 6.04 dB + 11.77 The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 31 of 42 Prepared for: Ga Garmin 04 Bandwidth Low Channel Page 32 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: | Ga Garmin **05 Bandwidth Mid Channel** Page 33 of 42 Prepared for: Garmin 06 Bandwidth High Channel Page 34 of 42 Prepared for: | Garmin **07 Power Spectral Density Low Channel** Output Power EIRP(dBm) = SA Level(dBm) + Transducer(dB) + Cable(dB) - EIRP conversion from 3 meter FS (dBm) to EIRP (dBm) -10.209dBm = -56.296dBm + 28.357dB + 5.96dB + 11.7 The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 35 of 42 Prepared for: | Garmin **08 Power Spectral Density Mid Channel** Output Power EIRP(dBm) = SA Level(dBm) + Transducer(dB) + Cable(dB) - EIRP conversion from 3 meter FS (dBm) to EIRP (dBm) -10.827dBm = -56.754dBm + 28.357dB + 5.96dB + 11.77 The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 36 of 42 Prepared for: | Garmin **09 Power Spectral Density High Channel** Output Power EIRP(dBm) = SA Level(dBm) + Transducer(dB) + Cable(dB) - EIRP conversion from 3 meter FS (dBm) to EIRP (dBm) -11.611dBm = -57.790dBm + 28.357dB + 5.96dB + 11.77 The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 37 of 42 Prepared for: Garmin 10 Lower Band Edge Unrestricted **Corrections included in plot** Page 38 of 42 Prepared for: | Garmin 11 High Band Edge Unrestricted **Corrections included in plot** Page 39 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: Garmin 12 Low Band Edge Restricted, Peak **Corrections included in plot** Average Measurement(dBuV) = Peak Measurement(dBuV) - Duty Cycle Correction Factor(dB) 37.96dBuV = 53.357dBuV - 15.40dB The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 40 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: | Garmin 13 High Band Edge Restricted, Peak **Corrections included in plot** Average Measurement(dBuV) = Peak Measurement(dBuV) - Duty Cycle Correction Factor(dB) 44.82dBuV = 60.217dBuV - 15.40dB The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 41 of 42 Report Number: R20200722-20-E1 Rev A Prepared for: Garmin ### REPORT END The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521 Page 42 of 42