

FCC LISTED, REGISTRATION NUMBER: 2764.01

ISED LISTED REGISTRATION NUMBER: 23595-1 Test report No: 3154ERM.011

Partial Test report

USA FCC Part 15.247, 15.407 15.209, 15.207 CANADA RSS-247, RSS-Gen

(*) Identification of item tested	Infotainment Head Unit
(*) Trademark	Garmin
(*) Model and /or type reference tested	MGU22
Other identification of the product	FCC ID: IPH-03910 IC: 1792A-03910
(*) Features	USB2.0 (3 ports), HS-CAN, 100BaseT1(OABR), 1000BaseT1(GBit), Bluetooth, WLAN 802.11ax,u MIMO (2.4GHz/5GHz), APIX2 &APIX3 displaylink (HDCP2.3), FPD-Link III, GNSS
Manufacturer	Garmin International, Inc. 1200 E. 151st Street Olathe, Kansas 66062, USA
Test method requested, standard	 USA FCC Part 15.247, 10-1-20 Edition: Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz USA FCC Part 15.407 10-1-20 Edition : Unlicensed National Information Infrastructure Devices. General technical requirements. USA FCC Part 15.209 10-1-20 Edition: Radiated emission limits; general requirements. CANADA RSS-247 Issue 2 (February 2017). CANADA RSS-Gen Issue 5 (April 2018). 558074 D01 15.247 Meas Guidance v05r02. Guidance for Compliance Measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under section §15.247 of the FCC Rules ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.
Summary	IN COMPLIANCE
Approved by (name / position & signature)	Domingo Galvez EMC&RF Lab Manager
Date of issue	12-03-2021
Report template No	FDT08_23 (*) "Data provided by the client"

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Data provided by the client	4
Usage of samples	4
Test sample description	5
Identification of the client	6
Testing period and place	6
Document history	7
Environmental conditions	7
Remarks and comments	7
Testing verdicts	8
Summary	8
List of equipment used during the test1	0
Appendix A: FCC Multi-transmitters Test Results1	1

Competences and guarantees

DEKRA Certification Inc. is a testing laboratory accredited by A2LA (The American Association for Laboratory Accreditation), to perform the tests indicated in the Certificate 2764.01

DEKRA Certification Inc. is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Certification Inc. has a calibration and maintenance program for its measurement equipment.

DEKRA Certification Inc. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Certification at the time of performance of the test.

DEKRA Certification Inc. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Certification Inc.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Certification Inc.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Certification Inc. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Certification internal document PODT000.

Test case	Frequency (MHz)	U (k=2)	Units
Radiated Spurious Emission	30-180	4.27	dB
	180-1000	3.14	dB
	1000-18000	3.30	dB
	18000-40000	3.49	dB

Data provided by the client

Automotive Infotainment Head Unit.

DEKRA declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples used for test have been selected by: The client.

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
2874/54	Garmin MGU 22 beam forming mode sample	MGU22	GAG100L0000124	06/28/2021
2874/68	Garmin MGU 22 non-beam forming mode sample	MGU22	GAG100L0000166	09/07/2021
2874/15	Antenna with Fakra Connector			03/26/2021

Sample S/01 is composed of the following accessories:

Control Nº	Description	Model	Serial N ^o	Date of reception
2874/06	Harness			03/26/2021
2874/07	Ant Wave Fakra 5G- GNSS		8705915-04	03/26/2021
3171/08	BMW Antenna-DA Fakra 5G-GNSS		6520 8705915-04	03/05/2021
2874/12	OABR Connector cable			03/26/2021

1. Sample S/01 was used for the following test(s): All Radiated tests indicated in appendix A.

Test sample description

Ports:					Cable			
	Port name and description		Port name and description Specified length [m]		Attached during test		Shielded	
	BT/Wi	-fi Antenna	2		\square			
	USB1/	/2/3	2		\boxtimes			
	Powe	r	2					
	CID		2		\boxtimes			
	AR-C	am	2		\boxtimes			
	100 B T1/GF	ase T1/1G Base PS	2					
Supplementary information to the ports	No Da	ata Provided		I				
Rated power supply	Volta		F		Reference poles		3	
	Vona	Voltage and Frequency	L1	L2	L3	Ν	PE	
		AC:						
		AC:						
		DC: 8V to 16V						
		DC:						
Rated Power	No Data Provided							
Clock frequencies	No Da	ata Provided						
Other parameters	No Da	ata Provided						
Software version	STS 2	20w47.2-1-80.5						
Hardware version	5.1.5							
Dimensions in cm (W x H x D):	No Da	ata Provided						
Mounting position	Tabletop equipment							
	□ Wall/Ceiling mounted equipment							
	Floor standing equipment							
	Hand-held equipment							
	Other: Vehicle / Automotive use							
Modules/parts	Modu	le/parts of test item		Туре	9	Man	ufacturer	
	No Da	ata Provided						
L								

Accessories (not part of the test item)	Description	Туре	Manufacturer
	USB drives		
	APIX 3 Box		
	AR-CAM		
	OptoLan-Gb		
	OptoLan- BCM89811		
	OptoCAN		
Documents as provided by the applicant	Description	File name	Issue date
	Declaration Equipment	FDT30_18 Declaration	05/19/2021
	Data	Equipment Data_updated	
	Compliance Testing Guide		03/26/2021
	Labtool User Guide	88W9098_88Q9098_Labtoo	03/26/2021
		I_User_Guide_v1	
	MGU Cabling		03/26/2021
	Static IP Windows Setup		03/26/2021
	Copy of marking plat	e:	
		RRA Dio	

Identification of the client

Garmin International, Inc. 1200 E. 151st Street, Olathe, Kansas 66062, USA.

Testing period and place

Test Location	DEKRA Certification, Inc.
Date (start)	04-15-2021
Date (finish)	11-01-2021

Document history

Report number	Date	Description
3154ERM.011	11-24-2021	First release

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the semi anechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 60 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

Remarks and comments

The tests have been performed by the technical personnel: Nasir Khan, Koji Nishimoto & Lourdes Maria Valverde

Testing verdicts

Not applicable :	N/A
Pass :	Ρ
Fail :	F
Not measured :	N/M

Summary

		FCC PART 15 PA	RAGRAPH / RSS-247 (Bluetooth EDR)		
Section	15.247 Spec Clause	RSS Spec Clause	Test Description	Verdict	Remark
-	§ 2.1049 & § 15.247 (a) (1)	RSS-247 5.1 (b)	20dB Emission Bandwidth, Occupied Bandwidth & Carrier Frequency Separation	N/M	Refer 1
-	§ 15.247 (a) (1) (iii)	RSS-247 5.1 (d)	Number of hopping channels	N/M	Refer 1
-	§ 15.247 (a) (1) (iii)	RSS-247 5.1 (d)	Time of Occupancy (Dwell Time)	N/M	Refer 1
-	§ 15.247 (b) (3)	RSS-247 5.4 (b)	Maximum peak conducted output power and antenna gain	N/M	Refer 1
-	§ 15.247 (d)	RSS-247 5.5	Band-edge conducted emissions compliance (Transmitter)	N/M	Refer 1
-	§ 15.247 (d)	RSS-247 5.5	Emission limitations Conducted (Transmitter)	N/M	Refer 1
A.1	§ 15.247 (d)	RSS-247 5.5	Emission limitations Radiated (Transmitter)	Р	N/A
	ementary informat y multi-transmitter ra		ission test was requested.		

		FCC PART	15 PARAGRAPH (WIFI 2.4GHz)		
Section	15.247 Spec Clause	RSS Spec Clause	Test Description	Verdict	Remark
-	§ 2.1049 & §15.247 (a) (2)	RSS-247 5.2 (a)	99% Occupied Bandwidth & 6dB Bandwidth	N/M	Refer 1
-	§ 15.247 (b)	RSS-247 5.4 (d)	Maximum Output Power and antenna gain	N/M	Refer 1
-	§ 15.247 (d)	RSS-247 5.5	Band-edge conducted emissions compliance (Transmitter)	N/M	Refer 1
-	§ 15.247 (e)	RSS-247 5.2 (b)	Power Spectral Density	N/M	Refer 1
-	§15.247(d)	RSS-247 5.5	Emission limitations Conducted (Transmitter)	N/M	Refer 1
A.1	§15.247 (d)	RSS-247 5.5	Emission limitations Radiated (Transmitter)	Р	N/A
	ementary informat		ssion test was requested.		

Report Section	15.407 Spec Clause	RSS Spec Clause				
	§ 15.403 KDB 789033 D02	RSS 247 6.2.4	26dB Emission Bandwidth & Occupied Bandwidth	N/M	Refer 1	
	§ 15.407 (e)	RSS 247 6.2.4.1	6dB Bandwidth	N/M	Refer 1	
	§ 15.407 (a)(3)	RSS 247 6.2.4.1	Power Limits. Maximum Output Power	N/M	Refer 1	
	§ 15.407 (a)(3)	RSS-247 6.2.4.1	Maximum Power Spectral Density	N/M	Refer 1	
	§ 15.407 (b)(4)	RSS-247 6.2.4.2	Band-edge conducted emissions compliance (Transmitter)	N/M	Refer 1	
	§ 15.407 (b)(6) § 15.207	RSS-Gen 8.8	Emission limitations Conducted (Transmitter)	N/M	Refer 1	
A.1	§ 15.407 (b)(4),(7) § 15.209 § 15.205	RSS-247 6.2.4.2 RSS-Gen 8.9 & 8.10	Undesirable radiated emissions (Transmitter)	Р	N/A	
	§ 15.407 (g)	RSS-Gen 6.11 & 8.11	Frequency Stability	N/M	Refer 1	

List of equipment used during the test

Radiated Measurements

CONTROL NUMBER	DESCRIPTION	MANUFACTURER	MODEL	LAST CALIBRATION	NEXT CALIBRATION
1179	Semi anechoic Absorber Lined Chamber	Frankonia	SAC 3 plus "L"	N/A	N/A
1065	Biconical Log antenna	ETS LINDGREN	3142E	2020/08	2023//08
1057	Double-ridge Waveguide Horn antenna 1-18 GHz	ETS LINDGREN	3115	2020/06	2023/06
1056	Double-ridge Waveguide Horn antenna 18-40 GHz	ETS LINDGREN	3116C	2020/01	2023/01
1039	Spectrum analyzer	Rohde & Schwarz	FSV40	2020/09	2022/09
1012	EMI TEST RECEIVER	Rohde & Schwarz	ESR 26	2019/12	2021/12
0982	RF pre-amplifier 18-40 GHz	Bonn Elektronik	BLMA 1840- 1M	2020/11	2022/11
0981	RF pre-amplifier 1-18 GHz	Bonn Elektronik	BLMA 0118- 2A	2020/11	2022/11
1111	ETHERNET SNMP THERMOMETER	HW GROUP	HWg-STE Plain	2020/08	2022/08

Appendix A: FCC Multi-transmitters Test Results

Appendix A Content

PRODUCT INFORMATION	13
Description of Test Conditions	14
A.1: RADIATED EMISSIONS (Multi-Transmitters)	15

PRODUCT INFORMATION

Information	Description
Modulation	FHSS,DSSS and OFDM
Operation mode 1: Single Antenna Equipment	
- Operating Frequency Range	2402 – 2480 MHz
	5150 – 5850 MHz
- Nominal Channel Bandwidth	20/40/80 MHz
- RF Output Power	Wi-Fi 2.4 GHz: 14 dBm
	Wi-Fi 5 GHz: 14 dBm
Extreme operating conditions	
- Temperature range	-40 °C to +65 °C
Antenna type	
Antenna gain	Wi-Fi 2.4 GHz: -2.5 dBi
	Wi-Fi 5 GHz: -2.8 dBi
Nominal Voltage	
- Supply Voltage	12 Vdc
- Type of power source	DC voltage
Equipment type	Bluetooth, Wi-Fi 2.4 GHz, and Wi-Fi 5 GHz
Geo-location capability	No

Description of Test Conditions

TEST CONDITIONS	DESCRIPTION								
	Power	supply (V):							
		12 Vdc							
	<u>Test Fr</u>	requencies for Radiate	ed tests:						
TC#01 ⁽¹⁾		Technology	Tested Frequency	BW	Modulation	Mode			
		Bluetooth	2480	20	FHSS	π/4-DQPSK			
	,	Wi-Fi 2.4 GHz MIMO	2437	40	OFDM	n mode			
		st was performed with Hz radios simultaneo		easure	ements have b	been performed	l in		
	Fi 2.4G order to transm Power	GHz radios simultaneo o check the impact of <u>itting simultaneously.</u> <u>supply (V):</u> 12 Vdc	usly. These m the multi-trans						
	Fi 2.4G order to transm Power	GHz radios simultaneo o check the impact of itting simultaneously. supply (V):	usly. These m the multi-trans						
TC#02(1)	Fi 2.4G order to transm Power	GHz radios simultaneo o check the impact of <u>itting simultaneously.</u> <u>supply (V):</u> 12 Vdc	usly. These m the multi-trans						
TC#02 ⁽¹⁾	Fi 2.4G order to transm Power	GHz radios simultaneo o check the impact of itting simultaneously. <u>supply (V):</u> 12 Vdc requencies for Radiate	usly. These m the multi-trans ed tests: Tested	smitter	of all radio int	erfaces that ca			
TC#02 ⁽¹⁾	Fi 2.4G order to transm Power	GHz radios simultaneo o check the impact of itting simultaneously. <u>supply (V):</u> 12 Vdc requencies for Radiate Technology	usly. These m the multi-trans ed tests: Tested Frequency	BW	of all radio int	erfaces that can Mode			

Note (1): Preliminary scan was performed to determine the worst case between two SISO ports (2.4 GHz + 5 GHz) and MIMO (2.4 GHz or 5 GHz) ports. The following tables and plots show the results for the worst case in MIMO (2.4 GHz or 5 GHz) + BT.

A.1: RADIATED EMISSIONS (Multi-Transmitters)

LIMITS:	Product standard:	Part 15 Subpart C §15.247, Part 15 Subpart E §15.407 and RSS-247		
	Test standard:	Part 15 Subpart C §15.247 (d), Part 15 Subpart E §15.407 (b) (1) & (4) and		
		RSS-Gen 8.9 and 8.10		

LIMITS

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c) / RSS-Gen):

Frequency Range (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 25000	500	54	3

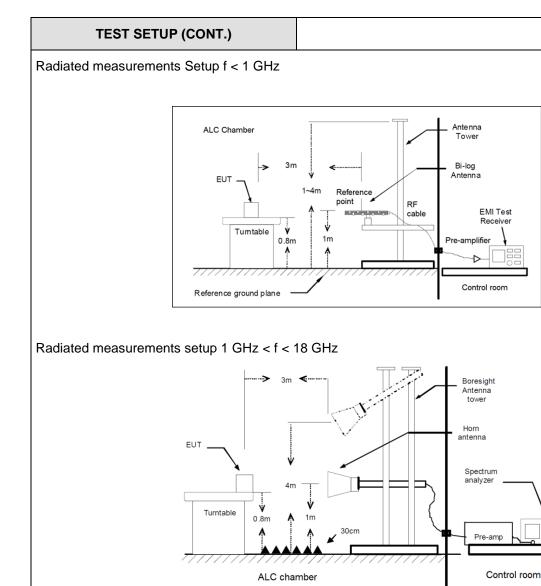
The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

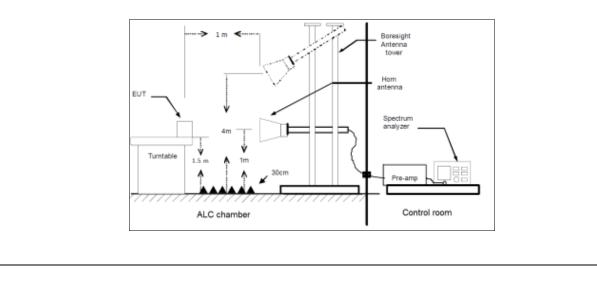
RSS-247. Attenuation below the general field strength limits specified in RSS-Gen is not required

TEST SETUP

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at 3 m for the frequency range 30-1000 MHz (Bilog antenna) and 1-18 GHz (Double ridge horn antenna, and at 1m for the frequency range 18-40 GHz (Double ridge horn antenna).

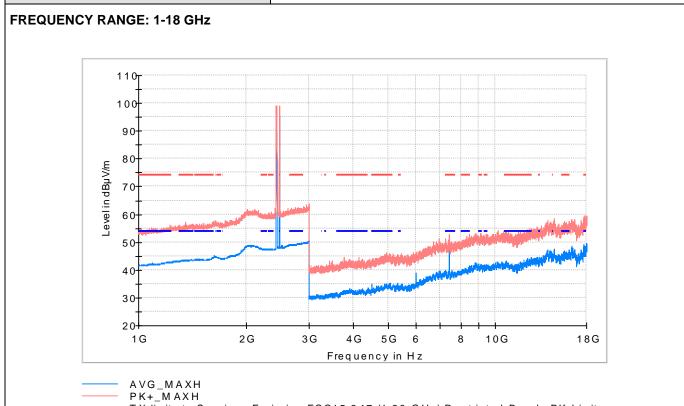

For radiated emissions in the range 18-40 GHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive platform above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

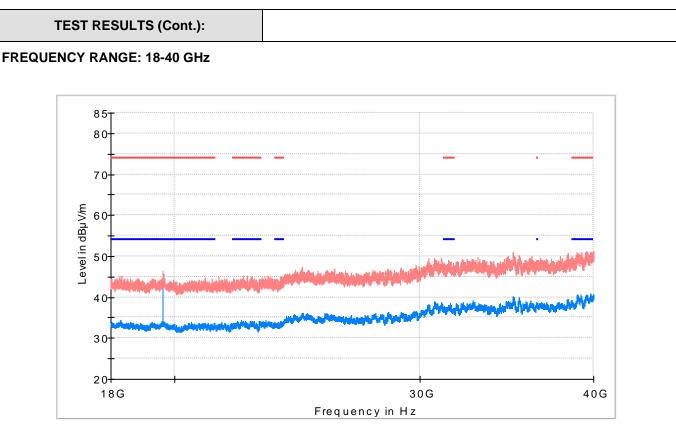

Measurements were made in both horizontal and vertical planes of polarization.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

Radiated measurements setup f > 18 GHz

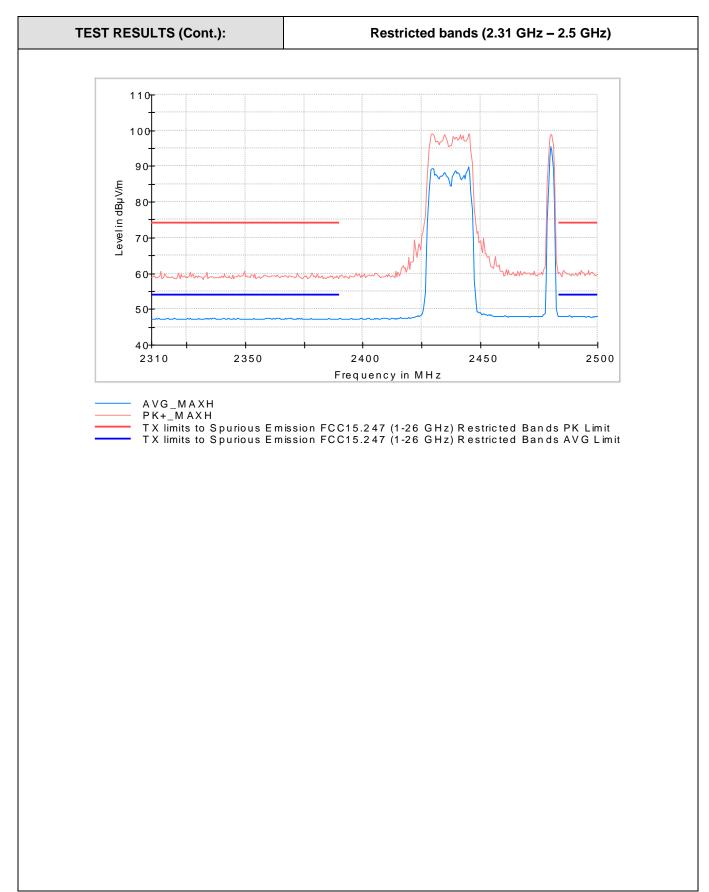


	TES	TED S	AMPLES	S:			S/0)1	
S		ONDI		ODES:	TC#01				
TEST RESULTS:			PASS						
	-	-			·	·	-	nd mode selecte	
				RF_FC	C_15.247_E H	Field_3	30MHz_1GHz		
	55T								
	50-								
								·	
	40							······	
E									
3µV/						V	,	per la companya ang ang ang ang ang ang ang ang ang an	
ind	30-					W	and a second second		
Level in dBµV/m					∇	الملمى	the state of the s		
Ľ	20-				المراجع المراجع	\sim	and a constitution of the second s		
			Un in the						
	10								
	o 🗕					1	- i i i		
	30 N		50 60	80 100	M 2 Frequenc	00 	300 400 50	00 800 1	
7 ×	– тх Ма	xPeal		ingle)				stricted Bands	
			quency	MaxPeak	QuasiPeak	Pol	Margin - QPK		
		•	/Hz)	(dBµV/m)	(dBµV/m)		(dB)	(dBµV/m)	
			011500	24.1	16.2	V	27.4	43.5	
			<u>305000</u> 963500	24.2 30.5	16.0 19.5	V V	27.5 26.5	43.5 46.0	
			790500	30.0	18.6	V	20.3	46.0	
		875.	064000	45.8	39.7	Н			
			452500	43.1	32.7	V	21.3	54.0	


TEST RESULTS (Cont.):

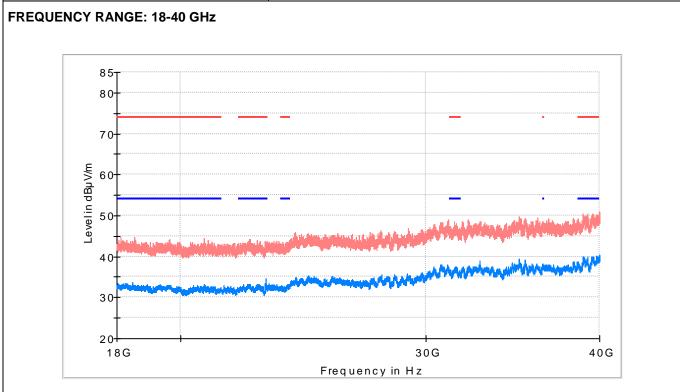
TX limits to Spurious Emission FCC15.247 (1-26 GHz) Restricted Bands PK Limit TX limits to Spurious Emission FCC15.247 (1-26 GHz) Restricted Bands AVG Limit

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Margin - AVG (dB)	Limit - AVG (dBµV/m)	Comment
2445.000000	99.2	89.7	Н			Wi-Fi Fundamental
2480.000000	98.9	95.5	Н			BT Fundamental
7439.000000	52.2	44.2	Н	9.8	54.0	



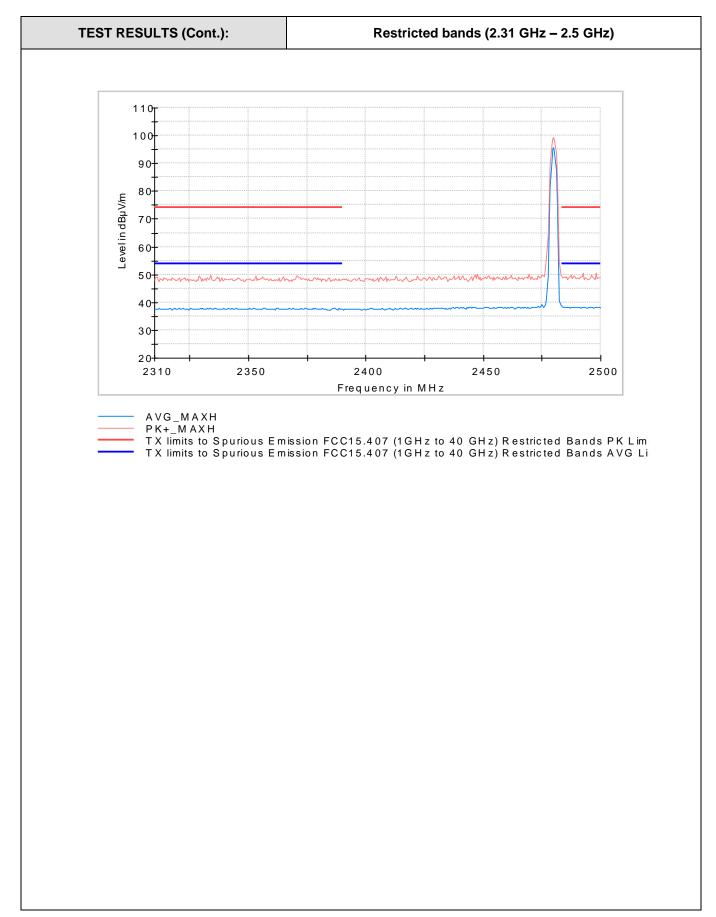
- AVG_MAXH PK+_MAXH
 - - TX limits to Spurious Emission FCC15.407 (1GHz to 40 GHz) Restricted Bands PK Lim TX limits to Spurious Emission FCC15.407 (1GHz to 40 GHz) Restricted Bands AVG Li

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Margin - AVG (dB)	Limit - AVG (dBµV/m)
19615.625000	46.3	43.9	V	10.1	54.0
39837.062500	49.1	40.8	V	13.2	54.0



TESTED SAMPLES: TESTED CONDITIONS MODES: TEST RESULTS:			S/01 TC#02 PASS											
								REQUENCY RA	NGE: 1-18 GHz					
									1 1 Or					
	100-													
	90													
E E	80-													
Level in dBµ V/m	70+					· · · · · · · · · · · · · · · · · · ·								
in dE	70													
evel	60													
L	50-			- Albert										
	40-		مرمر											
	-				New Constant									
	30													
	20	26			× 100	100								
		2G :	i 3G Fre	4G 5G 6 equency in Hz	8 10G	18G								
	20 1G	2G :			8 10G	18G								
	20 1G - AVG_MAXH - PK+_MAXH		Fre	equency in Hz										
	20 1G AVG_MAXH PK+_MAXH TX limits to Sp	urious Emission	Fre FCC1) GHz) Restricte	ed Bands PK Lim								
	20 1G AVG_MAXH PK+_MAXH TX limits to Sp	urious Emission	Fre FCC1	equency in Hz 5.407 (1GHz to 40) GHz) Restricte	ed Bands PK Lim								
	20 1G AVG_MAXH PK+_MAXH TX limits to Sp	urious Emission	Fre FCC1	equency in Hz 5.407 (1GHz to 40) GHz) Restricte	ed Bands PK Lim								
Frequency	20 1G AVG_MAXH PK+_MAXH TX limits to Spi TX limits to Spi	urious Emission	Fre FCC1	equency in Hz 5.407 (1GHz to 40) GHz) Restricte	ed Bands PK Lim								
(MHz)	20 1G AVG_MAXH PK+_MAXH TX limits to Spi TX limits to Spi PK+_MAXH (dBµV/m)	urious Emission urious Emission AVG_MAXH (dBµV/m)	FCC18 FCC18 FCC18	equency in Hz 5.407 (1GHz to 40 5.407 (1GHz to 40 Margin - AVG (dB)) GHz) Restricte) GHz) Restricte Limit - AVG (dBµV/m)	ed Bands PK Lim ed Bands AVG Li								
(MHz) 1625.00000	20 1G AVG_MAXH PK+_MAXH TX limits to Sp TX limits to Sp PK+_MAXH (dBµV/m) 47.4	urious Emission urious Emission AVG_MAXH (dBµV/m) 40.7	FCC18 FCC18 FCC18	5.407 (1GHz to 40 5.407 (1GHz to 40 5.407 (1GHz to 40 Margin - AVG (dB) 13.3) GHz) Restricte) GHz) Restricte Limit - AVG (dBµV/m) 54.0	ed Bands PK Lim ed Bands AVG Li Comment								
(MHz)	20 1G AVG_MAXH PK+_MAXH TX limits to Sp TX limits to Sp X limits to Sp 47.4 99.1	urious Emission urious Emission AVG_MAXH (dBµV/m)	FCC18 FCC18 FCC18	equency in Hz 5.407 (1GHz to 40 5.407 (1GHz to 40 Margin - AVG (dB)) GHz) Restricte) GHz) Restricte Limit - AVG (dBµV/m)	ed Bands PK Lim ed Bands AVG Li								
(MHz) 1625.00000 2479.500000	20 1G AVG_MAXH PK+_MAXH TX limits to Spi TX limits to Spi PK+_MAXH (dBµV/m) A7.4 99.1 107.1 52.2	urious Emission urious Emission AVG_MAXH (dBµV/m) 40.7 95.3	FCC18 FCC18 FCC18	equency in Hz 5.407 (1GHz to 40 5.407 (1GHz to 40 Margin - AVG (dB) 13.3 	GHz) Restricte GHz) Restricte Limit - AVG (dBµV/m) 54.0 	ed Bands PK Lim ed Bands AVG Li Comment BT Fundamental								

TEST RESULTS (Cont.):



AVG_MAXH PK+_MAXH

TX limits to Spurious Emission FCC15.407 (1GHz to 40 GHz) Restricted Bands PK Lim TX limits to Spurious Emission FCC15.407 (1GHz to 40 GHz) Restricted Bands AVG Li

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Margin - AVG (dB)	Limit - AVG (dBµV/m)
23019.437500	42.8	34.6	Н	19.4	54.0
39998.625000	51.0	40.3	V	13.7	54.0

