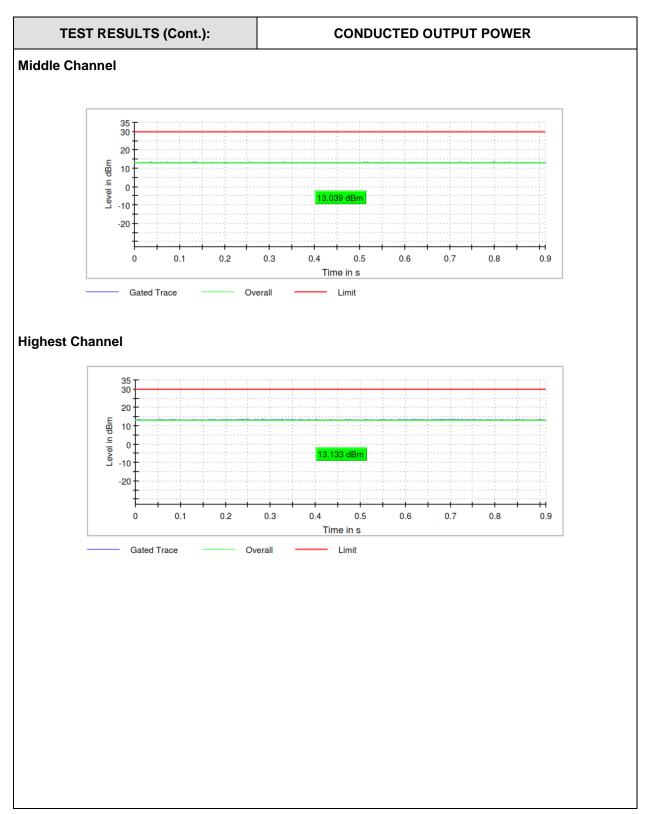
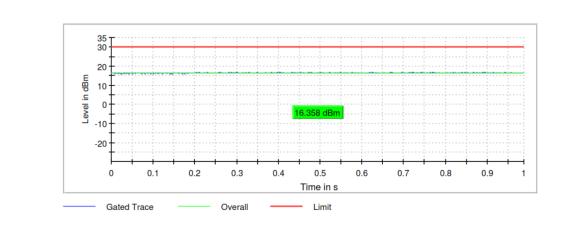


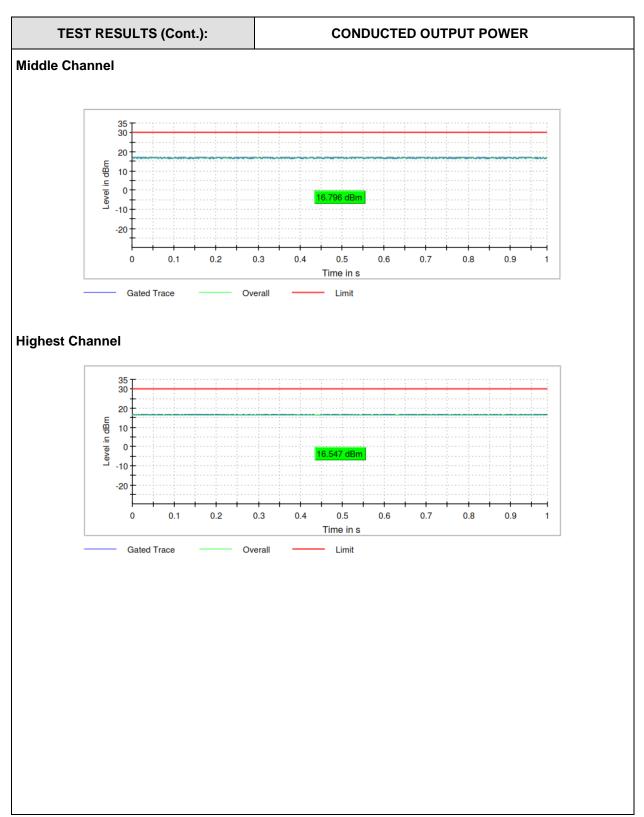
IESIE	D SAMPLES:		S/01	
TESTED CO	NDITIONS MODES:		TC#02 (g mode SIS	O)
TEST RESULTS:			PASS	
Maximum declar Radio A	ed antenna gain: -2.5 c	lBi		
		Lowest frequency 2412 MHz	Middle frequency 2437 MHz	Highest frequency 2462 MHz
Maximum cor	nducted power (dBm)	13.3	13.6	13.6
	EIRP power (dBm)	10.8	11.1	11.1
s not required to	be reduced from the s			
The maximum di s not required to Lowest Channe	be reduced from the s			
s not required to	be reduced from the s			
s not required to	be reduced from the s			
s not required to	be reduced from the s			
s not required to	be reduced from the s	tated values.		
s not required to	be reduced from the s	tated values.		



TEST	ED SAMPLES:		S/01	
TESTED CC	ONDITIONS MODES:		TC#02 (g mode SIS	iO)
TEST RESULTS:			PASS	
Maximum decla Radio B	ared antenna gain: -2.5	dBi		
		Lowest frequency	Middle frequency	Highest frequency
		2412 MHz	2437 MHz	2462 MHz
Maximum co	onducted power (dBm)	12.8	13.0	13.1
Maximum	EIRP power (dBm)	10.3	10.5	10.6
s not required t	o be reduced from the s			
s not required t	o be reduced from the s			
s not required t .owest Chann	el			
s not required t Lowest Chann	el			
s not required t Lowest Chann	el			
s not required t .owest Chann	el	stated values.		
s not required t .owest Chann	el	stated values.		
Lowest Chann	el	stated values.		

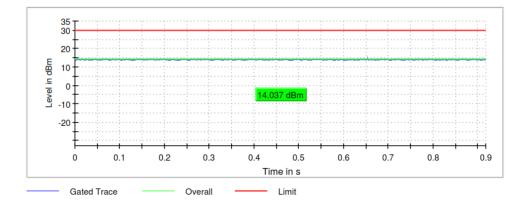


TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#02 (g mode MIMO)
TEST RESULTS:	PASS

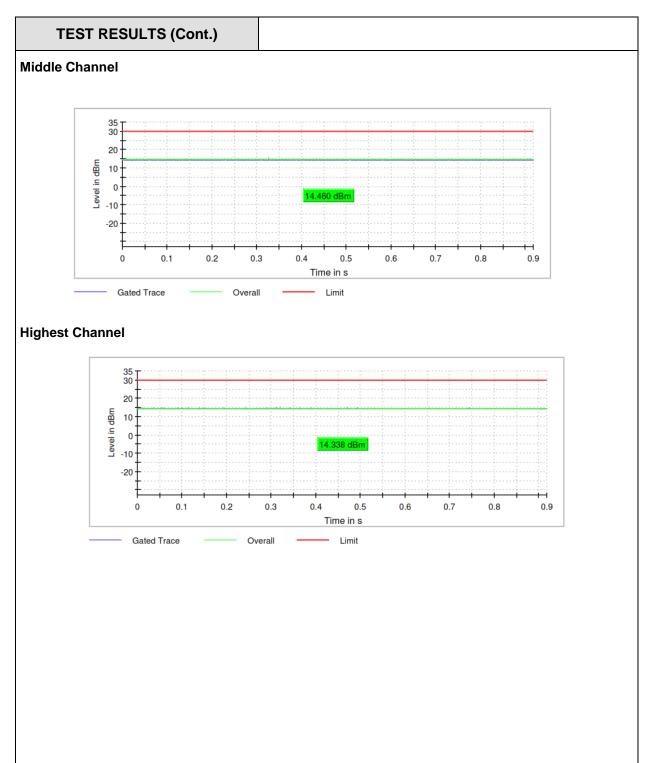

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	16.4	16.8	16.5
Maximum EIRP power (dBm)	13.9	14.3	14.0

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

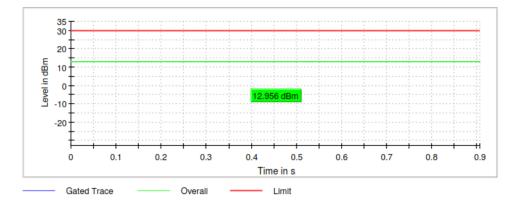


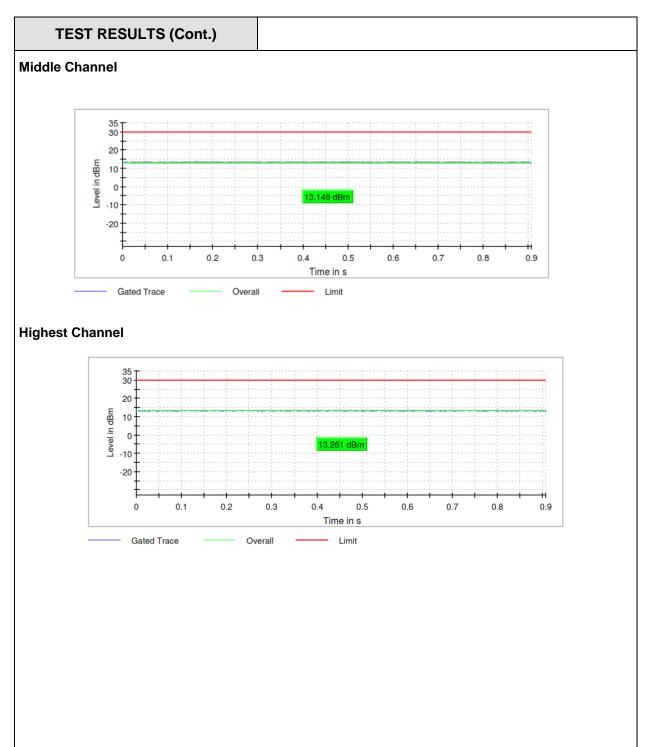
TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n20 mode SISO)	
TEST RESULTS:	PASS	
Maximum declared antenna gain: -2.5 dBi		


Radio A

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	14.0	14.5	14.3
Maximum EIRP power (dBm)	11.5	12.0	11.8

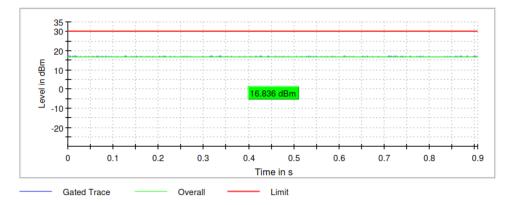
The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.



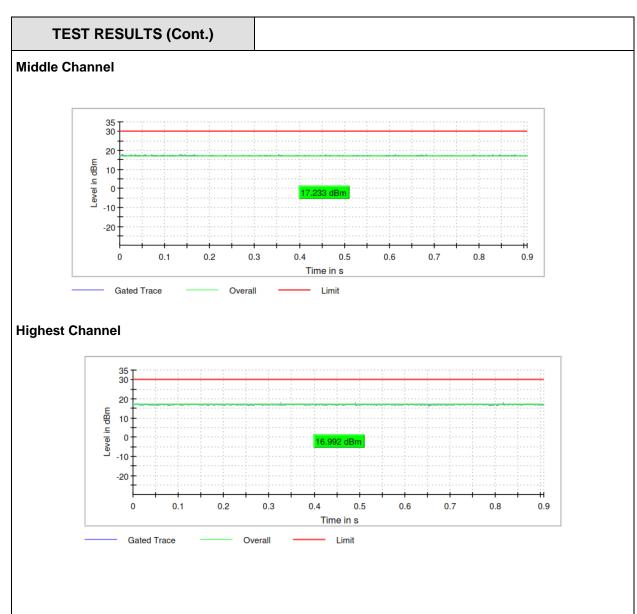


TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#03 (n20 mode SISO)
TEST RESULTS:	PASS
Maximum declared antenna gain: -2.5 dE Radio B	Зі

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	13.0	13.1	13.3
Maximum EIRP power (dBm)	10.5	10.6	10.8

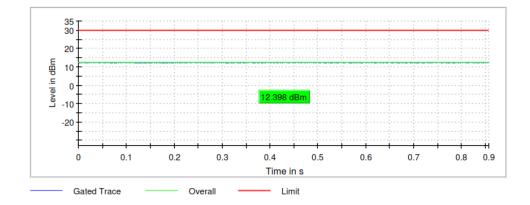


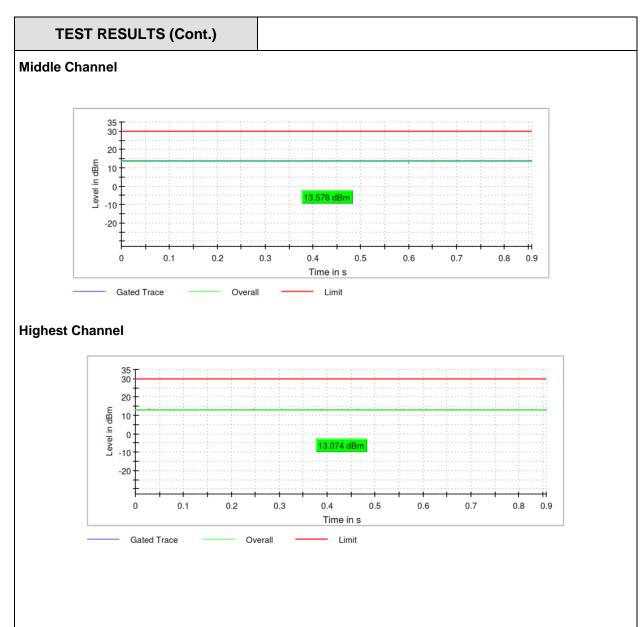
TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#03 (n20 mode MIMO)
TEST RESULTS:	PASS


Radio A + B

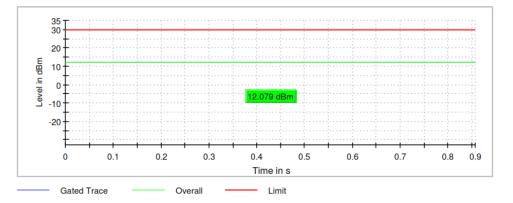
	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	16.8	17.2	17.0
Maximum EIRP power (dBm)	14.3	14.7	14.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

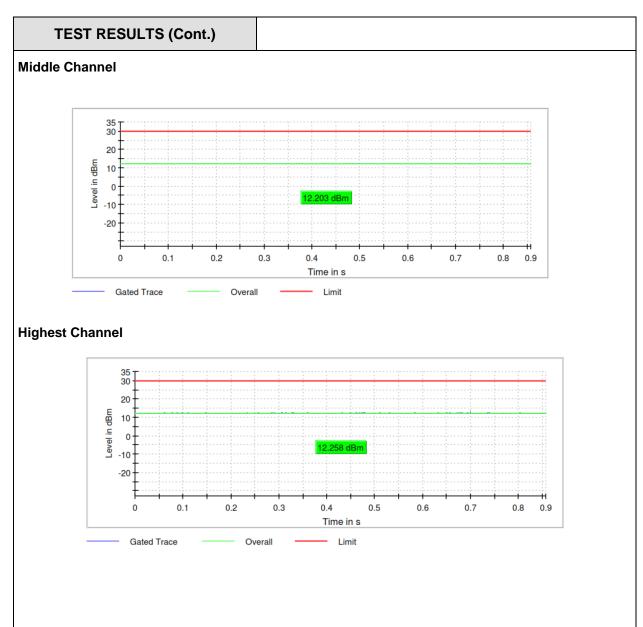




TESTED SAMPLES:		S/01	
TESTED CONDITIONS MODES:	-	TC#03 (n40 mode SI	SO)
TEST RESULTS:		PASS	
Maximum declared antenna gain: -2.5 dBi Radio A			
	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	12.4	13.6	13.1
Maximum EIRP power (dBm)	9.9	11.1	10.6

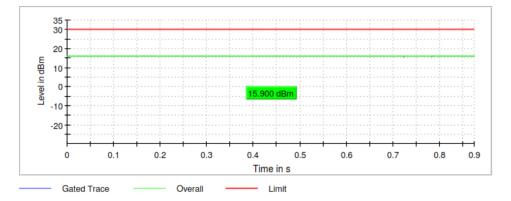


TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#03 (n40 mode SISO)
TEST RESULTS:	PASS

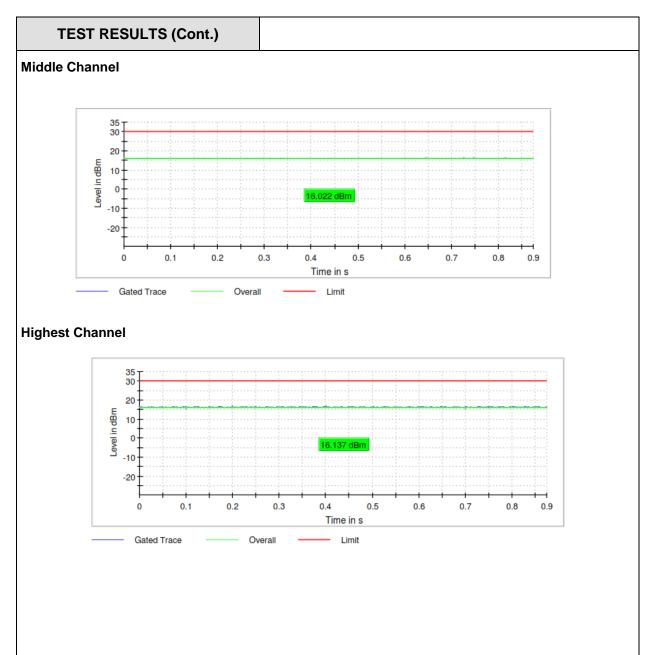

Radio B

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	12.1	12.2	12.3
Maximum EIRP power (dBm)	9.6	9.7	9.8

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

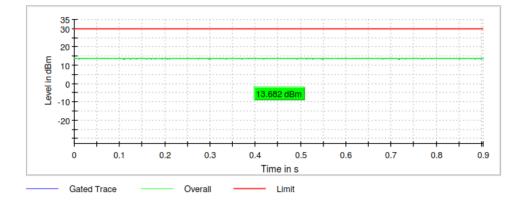


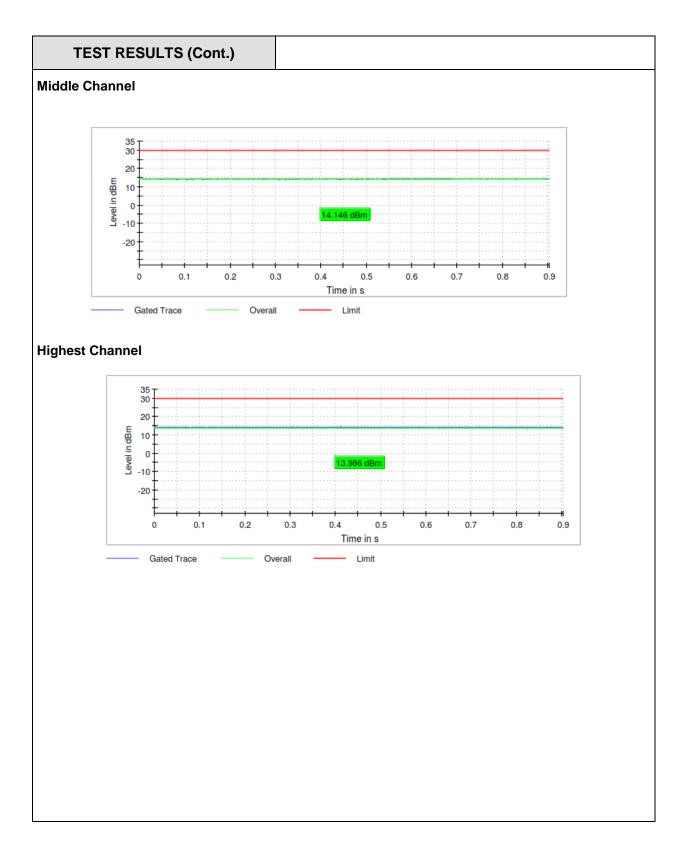
TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#03 (n40 mode MIMO)
TEST RESULTS:	PASS


Radio A + B

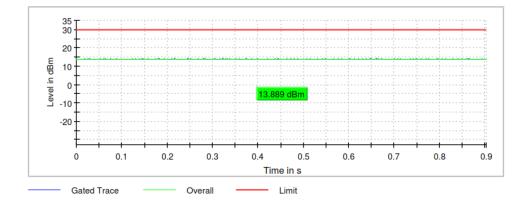
	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	15.9	16.0	16.1
Maximum EIRP power (dBm)	13.4	13.5	13.6

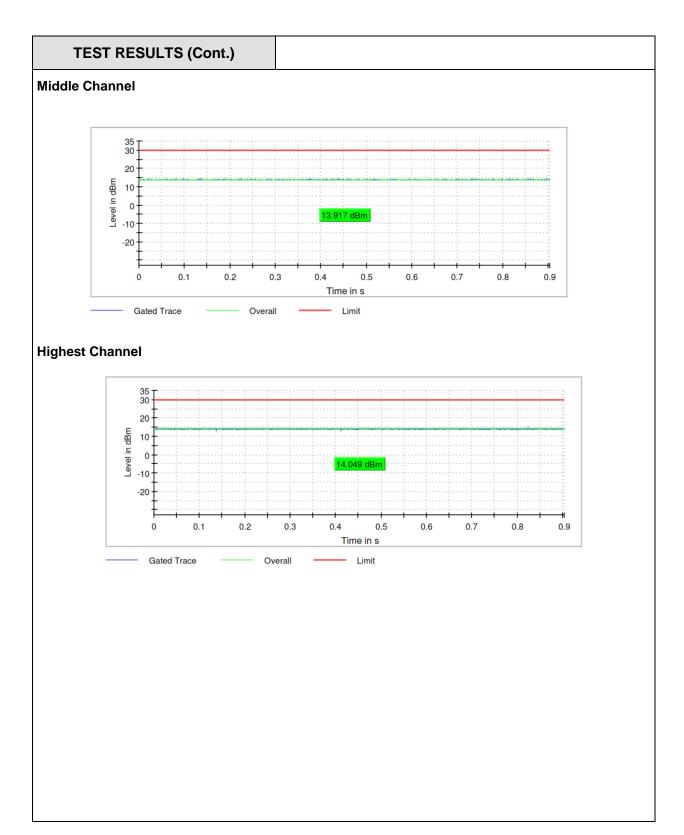
The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.



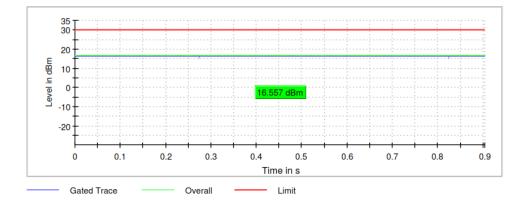


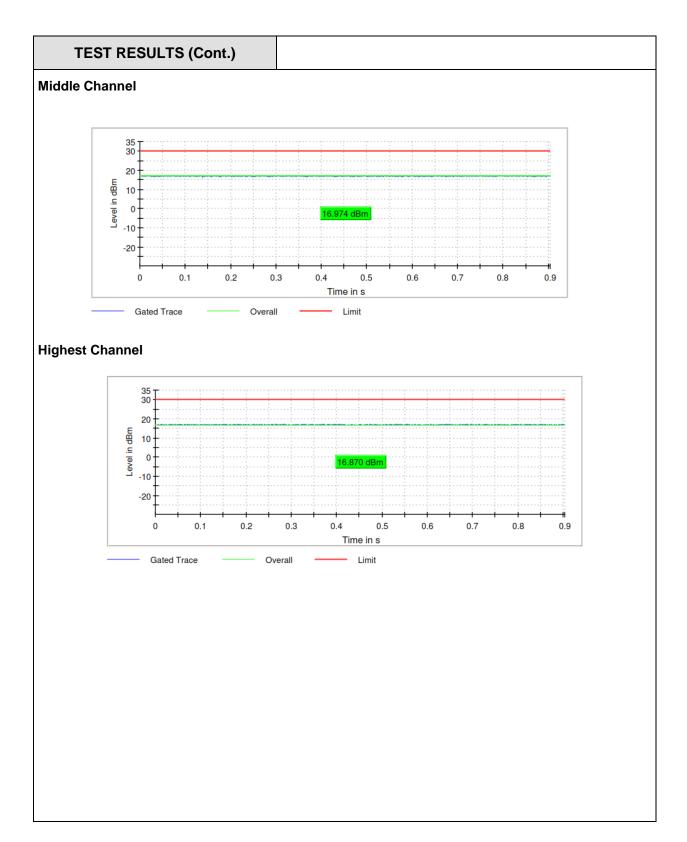
TESTED SAMPLES:	S/01			
TESTED CONDITIONS MODES:	1	TC#04 (ax20 mode SISO)		
TEST RESULTS:		PASS		
Maximum declared antenna gain: -2.5 d	Bi			
	Lowest frequency	Middle frequency	Highest frequency	
	2412 MHz	2437 MHz	2462 MHz	
Maximum conducted power (dBm)	13.7	14.1	14.0	
Maximum EIRP power (dBm)	11.2	11.6	11.5	



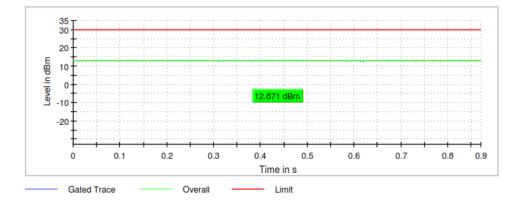


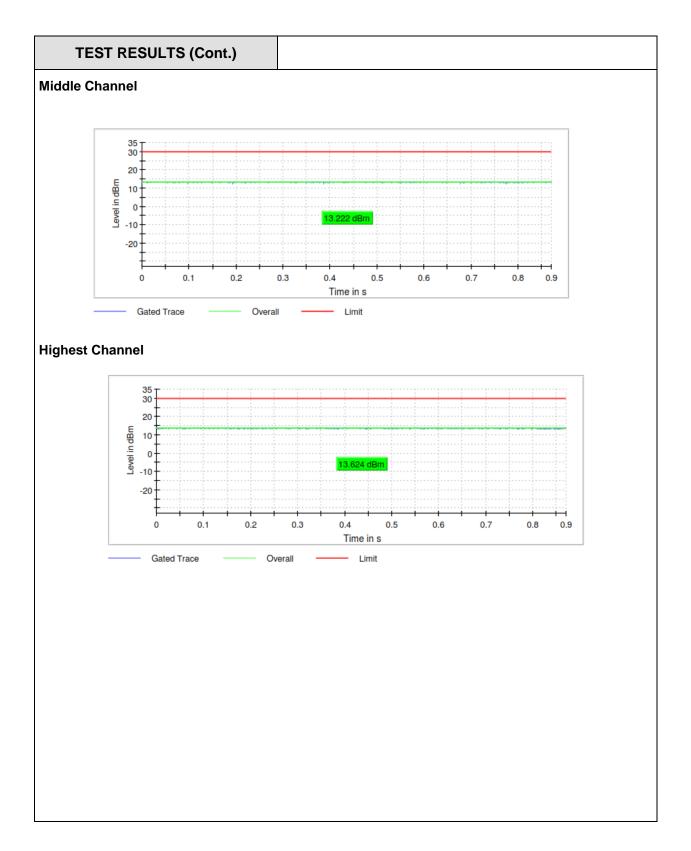
TESTED SAMPLES:	S/01			
TESTED CONDITIONS MODES:	1	TC#04 (ax20 mode SISO)		
TEST RESULTS:		PASS		
Maximum declared antenna gain: -2.5 d	Bi			
	Lowest frequency	Middle frequency	Highest frequency	
	2412 MHz	2437 MHz	2462 MHz	
Maximum conducted power (dBm)	13.9	13.9	14.0	
Maximum EIRP power (dBm)	11.4	11.4	11.5	



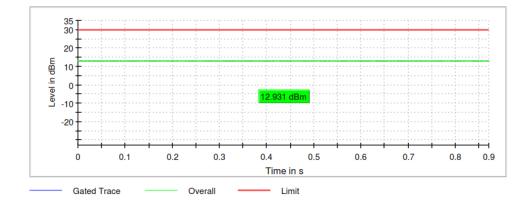


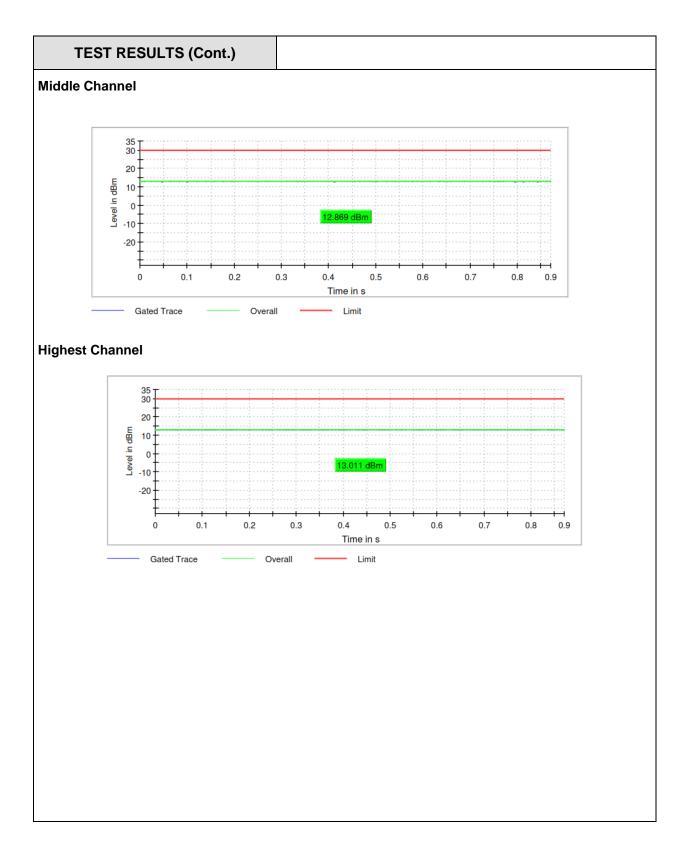
TESTED SAMPLES:	S/01			
TESTED CONDITIONS MODES:	Т	TC#04 (ax20 mode MIMO)		
TEST RESULTS:		PASS		
Maximum declared antenna gain: -2.5 dl Radio A + B	Ві			
	Lowest frequency	Middle frequency	Highest frequency	
	2412 MHz	2437 MHz	2462 MHz	
Maximum conducted power (dBm)	16.6	17.0	16.9	
Maximum EIRP power (dBm)	14.1	14.5	11.5	



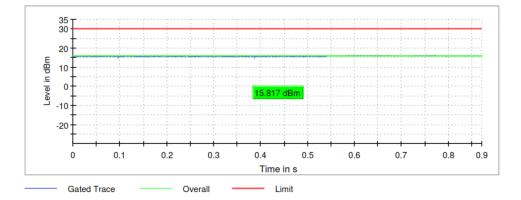


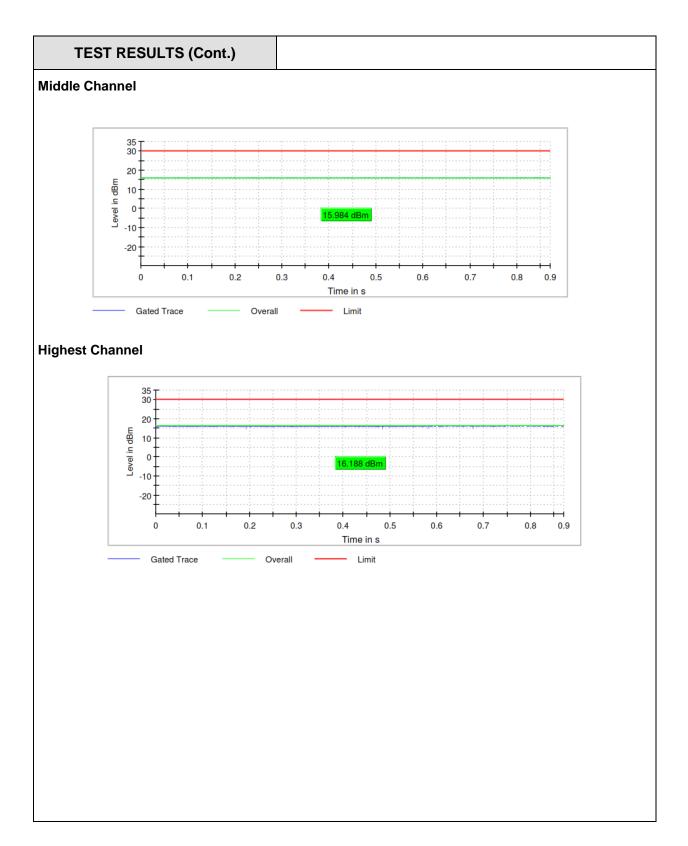
TESTED SAMPLES:	S/01			
TESTED CONDITIONS MODES:	T T	TC#04 (ax40 mode SISO)		
TEST RESULTS:		PASS		
Maximum declared antenna gain: -2.5 d Radio A	Bi			
	Lowest frequency	Middle frequency	Highest frequency	
	2422 MHz	2437 MHz	2452 MHz	
Maximum conducted power (dBm)	12.9	13.2	13.6	
Maximum EIRP power (dBm)	10.4	10.7	11.1	





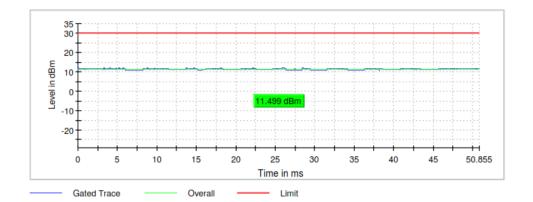
TESTED SAMPLES:	S/01			
TESTED CONDITIONS MODES:	1	TC#04 (ax40 mode SISO)		
TEST RESULTS:		PASS		
Maximum declared antenna gain: -2.5 d	Bi			
	Lowest frequency	Middle frequency	Highest frequency	
	2422 MHz	2437 MHz	2452 MHz	
Maximum conducted power (dBm)	12.9	12.9	13.0	
Maximum EIRP power (dBm)	10.4	10.7	10.5	



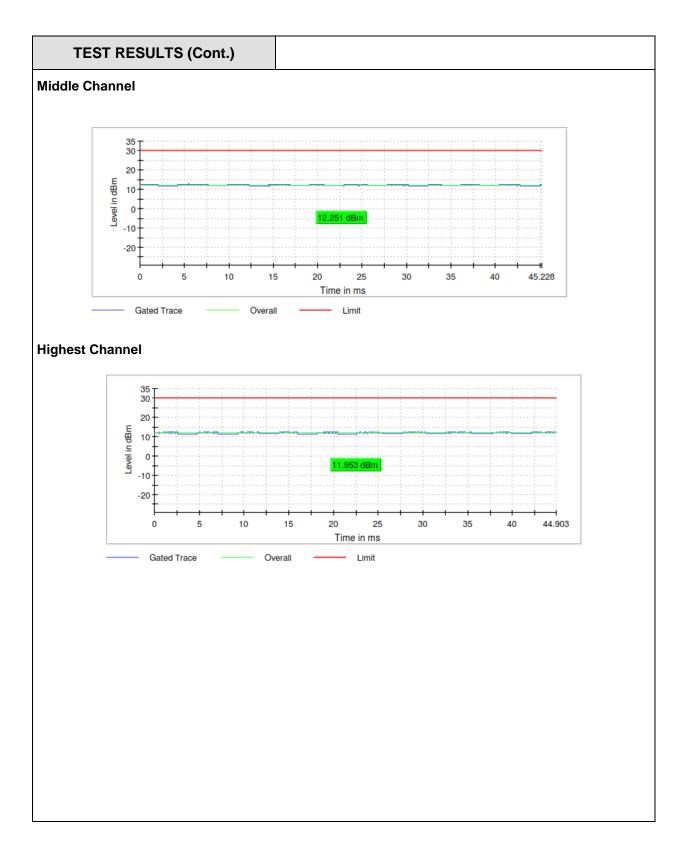


TESTED SAMPLES:	S/01		
TESTED CONDITIONS MODES:	Т	C#04 (ax40 mode MI	MO)
TEST RESULTS:		PASS	
Maximum declared antenna gain: -2.5 d Radio A + B	Bi		
	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	15.8	16.0	16.2
Maximum EIRP power (dBm)	13.3	13.5	13.7

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#05 (ax20 mode Beam forming MIMO)
TEST RESULTS:	PASS

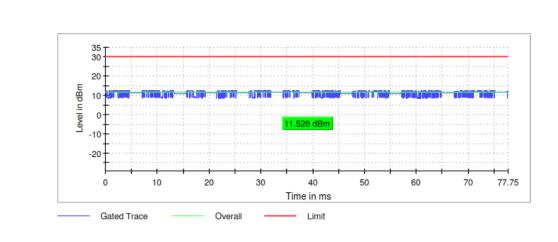

Beam forming gain: +3 dBi (10log(NANT))a

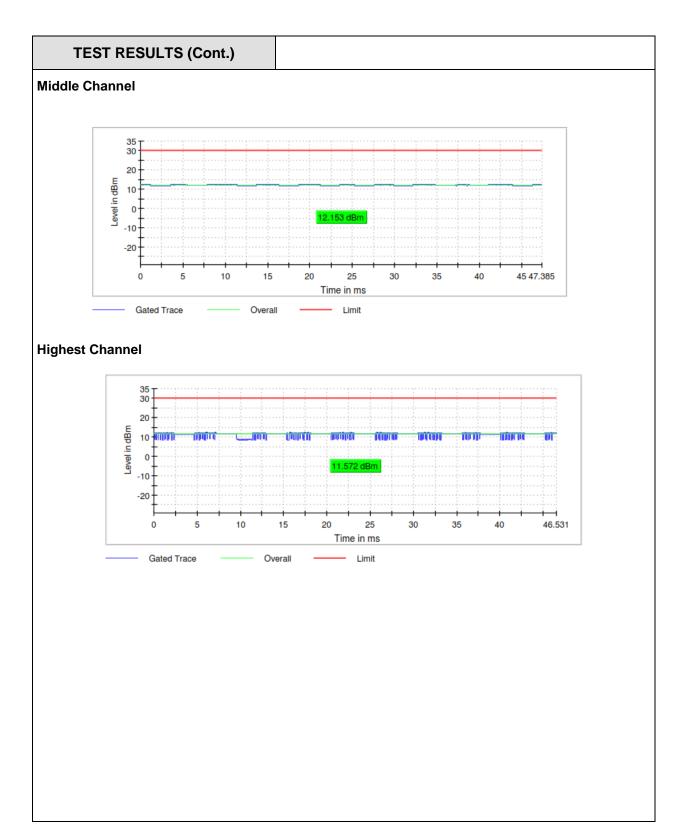
Power Directional Gain: = +0.5 dBi (Antenna gain + Beam forming Gain)


Radio A + B

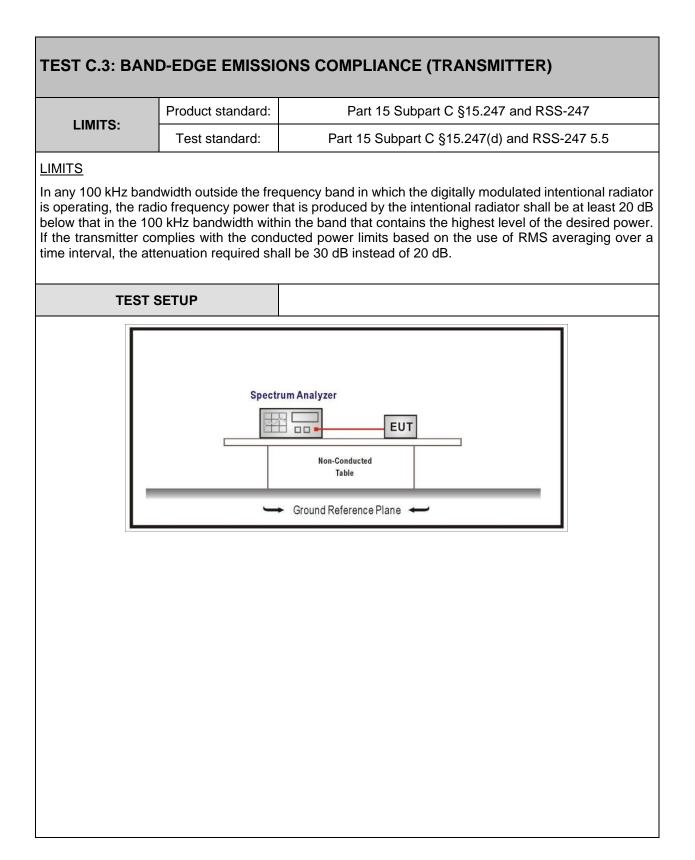
	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	11.5	12.3	12.0
Maximum EIRP power (dBm)	12.0	12.8	12.5

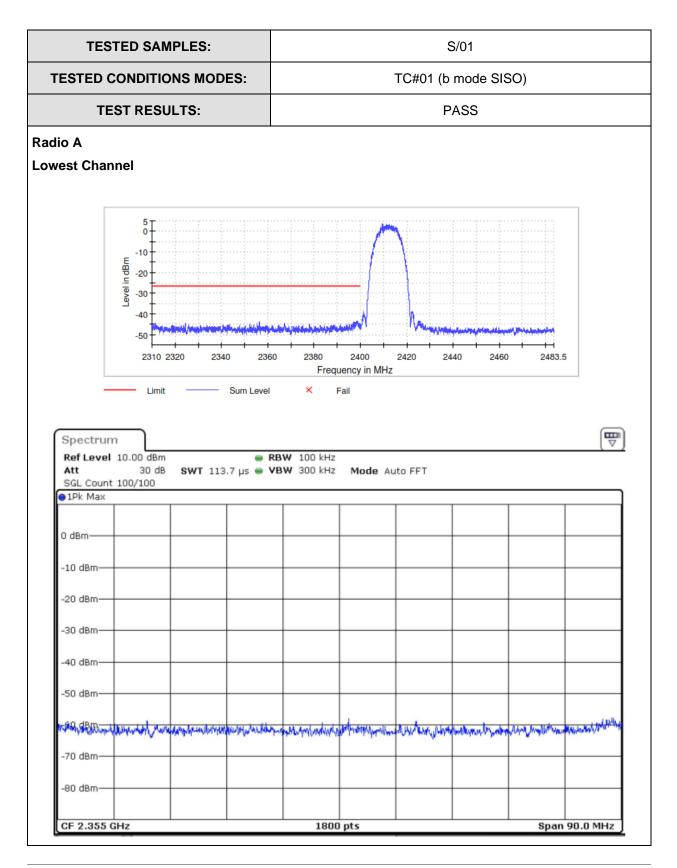
The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

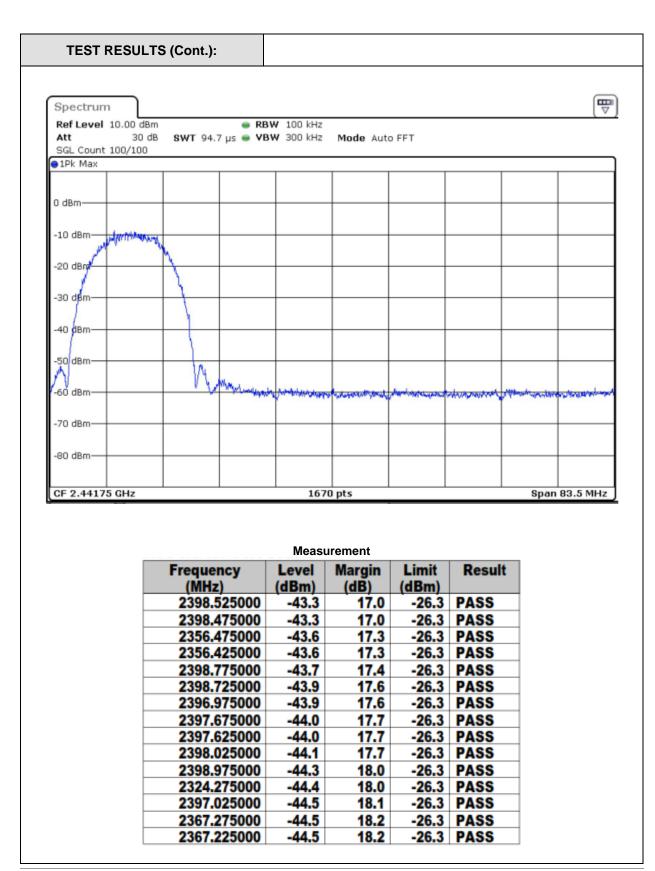


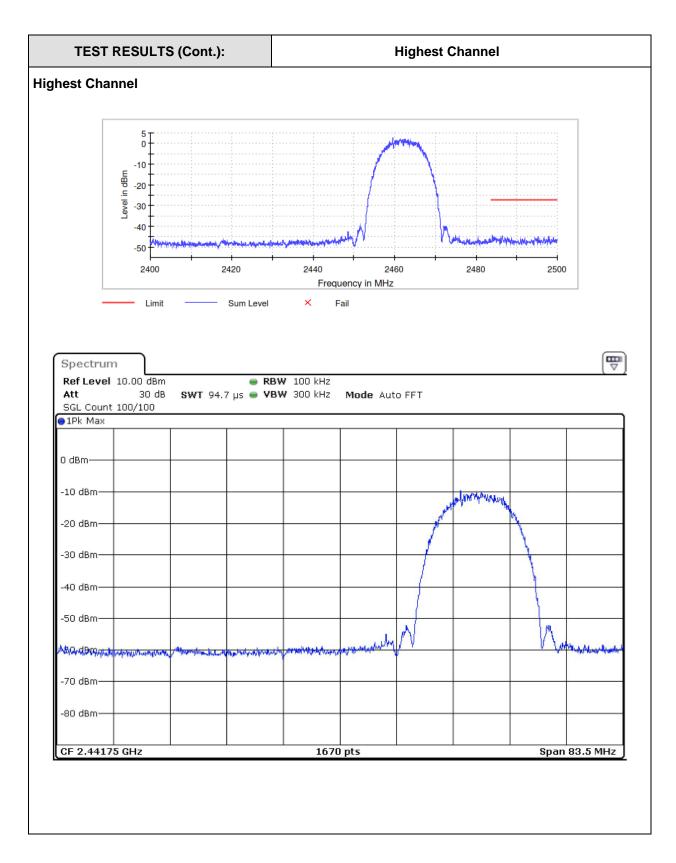


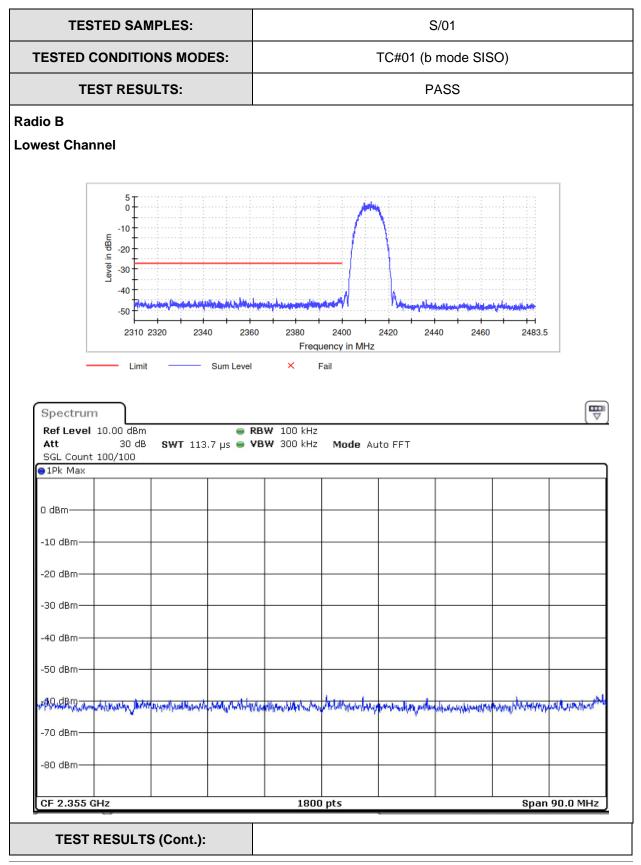
TESTED SAMPLES:	S/01		
TESTED CONDITIONS MODES:	TC#05 (ax40 mode Beam forming MIMO)		
TEST RESULTS:	PASS		
Maximum declared antenna gain: -2.5 dE Beam forming gain: +3 dBi Radio A + B	3i		


	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	11.5	12.2	11.6
Maximum EIRP power (dBm)	12.0	12.7	12.1

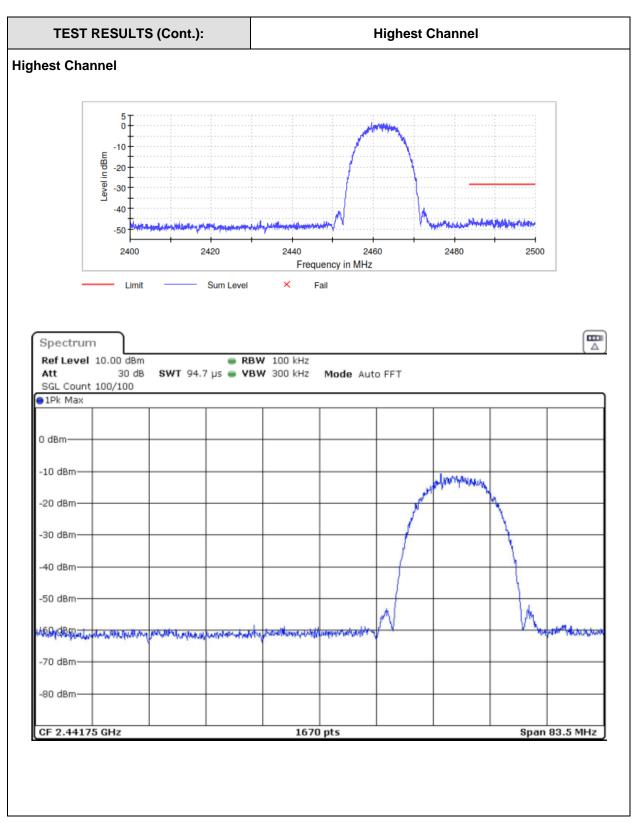




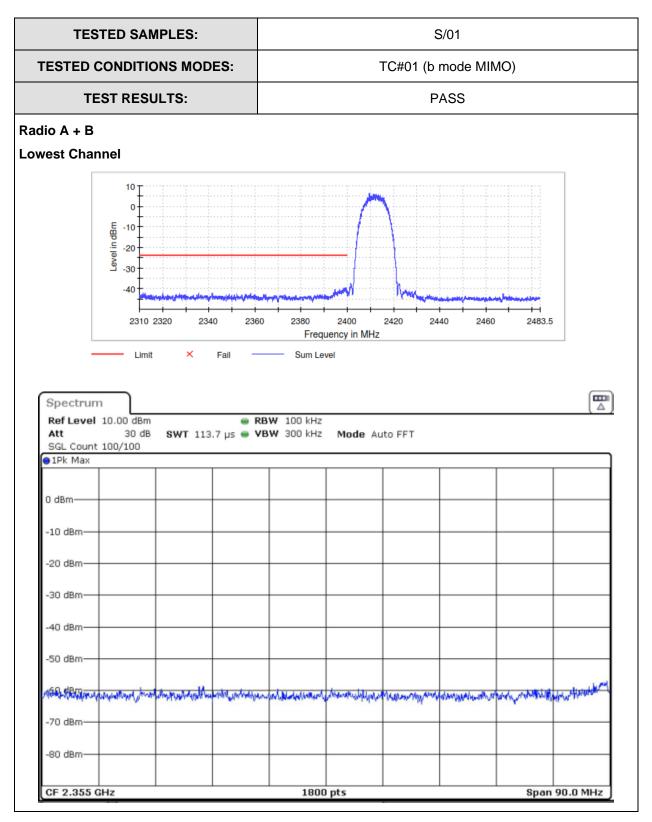




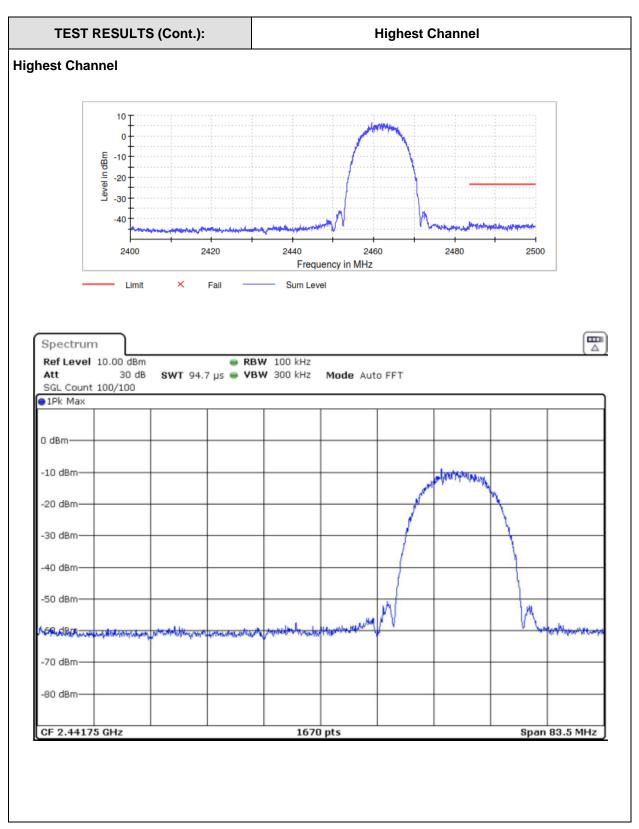
TEST RESU	JLTS (Cont.):					
	,					
Spectrum						
Ref Level 10.00 Att 3		 RBW 100 kH; VBW 300 kH; 		1 FFT		
SGL Count 100/1						
●1Pk Max						
0 dBm						
-10 dBm						
00 d0 m						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
6 m d D an						
-60 dBro	mount	mun	m	www	min	mound
-70 dBm						
-80 dBm						
CF 2.49175 GHz		3	30 pts			Span 16.5 M
		Meas	surement			_
	Eremueneu	Level	Margin	Limit	Result	
	Frequency		-		nooun	
	(MHz)	(dBm)	(dB)	(dBm)		
	(MHz) 2484.075	000 -44.5	(dB) 17.1	(dBm) -27.4	PASS	_
	(MHz) 2484.075 2486.475	000 -44.5 000 -44.6	(dB) 17.1 17.2	(dBm) -27.4 -27.4	PASS PASS	-
	(MHz) 2484.075 2486.475 2495.275	000 -44.5 000 -44.6 000 -44.9	(dB) 17.1 17.2 17.4	(dBm) -27.4 -27.4 -27.4	PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.275	000 -44.5 000 -44.6 000 -44.9 000 -44.9	(dB) 17.1 17.2 17.4 17.5	(dBm) -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS	-
	(MHz) 2484.075 2486.475 2495.275 2486.425 2486.425 2495.225	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -45.0	(dB) 17.1 17.2 17.4 17.5 17.6	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.225 2495.225 2497.875	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -44.9 000 -45.0 000 -45.1	(dB) 17.1 17.2 17.4 17.5 17.6 17.6	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.225 2495.225 2497.875 2484.125	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2486.425 2495.225 2497.875 2484.125 2484.025	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1 000 -45.1	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6 17.6 17.7	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2486.425 2495.225 2497.875 2484.125 2484.025 2499.025	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6 17.6 17.7 17.7	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.225 2495.225 2497.875 2484.125 2484.025 2499.025 2498.975	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6 17.6 17.7 17.7 17.7	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.225 2495.225 2497.875 2484.125 2484.025 2499.025 2498.975 2496.675	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.2	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6 17.6 17.7 17.7 17.7 17.7	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.225 2495.225 2497.875 2484.125 2484.025 2499.025 2498.975 2496.675 2487.675	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.2 000 -45.3	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6 17.6 17.7 17.7 17.7 17.7	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.075 2486.475 2495.275 2495.225 2495.225 2497.875 2484.125 2484.025 2499.025 2498.975 2496.675	000 -44.5 000 -44.6 000 -44.9 000 -44.9 000 -45.0 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.1 000 -45.3 000 -45.3 000 -45.3	(dB) 17.1 17.2 17.4 17.5 17.6 17.6 17.6 17.6 17.7 17.7 17.7 17.7	(dBm) -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4 -27.4	PASS PASS PASS PASS PASS PASS PASS PASS	



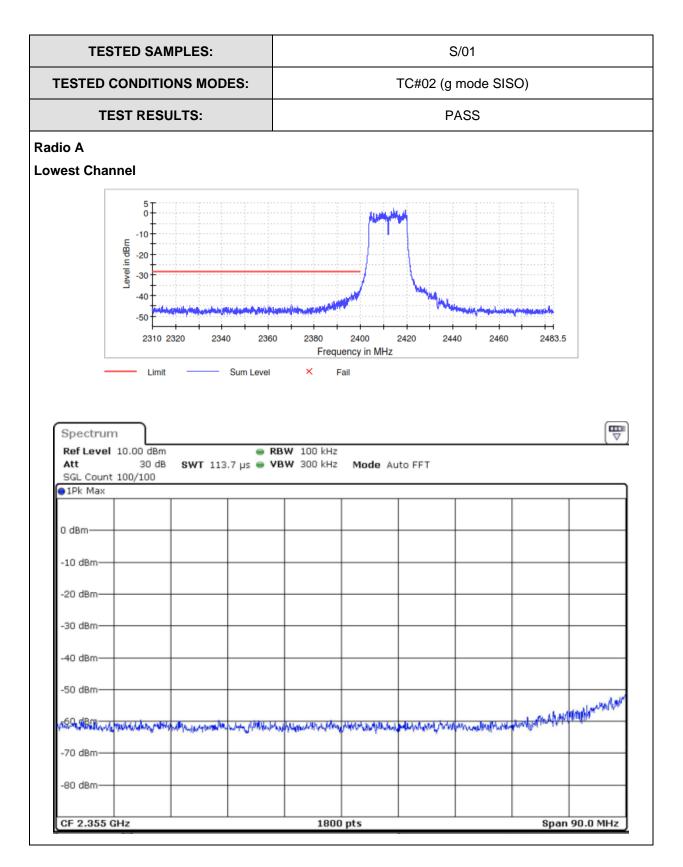
Spectrum Ref Level 10.00 dB	m 😑 D	BW 100 kHz					[
Att 30 c			Mode Auto	FFT			
SGL Count 100/100							
1Pk Max							
0 dBm							
-10 dBm	uni.						
-20 dBm	May .						
-20 UBI							
-30 dgm	- \						
f							
-40 dBm			-				
-50(dBm-							
-60 dBm	N.	. M. M I. I.		h have b		dia an	
-60 UBIII	Contraction of the Contraction of the	and have a sound that	- ARAINAN AND AND AND AND AND AND AND AND AND	another free to the state	CAMPANA AND AND AND	- marthan and the second	Munifuh
-70 dBm							
-80 dBm							
-80 dBm							
-80 dBm CF 2.44175 GHz		167	0 pts			Span 83.5	5 MH
		167	0 pts			Span 83.5	5 MH
		167	0 pts			Span 83.5	ī MH
			0 pts			Span 83.5	5 MF
	Frequency			Limit	Result	Span 83.5	5 MF
	Frequency (MHz)	Measu	urement	Limit (dBm)	Result	Span 83.5	5 MF
		Measu Level	urement Margin	(dBm) -27.3	PASS	Span 83.5	5 MF
	(MHz) 2399.425000 2399.475000	Measu Level (dBm) -43.6 -43.6	Margin (dB) 16.3 16.4	(dBm) -27.3 -27.3	PASS PASS	Span 83.5	ō MH
	(MHz) 2399.425000 2399.475000 2355.775000	Measu Level (dBm) -43.6 -43.6 -43.8	Margin (dB) 16.3 16.4 16.5	(dBm) -27.3 -27.3 -27.3	PASS PASS PASS	Span 83.5	5 MH
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000	Measu Level (dBm) -43.6 -43.6 -43.8 -44.1	Margin (dB) 16.3 16.4 16.5 16.8	(dBm) -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS	Span 83.5	5 MF
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2	Margin (dB) 16.3 16.4 16.5 16.8 16.9	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS	Span 83.5	5 MH
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS	Span 83.5	5 MF
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.3 -44.4	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MF
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000 2355.725000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.4	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1 17.1	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MH
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000 2355.725000 2398.625000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.4 -44.4 -44.4	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1 17.1 17.3	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MH
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000 2355.725000 2398.625000 2398.675000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.4 -44.4 -44.6 -44.6	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1 17.1 17.3 17.3	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MH
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000 2355.725000 2398.625000 2398.675000 2355.825000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.3 -44.4 -44.6 -44.6 -44.6	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1 17.1 17.3 17.3 17.3	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MF
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000 2355.725000 2398.625000 2398.675000 2398.575000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.4 -44.4 -44.6 -44.6 -44.6 -44.7	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1 17.1 17.3 17.3 17.3 17.3	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MF
	(MHz) 2399.425000 2399.475000 2355.775000 2398.475000 2398.525000 2361.575000 2385.875000 2355.725000 2398.625000 2398.675000 2355.825000	Measu (dBm) -43.6 -43.6 -43.8 -44.1 -44.2 -44.3 -44.4 -44.4 -44.4 -44.6 -44.6 -44.6 -44.7 -44.7	Margin (dB) 16.3 16.4 16.5 16.8 16.9 17.0 17.1 17.1 17.3 17.3 17.3	(dBm) -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5	5 MH



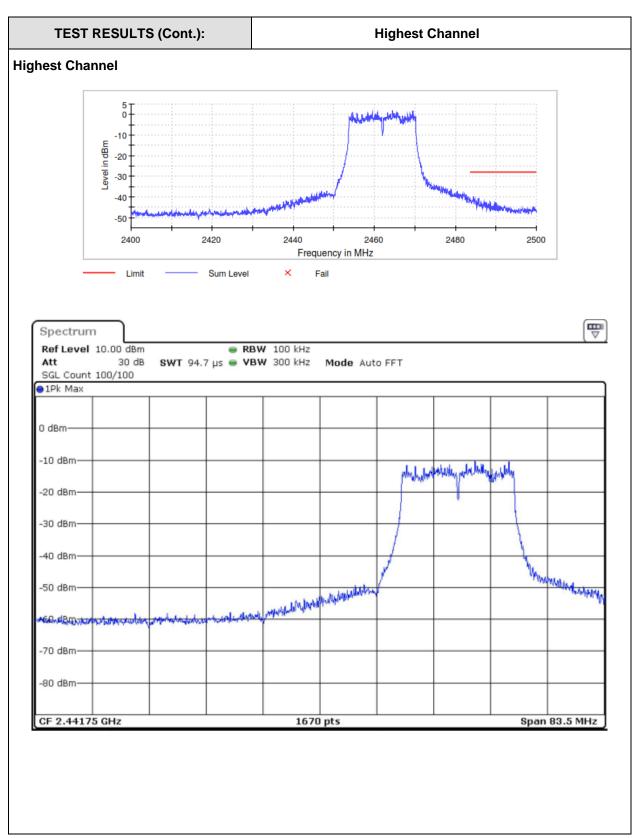
Spectrum							
							[
Ref Level 10.00 Att 3 SGL Count 100/1 1Pk Max 3	0 dB SWT 18.9 µs 🖷 V	BW 100 kHz BW 300 kHz	Mode Auto	FFT			
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm		_					
-40 dBm		_					
-50 dBm							
-6adem	when when	mm	nm	ma	mm	mm	m
-70 dBm							
-80 dBm							
CF 2.49175 GHz		33	0 pts			Span 16	5 MI
or Errorito dile						opan xo	
		Measu	urement				
	Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result		
	2484.675000		16.4		PASS	1	
	2486.875000	-45.1	16.5	-28.5	PASS]	
	2483.675000		16.6		PASS]	
	2484.625000	-45.1	16.6	-28.5	PASS		
	2483.625000		16.6		PASS		
	2486.825000		16.6		PASS		
	2492.475000		16.8		PASS		
	2488.025000		17.0		PASS		
	2491.725000		17.1		PASS		
	2486.575000		17.1		PASS		
	2492.525000		17.1		PASS		
	2484.725000		17.1		PASS		
	2489.325000		17.1		PASS		
	2490.625000 2489.025000		17.2 17.2		PASS PASS		

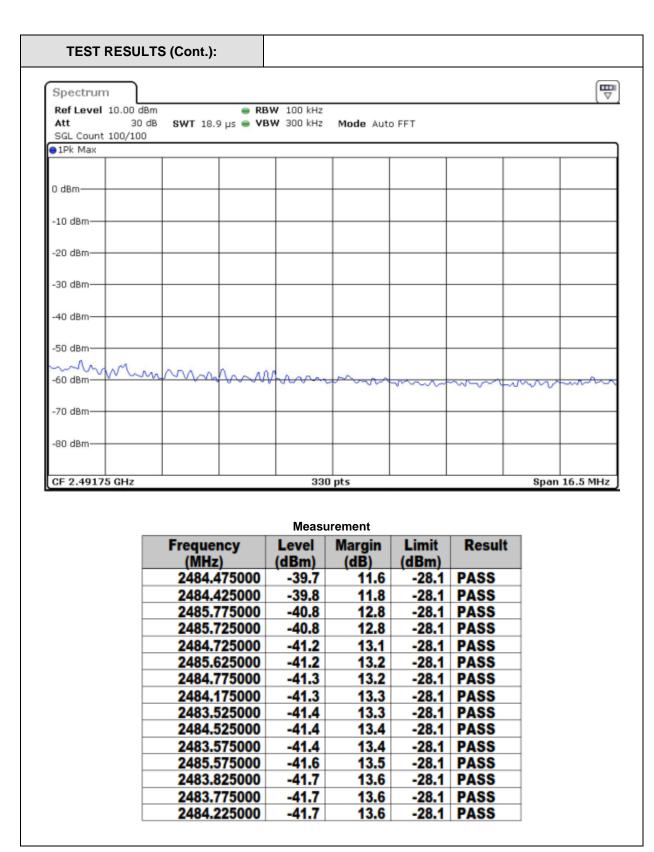


	JLTS (Cont.):					
Spectrum Ref Level 10.00	dBm •	RBW 100 kHz				[
	80 dB SWT 94.7 µs 🖷 '		Mode Auto	o FFT		
●1Pk Max						
0 dBm						
-10 dBm	the way to					
-20 dBm	N.					
-30 dBm	1 N					
-40 dBm						
-50 dBm						
N.	N.					
-60 dBm	Contraction of	hope of the state of the state	Manager Andrew Mark	And a second second second	anticities about the	and a stand to be a series of the series of
-70 dBm						
00 d0-						
-80 dBm						
-80 dBm						
-80 dBm CF 2.44175 GHz		167	70 pts			Span 83.5 MH
						Span 83.5 MH
	Fragmanay	Meas	urement	l insi6	Posult	Span 83.5 MH
	Frequency (MHz)			Limit (dBm)	Result	Span 83.5 MH
	(MHz) 2398.525000	Meas Level (dBm)) -39.6	urement Margin (dB) 15.9	(dBm) -23.7	PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000	Meas Level (dBm) -39.6 -39.6	Margin (dB) 15.9 16.0	(dBm) -23.7 -23.7	PASS PASS	Span 83.5 MH
	(MHz) 2398.525000	Meas Level (dBm)) -39.6) -39.6) -39.8	urement Margin (dB) 15.9	(dBm) -23.7 -23.7 -23.7	PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2398.575000 2399.475000 2399.525000	Meas (dBm)) -39.6) -39.6) -39.8) -39.8) -39.8) -39.8	urement Margin (dB) 15.9 16.0 16.1 16.1 16.2	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2398.575000 2399.475000 2399.525000 2399.425000	Meas (dBm) (dBm)) -39.6) -39.6) -39.8) -39.8) -39.8) -39.8) -39.9	Margin (dB) 15.9 16.0 16.1 16.1 16.2 16.2	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2398.575000 2399.475000 2399.525000	Mease (dBm) (dBm) (39.6 (39.6 (39.8 (39.8 (39.8) (39.8) (39.8) (39.8) (39.8) (39.8) (39.8) (39.9) (39.9) (39.9) (39.9) (39.9) (39.9) (39.9) (39.9) (39.9) (39.9) (39.9) (39.6) (3	Margin (dB) 15.9 16.0 16.1 16.1 16.1 16.2 16.2 16.4 16.4	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2399.475000 2399.475000 2399.525000 2399.425000 2399.075000 2398.975000 2399.025000	Meas (dBm) 0 -39.6 0 -39.6 0 -39.8 0 -39.8 0 -39.8 0 -39.8 0 -39.9 0 -40.0 0 -40.1 0 -40.1	Margin (dB) 15.9 16.0 16.1 16.1 16.2 16.2 16.2 16.4 16.4 16.4	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2398.575000 2399.475000 2399.525000 2399.425000 2399.075000 2398.975000 2399.025000 2399.175000	Meas (dBm) 0 -39.6 0 -39.6 0 -39.8 0 -39.8 0 -39.8 0 -39.8 0 -39.8 0 -39.9 0 -40.0 0 -40.1 0 -40.1 0 -40.2	Margin (dB) 15.9 16.0 16.1 16.1 16.2 16.2 16.2 16.4 16.4 16.4 16.4	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2399.475000 2399.475000 2399.425000 2399.425000 2399.075000 2399.075000 2399.175000 2399.575000 2398.475000	Meas (dBm) (dBm) (-39.6 (-39.6 (-39.8 (-39.8 (-39.8 (-39.8 (-39.8 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.9 (-39.6 (-39.8)) (-39.8 (-39.9 (-39.8)) (-39.8) (-39.8) (-39.9 (-39.8) (-40.0) (-40.1) (-40.2) (-40.	Margin (dB) 15.9 16.0 16.1 16.1 16.2 16.2 16.2 16.4 16.4 16.4 16.5 16.5 16.5	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5 MH
	(MHz) 2398.525000 2399.125000 2399.475000 2399.525000 2399.425000 2399.425000 2399.075000 2399.025000 2399.175000 2399.575000	Meas (dBm) 0 -39.6 0 -39.6 0 -39.8 0 -39.8 0 -39.8 0 -39.8 0 -39.8 0 -39.9 0 -40.0 0 -40.1 0 -40.1 0 -40.2 0 -40.2 0 -40.2 0 -40.2 0 -40.3	Margin (dB) 15.9 16.0 16.1 16.1 16.2 16.2 16.2 16.4 16.4 16.4 16.4 16.5 16.5	(dBm) -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7 -23.7	PASS PASS PASS PASS PASS PASS PASS PASS	Span 83.5 MH

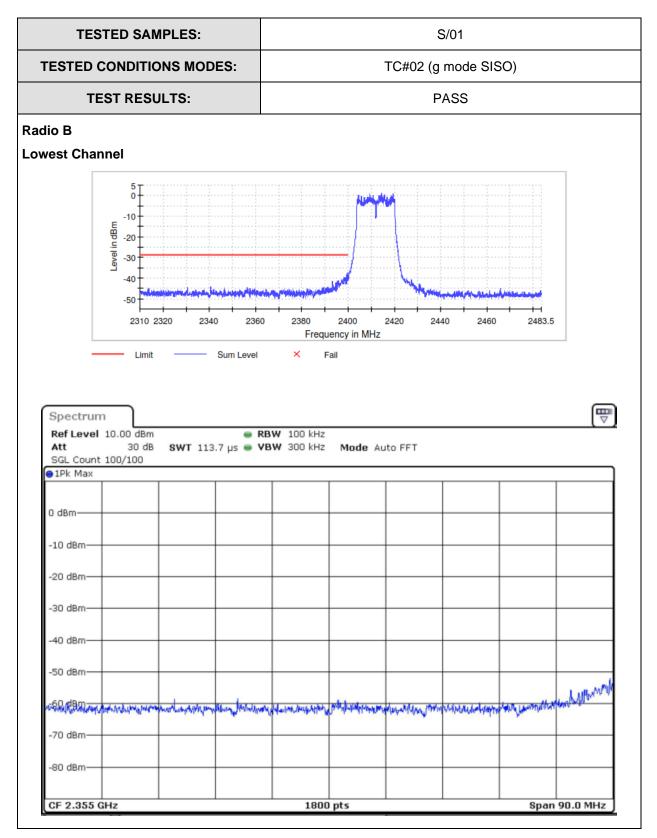


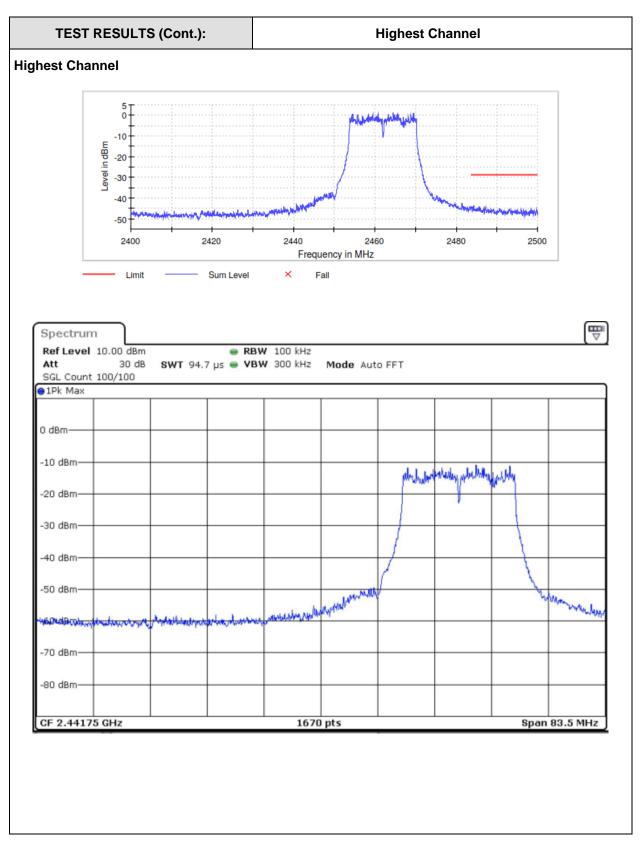
TEST RESU	ILTS (Cont.):					
	dB SWT 18.9 μs	 ● RBW 100 kH s ● VBW 300 kH 		D FFT		
SGL Count 100/10	0					
●1Pk Max						
0 dBm						
10.40-						
-10 dBm						
-20 dBm						
-30 dBm			_			
-40 dBm						
-50 dBm						
	~					
Ladem	mount	unun	mon	m	mun	man
-70 dBm						
, o abiii						
-80 dBm			_			
CF 2.49175 GHz		3	30 pts			Span 16.5 M
		Меа	surement			
			Morain	1 1		1
	Frequenc	y Level		Limit	Result	
	(MHz)	(dBm)	(dB)	(dBm)		
	(MHz) 2483.62	(dBm) 5000 -41.5	(dB) 5 18.0	(dBm) -23.5	PASS	
	(MHz) 2483.62 2483.52	(dBm) 5000 -41.5 5000 -41.8	(d B) 5 18.0 3 18.3	(dBm) -23.5 -23.5	PASS PASS	
	(MHz) 2483.62 2483.52 2483.57	(dBm) 5000 -41.8 5000 -41.8 5000 -41.8	(dB) 5 18.0 3 18.3 3 18.3	(dBm) -23.5 -23.5 -23.5	PASS PASS PASS	-
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12	(dBm) 5000 -41.5 5000 -41.8 5000 -41.8 5000 -42.0	(dB) 5 18.0 3 18.3 3 18.3 0 18.5	(dBm) -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS	-
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12 2487.12	(dBm) 5000 -41.5 5000 -41.8 5000 -41.8 5000 -42.0 5000 -42.3	(dB) 5 18.0 3 18.3 3 18.3 0 18.5 3 18.8	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS	-
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12 2484.07 2490.17	(dBm) 5000 -41.5 5000 -41.8 5000 -41.8 5000 -42.0 5000 -42.3 5000 -42.4	(dB) 5 18.0 3 18.3 3 18.3 3 18.3 3 18.5 3 18.8 4 18.9	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12 2487.12 2484.07 2490.17 2484.12	(dBm) 5000 -41.5 5000 -41.5 5000 -41.6 5000 -42.0 5000 -42.3 5000 -42.4 5000 -42.4	(dB) 5 18.0 3 18.3 3 18.3 3 18.3 0 18.5 3 18.8 4 18.9 5 19.0	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2487.12 2487.12 2484.07 2490.17 2484.12 2484.12	(dBm) 5000 -41.5 5000 -41.5 5000 -41.6 5000 -42.0 5000 -42.3 5000 -42.5 5000 -42.5 5000 -42.5	(dB) 5 18.0 3 18.3 3 18.3 3 18.3 0 18.5 3 18.8 4 18.9 5 19.0 5 19.0	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2487.12 2487.12 2484.07 2484.07 2484.12 2484.12 2487.07 2487.17	(dBm) 5000 -41.5 5000 -41.8 5000 -41.8 5000 -42.0 5000 -42.3 5000 -42.4 5000 -42.5 5000 -42.5 5000 -42.5	(dB) 5 18.0 3 18.3 3 18.3 3 18.5 3 18.5 3 18.5 3 18.8 4 18.9 5 19.0 5 19.0 5 19.1	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12 2487.12 2484.07 2490.17 2484.12 2487.07 2487.07 2487.17 2485.52	(dBm) 5000 -41.5 5000 -41.5 5000 -41.6 5000 -42.0 5000 -42.5 5000 -42.5 5000 -42.5 5000 -42.5 5000 -42.5 5000 -42.6	(dB) 5 18.0 3 18.3 3 18.3 3 18.3 3 18.5 3 18.5 3 18.5 3 18.8 4 18.9 5 19.0 5 19.0 5 19.1 5 19.1	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12 2487.12 2484.07 2484.07 2484.12 2487.07 2487.17 2485.52 2483.67	(dBm) 5000 -41.5 5000 -41.5 5000 -41.6 5000 -42.0 5000 -42.5 5000 -42.5	(dB) 5 18.0 3 18.3 3 18.3 3 18.3 3 18.5 3 18.5 3 18.8 4 18.9 5 19.0 5 19.0 5 19.1 5 19.1 7 19.1	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2487.12 2487.12 2484.07 2484.07 2484.12 2487.07 2487.17 2487.52 2485.52 2483.67 2483.67	(dBm) 5000 -41.5 5000 -41.5 5000 -41.5 5000 -42.0 5000 -42.3 5000 -42.5 5000 -42.5	(dB) 5 18.0 3 18.3 3 18.3 3 18.3 3 18.5 3 18.5 3 18.8 4 18.9 5 19.0 5 19.0 5 19.1 5 19.1 7 19.1 7 19.2	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2483.62 2483.52 2483.57 2483.57 2487.12 2487.12 2484.07 2484.07 2484.12 2487.07 2487.17 2485.52 2483.67	(dBm) 5000 -41.5 5000 -41.5 5000 -41.5 5000 -42.0 5000 -42.3 5000 -42.5 5000 -42.5 5000 -42.5 5000 -42.5 5000 -42.7 5000 -42.7 5000 -42.7 5000 -42.7 5000 -42.7	(dB) 5 18.0 5 18.0 3 18.3 3 18.3 5 18.5 3 18.5 3 18.5 3 18.8 4 18.9 5 19.0 5 19.0 5 19.1 5 19.1 7 19.1 7 19.2 7 19.2	(dBm) -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5	PASS PASS PASS PASS PASS PASS PASS PASS	



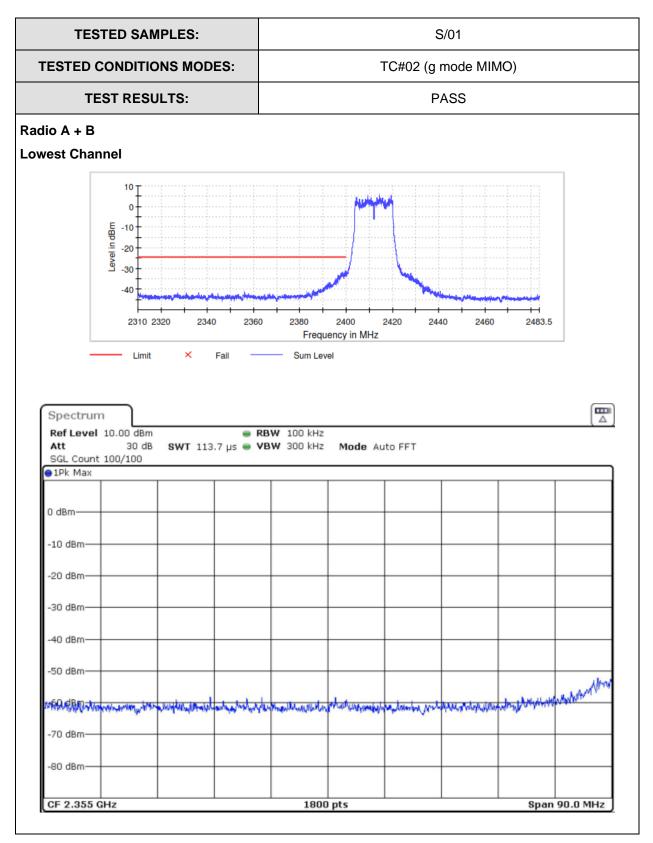


Spectrum						
Att 30 c		3W 100 kHz 3W 300 kHz	Mode Auto	0 FFT		
SGL Count 100/100	on ships on		mode Add			
●1Pk Max						
0 dBm						
-10 dBm						
phyloden while he had	and they we					
-20 dBm		+				
20 10-1						
-30 dBm						
-40 dBm-						
-50 dBm	"yallerla	Mundangel				
	14tu	M Aug h				
-60 dBm		mour ful	- Another when the state	metaurypuel	-	and the second second second second
			1	_	1	
-70 dBm						
-80 dBm		1				
		1			I	
CF 2.44175 GHz		167	'O pts			Span 83.5 M
CF 2.44175 GHz		167	'O pts			Span 83.5 M
CF 2.44175 GHz						Span 83.5 M
CF 2.44175 GHz	Eromon	Measu	urement	1 : :4	Desult	
CF 2.44175 GHz	Frequency	Measu Level	urement Margin	Limit	Result	
CF 2.44175 GHz	(MHz)	Measu Level (dBm)	urement Margin (dB)	(dBm)		
CF 2.44175 GHz	(MHz) 2399.975000	Measu Level (dBm) -36.8	urement Margin (dB) 8.4	(dBm) -28.3	PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000	Measo Level (dBm) -36.8 -36.8	Margin (dB) 8.4 8.4	(dBm) -28.3 -28.3	PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000	Measu Level (dBm) -36.8 -36.8 -37.3	Margin (dB) 8.4 8.4 9.0	(dBm) -28.3 -28.3 -28.3	PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000	Measu Level (dBm) -36.8 -36.8 -37.3 -37.6	urement Margin (dB) 8.4 8.4 9.0 9.3	(dBm) -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000	Measo (dBm) -36.8 -36.8 -37.3 -37.6 -37.9	Margin (dB) 8.4 8.4 9.0 9.3 9.5	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000	Measo (dBm) -36.8 -36.8 -37.3 -37.6 -37.9 -37.9 -37.9	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000	Measu (dBm) -36.8 -36.8 -37.3 -37.6 -37.9 -37.9 -37.9 -37.9	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.6	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000 2399.725000	Measu (dBm) -36.8 -36.8 -37.3 -37.6 -37.9 -37.9 -37.9 -37.9 -37.9	urement Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.6 9.8	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000 2399.725000 2399.725000	Measu (dBm) -36.8 -36.8 -37.3 -37.6 -37.9 -37.9 -37.9 -37.9 -37.9 -38.2 -38.2	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.6 9.8 9.8	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000 2399.725000 2399.725000 2399.425000	Measu (dBm) 36.8 36.8 37.3 37.6 37.9 37.9 37.9 37.9 38.2 38.2 38.2	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.6 9.8 9.8 9.8	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000 2399.725000 2399.725000 2399.425000 2399.425000	Meas (dBm) -36.8 -36.8 -37.3 -37.6 -37.9 -37.9 -37.9 -37.9 -38.2 -38.2 -38.2 -38.3	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.5 9.6 9.8 9.8 9.8 9.8 9.9	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000 2399.725000 2399.725000 2399.425000 2399.425000 2399.025000 2397.675000	Meas (dBm) -36.8 -36.8 -37.3 -37.9 -37.9 -37.9 -37.9 -37.9 -38.2 -38.2 -38.2 -38.3 -38.3	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.5 9.6 9.8 9.8 9.8 9.8 9.9 10.0	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS PASS	
CF 2.44175 GHz	(MHz) 2399.975000 2399.925000 2399.875000 2399.825000 2399.775000 2399.475000 2399.525000 2399.725000 2399.725000 2399.425000 2399.425000	Meas (dBm) -36.8 -36.8 -37.3 -37.6 -37.9 -37.9 -37.9 -37.9 -38.2 -38.2 -38.2 -38.2 -38.3	Margin (dB) 8.4 8.4 9.0 9.3 9.5 9.5 9.5 9.5 9.6 9.8 9.8 9.8 9.8 9.9	(dBm) -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3 -28.3	PASS PASS PASS PASS PASS PASS PASS PASS	

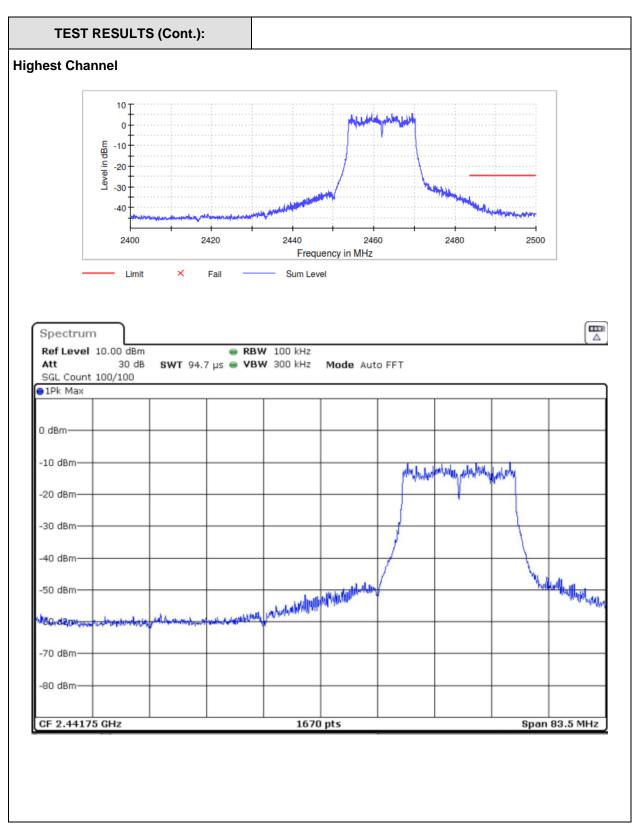




TEST RESULTS (Cont.): ₽ Spectrum Ref Level 10.00 dBm RBW 100 kHz 30 dB Att SWT 94.7 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max 0 dBm--10 dBm-July My -20 dBm -30 dBm -40 dBm 50 dBm - the marking -60 dBm -70 dBm -80 dBm-Span 83.5 MHz CF 2.44175 GHz 1670 pts 6 Measurement Frequency Level Margin Limit Result (MHz) (dBm) (dB) (dBm) 2399.475000 -37.8 8.9 -28.9 PASS 2399.525000 -38.0 9.1 -28.9 PASS 2399.425000 -38.4 9.6 -28.9 PASS 2399.975000 -38.5 9.7 -28.9 PASS 2399.925000 -38.7 9.9 -28.9 PASS -39.2-28.9 PASS 2399.575000 10.3 2399.875000 -39.3 10.5 -28.9 PASS 2399.625000 -39.5 -28.9 PASS 10.6 -28.9 PASS 2398.575000 -39.7 10.8 2398.875000 -39.7 10.9 -28.9 PASS -28.9 PASS 2398.825000 -39.8 10.9 -39.8 2398.325000 10.9 -28.9 PASS 2398.625000 -39.8 10.9 -28.9 PASS 2398.525000 -39.9 11.0 -28.9 PASS 2398.275000 -40.0 11.1 -28.9 PASS



						G
Spectrum		W 100 http				Ę
Att 30 dBr		W 100 kHz	Mode Auto	FFT		
SGL Count 100/100						
●1Pk Max						
0 dBm						
-10 dBm		+				
00 40						
-20 dBm						
-30 dBm						
-40 dBm		<u> </u>				
-50 dBm	+	+				
260 dBm	from when	mon	mont	mun	m	mon
70 10						
-70 dBm						
-80 dBm						
oo abiii						
CF 2.49175 GHz			pts			Span 16.5 MH
						opan zoio nin
_	_		irement		-	
	Frequency	Level	Margin	Limit	Result	
	(MHz)	Level (dBm)	Margin (dB)	(dBm)		
	(MHz) 2484.375000	Level (dBm) -43.9	Margin (dB) 15.2	(dBm) -28.7	PASS	
	(MHz) 2484.375000 2484.325000	Level (dBm) -43.9 -44.0	Margin (dB) 15.2 15.3	(dBm) -28.7 -28.7	PASS	
	(MHz) 2484.375000 2484.325000 2483.575000	Level (dBm) -43.9 -44.0 -44.1	Margin (dB) 15.2 15.3 15.5	(dBm) -28.7 -28.7 -28.7	PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000	Level (dBm) -43.9 -44.0 -44.1 -44.3	Margin (dB) 15.2 15.3 15.5 15.6	(dBm) -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3	Margin (dB) 15.2 15.3 15.5 15.6 15.6	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.3	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.6 15.7	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000 2485.725000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.4 -44.5	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.7 15.8	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000 2485.725000 2483.625000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.4 -44.5 -44.5	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.7 15.8 15.8	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000 2485.725000 2483.625000 2486.825000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.5 -44.5 -44.5 -44.5	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.7 15.8 15.8 15.8 15.8	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000 2485.725000 2483.625000 2483.625000 2483.925000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.3 -44.5 -44.5 -44.5 -44.5 -44.5	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.7 15.8 15.8 15.8 15.8	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000 2485.725000 2483.625000 2486.825000 2486.825000 2486.775000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.3 -44.5 -44.5 -44.5 -44.5 -44.5	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.7 15.8 15.8 15.8	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2484.375000 2484.325000 2483.575000 2483.525000 2485.675000 2484.175000 2484.125000 2485.725000 2483.625000 2483.625000 2483.925000	Level (dBm) -43.9 -44.0 -44.1 -44.3 -44.3 -44.3 -44.3 -44.5 -44.5 -44.5 -44.5 -44.5	Margin (dB) 15.2 15.3 15.5 15.6 15.6 15.6 15.7 15.8 15.8 15.8 15.8 15.8 15.8	(dBm) -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7	PASS PASS PASS PASS PASS PASS PASS PASS	



TEST RESUL	TS (Cont.):					
Spectrum		DUL 100 LU-				
Att 30 d		BW 100 kHz BW 300 kHz	Mode Auto	FFT		
SGL Count 100/100						
●1Pk Max						
0 dBm			+ +			
-10 dBm	Why Lad Look					
-20 dBm	W					
-30 dBm						
1						
-40 dBm	+ $+$ $+$					
50 dBm						
-50 dBm	and same and holder	Why have been been a				
-60 dBm	1100	" Although the	- population Marchander	Harthallonder mark	marth property play	An and the second second second second
					· · · · · · · · · · · ·	
-70 dBm			+			
-80 dBm						
CF 2.44175 GHz		167	0 pts			Span 83.5 MH
_	F		urement	1 : :4	Desult	1
	Frequency	Level	Margin	Limit	Result	
	(MHz)	Level (dBm)	Margin (dB)	(dBm)		
-	(MHz) 2399.775000	Level (dBm) -31.3	Margin (dB) 6.8	(dBm) -24.5	PASS	
-	(MHz) 2399.775000 2399.825000	Level (dBm) -31.3 -31.4	Margin (dB) 6.8 6.9	(dBm) -24.5 -24.5	PASS PASS	
	(MHz) 2399.775000	Level (dBm) -31.3 -31.4 -31.5	Margin (dB) 6.8 6.9 6.9	(dBm) -24.5 -24.5 -24.5	PASS	
	(MHz) 2399.775000 2399.825000 2399.475000	Level (dBm) -31.3 -31.4 -31.5 -31.5	Margin (dB) 6.8 6.9	(dBm) -24.5 -24.5 -24.5 -24.5	PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.5 -31.6	Margin (dB) 6.8 6.9 6.9 7.0	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2398.675000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0	Margin (dB) 6.8 6.9 6.9 7.0 7.0 7.1 7.1 7.5	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2398.675000 2399.225000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0 -32.1	Margin (dB) 6.8 6.9 7.0 7.0 7.0 7.1 7.5 7.6	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2399.525000 2399.225000 2399.225000 2399.975000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0 -32.1 -32.2	Margin (dB) 6.8 6.9 7.0 7.0 7.0 7.1 7.5 7.6 7.6	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2399.525000 2399.225000 2399.275000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0 -32.1 -32.2 -32.2	Margin (dB) 6.8 6.9 7.0 7.0 7.0 7.1 7.5 7.6 7.6 7.6 7.7	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2399.225000 2399.225000 2399.975000 2399.275000 2397.875000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0 -32.1 -32.2 -32.2 -32.2	Margin (dB) 6.8 6.9 7.0 7.0 7.0 7.1 7.5 7.6 7.6 7.6 7.7 7.7	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2399.525000 2399.225000 2399.275000 2399.275000 2399.725000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0 -32.1 -32.2 -32.2 -32.2 -32.2	Margin (dB) 6.8 6.9 7.0 7.0 7.0 7.1 7.5 7.6 7.6 7.6 7.7 7.7 7.7	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	
	(MHz) 2399.775000 2399.825000 2399.475000 2398.625000 2398.575000 2399.525000 2399.225000 2399.225000 2399.975000 2399.275000 2397.875000	Level (dBm) -31.3 -31.4 -31.5 -31.5 -31.5 -31.6 -32.0 -32.1 -32.2 -32.2 -32.2 -32.2 -32.2 -32.3	Margin (dB) 6.8 6.9 7.0 7.0 7.0 7.1 7.5 7.6 7.6 7.6 7.7 7.7	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	

								G
Spectrum			- 88	W 100 kUs				
Ref Level Att	30 dB			W 100 kHz W 300 kHz	Mode Auto	FFT		
SGL Count	100/100							
●1Pk Max		1	1					
0 dBm								
-10 dBm								
-20 dBm								
-20 0011								
-30 dBm-								
-40 dBm					+			
-50 dBm-								
-60 dBm	non	man	0.00	A D .	~	Da a		
-00 UBIII				annon an	a ma	- www	mo	and a construction of
-70 dBm-								
-80 dBm								
		1	1			I		
CF 2.49175	5 GHz			330) pts			Span 16.5 MH
CF 2.49175	5 GHz			330) pts			Span 16.5 MH
CF 2.49175	5 GHz				pts			Span 16.5 MH
CF 2.49175	5 GHz	Freque	ncy		irement	Limit	Result	Span 16.5 MH
CF 2.49175	5 GHz	Freque (MHz		Measu		Limit (dBm)	Result	Span 16.5 MH
CF 2.49175	5 GHz	(MHz		Measu Level	irement Margin	(dBm)	Result PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483.	<u>)</u> 575000 525000	Measu Level (dBm) -34.8 -35.1	rement Margin (dB) 10.3 10.6	(dBm) -24.5 -24.5	PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483. 2483.	r) 575000 525000 625000	Measu Level (dBm) -34.8 -35.1 -35.3	rement Margin (dB) 10.3 10.6 10.8	(dBm) -24.5 -24.5 -24.5	PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483. 2483. 2483. 2483.	2) 575000 525000 625000 675000	Measu Level (dBm) -34.8 -35.1 -35.3 -36.3	Margin (dB) 10.3 10.6 10.8 11.8	(dBm) -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483. 2483. 2483. 2483. 2483.	c) 575000 525000 625000 675000 875000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9	Margin (dB) 10.3 10.6 10.8 11.8 12.4	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483. 2483. 2483. 2483. 2483. 2483.	c) 575000 525000 625000 675000 875000 825000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9 -37.0	Margin (dB) 10.3 10.6 10.8 11.8 12.4 12.5	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483. 2483. 2483. 2483. 2483. 2483. 2483. 2484.	2) 575000 525000 625000 675000 875000 825000 475000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9 -37.0 -37.0	Margin (dB) 10.3 10.6 10.8 11.8 11.8 12.4 12.5 12.8	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483.) 2483.) 2483.) 2483.) 2483.) 2483.) 2483.) 2484.4 2484.9	2) 575000 525000 625000 675000 875000 825000 475000 525000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9 -37.0 -37.0 -37.3 -37.4	Margin (dB) 10.3 10.6 10.8 11.8 11.8 12.4 12.5 12.8 12.9	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483. 2483. 2483. 2483. 2483. 2483. 2483. 2484. 2484. 2484. 2484.	2) 575000 525000 625000 675000 875000 825000 475000 525000 775000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.3 -36.9 -37.0 -37.3 -37.4 -37.5	Margin (dB) 10.3 10.6 10.8 11.8 11.8 12.4 12.5 12.8 12.9 13.0	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9 2484.9 2484.9 2484.9 2483.9 2483.9	2) 575000 525000 625000 675000 875000 825000 475000 525000 775000 925000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9 -37.0 -37.0 -37.3 -37.4 -37.5 -37.6	Margin (dB) 10.3 10.6 10.8 11.8 12.4 12.5 12.8 12.9 13.0 13.1	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9 2484.9 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9	2) 575000 525000 625000 675000 875000 825000 475000 525000 775000 925000 725000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9 -37.0 -37.3 -37.4 -37.5 -37.6 -37.6	Margin (dB) 10.3 10.6 10.8 11.8 12.4 12.5 12.8 12.9 13.0 13.1 13.1	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9 2484.9 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9 2483.9	2) 575000 525000 625000 675000 875000 825000 475000 525000 775000 925000 725000 425000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.3 -36.9 -37.0 -37.0 -37.3 -37.4 -37.5 -37.6 -37.6 -37.9	Margin (dB) 10.3 10.6 10.8 11.8 12.4 12.5 12.8 12.9 13.0 13.1 13.1 13.1	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH
CF 2.49175	5 GHz	(MHz 2483.) 2483.) 2483.) 2483.) 2483.) 2483.) 2484.4 2484.1 2483.1 2483.1 2483.1 2483.1 2483.1 2483.1 2483.1 2483.1	2) 575000 525000 625000 675000 875000 825000 475000 525000 775000 925000 725000	Measu (dBm) -34.8 -35.1 -35.3 -36.3 -36.9 -37.0 -37.3 -37.4 -37.5 -37.6 -37.6	Margin (dB) 10.3 10.6 10.8 11.8 12.4 12.5 12.8 12.9 13.0 13.1 13.1	(dBm) -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5	PASS PASS PASS PASS PASS PASS PASS PASS	Span 16.5 MH