

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Amended FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

A03908

Test Report No:

R20200110-20-E4A

Approved by:

Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

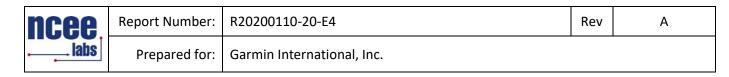
9 May 2020

Total Pages:

43

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee,	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		


REVISION PAGE

Rev. No.	Date	Description
0	21 April 2020	Original – NJohnson
		Prepared by KVepuri/CFarrington
A	9 May 2020	1. PSD Measurements in Appendix C were removed.
		 Tables in Section 4.4 were updated to show the frequency range and statements were added to provide clarification about what data was reported.
		 Restricted band edge measurements were updated in section 4.5 and Appendix C.
		4. The data corresponding to BT BR modulation was removed.
		5. Contains the report R20200110-20-E12 and its amendments
		in fullKV

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

CONTENTS

Rev	ision Pa	ge2
1.0	Sum	nmary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Lab	oratory and General Test Description6
	3.1	Laboratory description
	3.2	Test personnel
	3.3	Test equipment
	3.4	General Test Procedure and Setup for Radio Measuremnts8
4.0	Res	ults9
4.0	Res 4.1	ults9 Output Power
4.0		
4.0	4.1	Output Power9
4.0	4.1 4.2	Output Power
4.0	4.1 4.2 4.3	Output Power 9 Bandwidth 10 Duty Cycle 11
4.0	4.1 4.2 4.3 4.4	Output Power .9 Bandwidth .10 Duty Cycle .11 Radiated emissions .12
	4.1 4.2 4.3 4.4 4.5 4.6	Output Power .9 Bandwidth .10 Duty Cycle .11 Radiated emissions .12 Band edges .19
Арр	4.1 4.2 4.3 4.4 4.5 4.6 endix A	Output Power.9Bandwidth.10Duty Cycle.11Radiated emissions.12Band edges.19Conducted AC Mains Emissions.21
Арр Арр	4.1 4.2 4.3 4.4 4.5 4.6 endix A endix B	Output Power .9 Bandwidth .10 Duty Cycle .11 Radiated emissions .12 Band edges .19 Conducted AC Mains Emissions .21 Sample Calculation .24

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section (Please see the checked box below for the rule part used):

FCC Part 15.249 🖂

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-210, Issue 10

SUMMARY				
Requirement Test Type and Limit		Result	Remark	
FCC 15.203	Unique Antenna Requirement	Pass	PCB Antenna	
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	N/A	Not required	
NA	Maximum Peak Output Power	N/A	Informational Purpose Only	
NA	Minimum Bandwidth	N/A	Informational Purpose Only	
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.	
FCC 15.209 RSS-Gen, 8.9 RSS-210 A1.2 FCC 15.249(a)	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.	
FCC 15.209, 15.205, 15.249(d) RSS-Gen, 8.9 RSS-210, 5.5	Band Edge Measurement	Pass	Meets the requirement of the limit.	
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	Pass	Meets the requirement of the limit.	

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	A03908
EUT Received	13 January 2020
EUT Tested	19 February 2020- 6 March 2020
Serial No.	331800557 (Radiated Measurements) 331800546 (Radiated Measurements) 331800536 (Conducted Measurements)
Operating Band	2400 – 2483.5 MHz
Device Type	GMSK GFSK BT BR BT EDR 2MB BT EDR 3MB
Power Supply / Voltage	Internal Battery/ 5VDC Charger: Garmin (Phi Hong) MN: PSAF10R-050Q (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For Bluetooth Transmissions:			
Channel	Frequency		
Low	2402 MHz		
Mid	2440/2441 MHz		
High	2480 MHz		

For 802.11x Transmissions:			
Channel	Frequency		

Channel	riequency
Low	2412 MHz
Mid	2437 MHz
High	2462 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests:

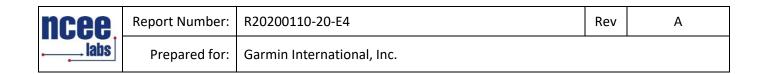
Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review/editing
2	Karthik Vepuri	Test Engineer	Testing and report
3	Caleb Farrington	Test Engineer	Testing and report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.


3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer	N9038A	MY59050109	23 Apr 2019	23 Apr 2021
Keysight EXA Signal Analyzer	N9010A	MY56070862	14 Dec 2018	14 Dec 2020
SunAR RF Motion	JB1	A082918-1	15 Oct 2018	15 Oct 2020
EMCO Horn Antenna	3115	6416	26 Jan 2018	26 Jan 2021
EMCO Horn Antenna	3116	2576	31 Jan 2018	31 Jan 2021
EMCO Loop Antenna	6512	00024936	11 Feb 2019	11 Feb 2021
Rohde & Schwarz Preamplifier	TS-PR18	3545700803	09 Mar 2018*	09 Mar 2021*
Trilithic High Pass Filter	6HC330	23042	09 Mar 2018*	09 Mar 2021*
Rohde & Schwarz LISN	ESH3-Z5	836679/010	25 Jul 2019	25 Jul 2020
TDK Emissions Lab Software	V11.25	700307	NA	NA
Humidity Meter - Omega	iTHX-SD	18020051	14 Feb 2019	14 Feb 2021
JFW Industries Variable attenuator	50DR-046 SMA	594239	29 May 2018*	29 May 2020*
RF Cable (preamplifier to antenna)	MFR-57500	01-07-002	09 Mar 2018*	09 Mar 2021*
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	09 Mar 2018*	09 Mar 2021*
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	09 Mar 2018*	09 Mar 2021*
RF Cable (Control room bulkhead to RF switch)	FSCM 64639	01E3871	09 Mar 2018*	09 Mar 2021*
RF Cable (RF switch to test receiver)	FSCM 64639	01F1206	09 Mar 2018*	09 Mar 2021*
RF switch – Rohde and Schwarz	TS-RSP	1113.5503.14	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (control room)	PE9128	NCEEBH2	09 Mar 2018*	09 Mar 2021*

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted \boxtimes

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

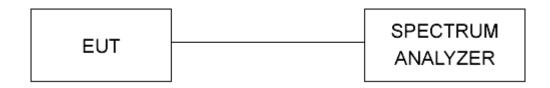


Figure 1 - Bandwidth Measurements Test Setup

Radiated

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

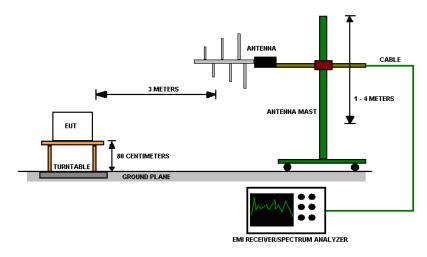


Figure 2 - Radiated Emissions Test Setup

4.0 RESULTS

4.1 OUTPUT POWER

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements: For FCC Part 15.249 Device: For Informational Purposes only For FCC Part 15.247 Device: The maximum allowed peak output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables below.

CHANNEL	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	RESULT	Transmitter
Low	1.160	1.306	PASS	GMSK
Mid	0.326	1.078	PASS	GMSK
High	-0.014	0.997	PASS	GMSK
Low	1.072	1.280	PASS	GFSK
Mid	-0.172	0.961	PASS	GFSK
High	-0.134	0.970	PASS	GFSK

Peak Output Power

4.2 BANDWIDTH

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.249 Device:

For Informational Purposes only

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

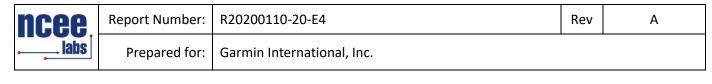
Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:


Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.

4.3 DUTY CYCLE

Test Method: NA

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

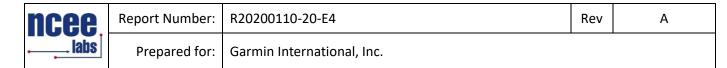
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.


c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

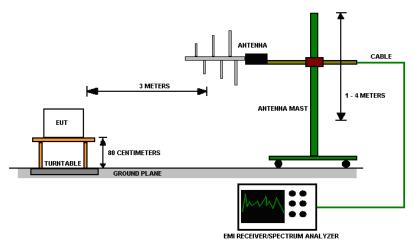
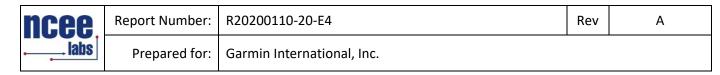


Figure 3 - Radiated Emissions Test Setup

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.


2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

Test results:

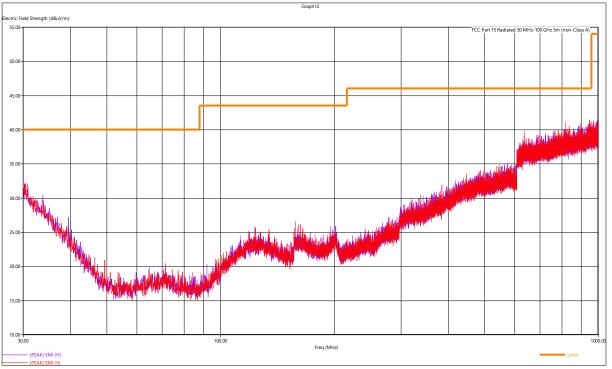
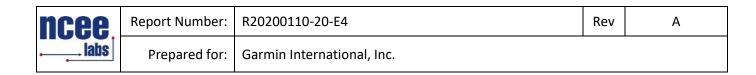



Figure 4 - Radiated Emissions Plot, Receive

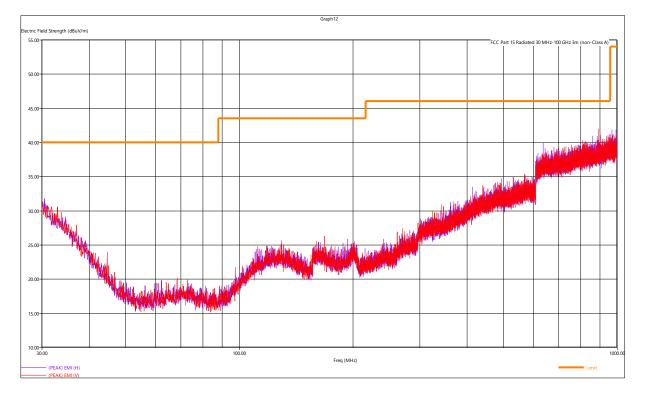
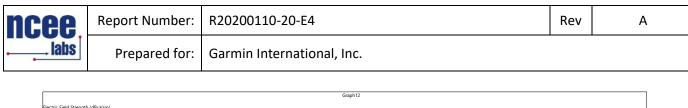



Figure 5 - Radiated Emissions Plot, GMSK

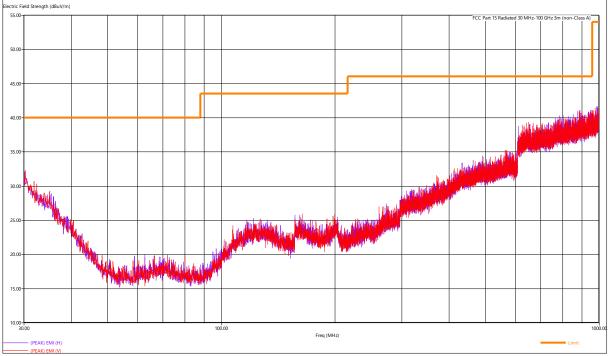


Figure 6 - Radiated Emissions Plot, GFSK

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above. All emissions were found to be at least 6 dB below the limit.

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Peak Measurements, GMSK-GFSK, 1 GHz -25 GHz									
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.				
2402.000000	91.99	114.00	22.01	105	230	Н	Low	GMSK	
2440.000000	91.17	114.00	22.83	87	204	Н	Mid	GMSK	
2480.000000	90.51	114.00	23.49	93	239	Н	High	GMSK	
2402.000000	91.85	114.00	22.15	109	226	Н	Low	GFSK	
2440.000000	90.96	114.00	23.04	83	200	Н	Mid	GFSK	
2480.000000	90.41	114.00	23.59	91	243	Н	High	GFSK	
9146.740000	49.84	53.98	4.14	169	168	V	Low	GFSK	

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above. *If the measurements were found to be at least 6 dB below the limit, they were not reported.

Average Measurements, GMSK-GFSK, 1 GHz -25 GHz									
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.				
2402.000000	85.03	94.00	8.97	105	230	н	Low	GMSK	
2440.000000	83.51	94.00	10.49	87	204	н	Mid	GMSK	
2480.000000	83.04	94.00	10.96	93	239	Н	High	GMSK	
2402.000000	89.56	94.00	4.44	109	226	Н	Low	GFSK	
2440.000000	88.14	94.00	5.86	83	200	Н	Mid	GFSK	
2480.000000	89.18	94.00	4.82	91	243	Н	High	GFSK	

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above. *If the measurements were found to be at least 6 dB below the limit, they were not reported.

Rev

Prepared for: Garmin International, Inc.

4.5 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.249 Device:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

For Unrestricted Band-Edge measurements, test setup details can be found in section 3.4 of this report.

Restricted Band-Edge Measurements were done with the test setup in section 4.4 at a distance of 3m.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results: Pass

	Restricted Band Edge Measurements								
Modulation	Channel	Average level	Average Limit	Average Margin	Peak Level	Peak Limit	Peak Margin		
GFSK	Low	40.904	53.980	13.076	52.698	73.890	21.192		
GFSK	High	40.809	53.980	13.171	52.689	73.890	21.201		
GMSK	Low	41.004	53.980	12.976	52.563	73.890	21.327		
GMSK	High	40.804	53.980	13.176	52.31	73.890	21.580		

Comments:

- 1. All the band edge plots can be found in the Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. If the device falls under FCC Part 15.249 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 50 dB between peak and the band edge.
- 4. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

А

Rev

Prepared for: Garmin International, Inc.

4.6 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Notes:

1. The lower limit shall apply at the transition frequencies.

The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
 All emanations from a class A/B digital device or system, including any network of conductors

and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Test Results:

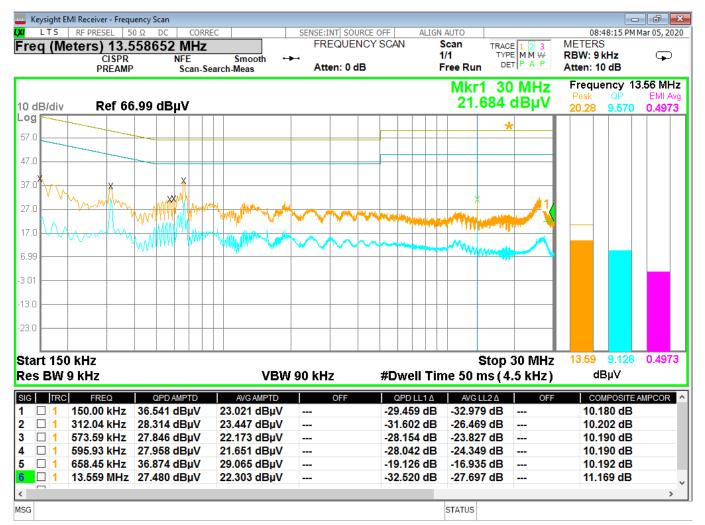


Figure 7 - Conducted Emissions Plot, Line

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

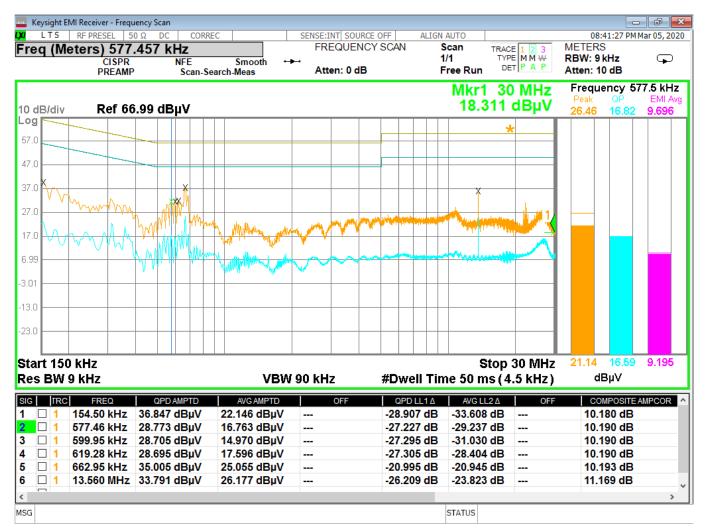


Figure 8 - Conducted Emissions Plot, Neutral

ncee,	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude
AF = Antenna Factor
CF = Cable Attenuation Factor
AG = Amplifier Gain
AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee,	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = $10^{Power} (dBm)/10] / 1000$

Voltage ($dB\mu V$) = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6}

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

Expanded uncertainty values are calculated to a confidence level of 95%.

Incee	Report Number:	R20200110-20-E4	Rev	А
	Prepared for:	Garmin International, Inc.		

APPENDIX C – GRAPHS AND TABLES

Keysight Spectrum Analyz	zer - Swept SA					
	50 Ω DC CORREC	SENSE:	INT SOURCE OFF	ALIGN AUTO		08:37:46 AM May 08
Marker 2 2.4841 PASS PREA			ig: Free Run tten: 0 dB		pe: RMS ld:>1500/1500	TRACE 1 2 3 TYPE MA ₩ DET PAN
0 dB/div Ref 86	.99 dBµV				Mkr2	2 2.484 143 5 G 40.806 dE
.og Trace 1 Pass 77.0 Trace 2 Pass						
57.0			{0}1			
17.0	anopulsuspectrated 2 wet	her wether the	~~~~	<u>,,</u>	and a second and a s	the second the second
27.0						
17.0 6.99						
3.01						
tart 2.483500 GI Res BW (CISPR)		VBW 50	MHz*		Sweep	Stop 2.500000 1.000 ms (1001
IKR MODE TRC SCL	× 2.491 882 0 GH	۲ z <u>52.310 dB</u> µV	FUNCTION	FUNCTION WIDTH	FL	INCTION VALUE
2 N 2 f 3 4	2.484 143 5 GH	z 40.804 dBµV				
5 6						
7 8 9						
0						
G				I STATUS		

GMSK peak higher band edge restricted

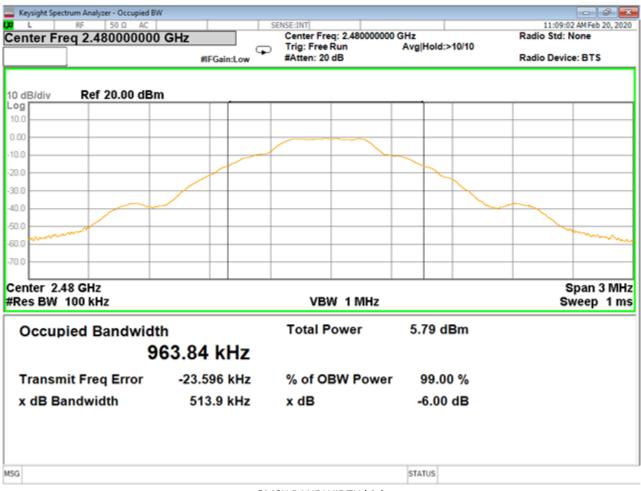
*Limit per Part 15.209 is 73.98 dBμV/m for peak and 53.98 dBμV/m for average at 3m test distance. Peak and Average Trace values are shown with corresponding limits. Tabular data for worst case frequencies shown above can be found in section 4.5.

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

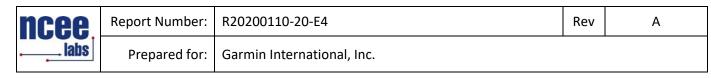
	ectrum Analyzer -	Swept SA							
L <mark>XI</mark>	RF PRESEL 5			SENSE:	INT SOURCE OFF	ALIGN AUTO	pe: RMS		6 AM May 08, 2 RACE 1 2 3 4
Marker 2 PASS	PREAMP	0000000 GH	PNO: Fast IFGain:High		ig: Free Run tten: 0 dB		ld:>1500/1500		
	B - 6 00 0	A 48-01					Ν	1kr2 2.38	6 08 GI 05 dBj
10 dB/div Log r	Ref 86.9	9 αθήν						41.0	
Trac	e 1 Pass e 2 Pass								
67.0	e z Fass								
57.0		1							
مروسه الارام المحلقه فل	Murun harrow at m	Long-man marker on	REAL ARE PARTY AND AND	*-4-1-174_21	wardensteine	martinen 2 verse	Manage and a state of the state	hind and a flat of the second second	march
47.0									
37.0									
27.0									
17.0									
6.99									
-3.01									
-3.01									
	0000 GHz (CISPR) 1			/BW 50	 MHz*		Swee	Stop 2.3 p 1.000 ms	90000 G (1001 p
MKR MODE TH		х		Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 1	f	2.381 74		563 dBµV					
2 N 2 3	2 f	2.386 08	GHz 41.	004 dBµV					
4									
5 6									
7									
8									
10									
11									
<						51			
MSG									

GMSK Lower band edge Restricted

*Limit per Part 15.209 is 73.98 dBµV/m for peak and 53.98 dBµV/m for average at 3m test distance. Peak and Average Trace values are shown with corresponding limits. Tabular data for worst case frequencies shown above can be found in section 4.5.

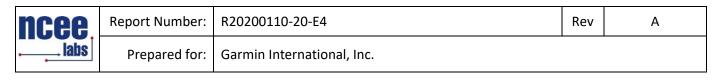

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

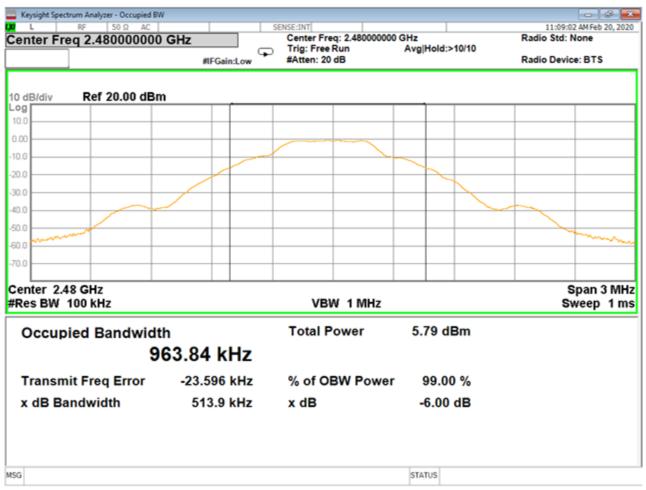
RF 50 Ω AC		SENSE:INT		11:38:08 AM Apr 23,
enter Freq 2.40200000	GHz	Center Freq: 2.40200000		Radio Std: None
	#IFGain:Low	○ Trig: Free Run #Atten: 20 dB	Avg Hold:>10/10	Radio Device: BTS
	#IFGalli.LOw	#Atten: 20 ab		Radio Device. D 10
dB/div Ref 20.00 dBn	<u>ا</u>			
) 0.0				
).0				
.0				
.0				
.0				\
.0				
).0				
1.0				
enter 2.402 GHz				Span 3
Res BW 100 kHz		VBW 1 MHz		Sweep 1
Occupied Bandwidt	h	Total Power	7.66 dBm	
1.	1249 MHz			
Transmit Freq Error	-14.689 kHz	% of OBW Power	99.00 %	
-				
x dB Bandwidth	787.3 kHz	x dB	-6.00 dB	
			STATUS	


ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

RF 50 Ω AC		SENSE:INT		11:40:46 AM Apr 23,
enter Freq 2.44000000	GHz	Center Freq: 2.4400000		Radio Std: None
	G	Trig: Free Run	Avg Hold:>10/10	
	#IFGain:Low	#Atten: 20 dB		Radio Device: BTS
0 dB/div Ref 20.00 dBn	n			
og	•		•	
10.0				
0.0				
20.0				
30.0				~~~~~
40.0				
50.0				
50.0				
70.0				
enter 2.44 GHz				Span 3 N
Res BW 100 kHz		VBW 1 MHz		Sweep 1
Res BW 100 RHz				Sweep i
Occupied Bandwidt	h	Total Power	7.00 dBm	
			1.00 0.011	
1.1	1174 MHz			
	40.000.111		00 00 V	
Transmit Freq Error	-18.203 kHz	% of OBW Powe	r 99.00 %	
x dB Bandwidth	782.6 kHz	x dB	-6.00 dB	
G			STATUS	
-				

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

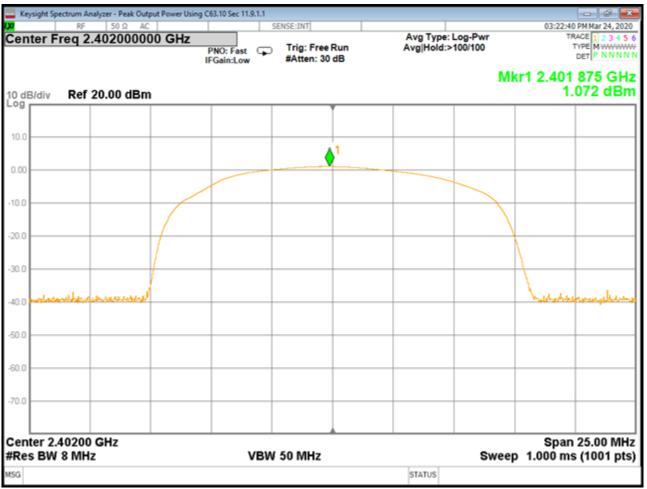

GMSK BANDWIDTH high



RF 50 Ω AC		SENSE:INT		11:42:47 AM Apr 23,
enter Freq 2.40200000) GHz	Center Freq: 2.402000000		Radio Std: None
_	G	Trig: Free Run	Avg Hold:>10/10	
	#IFGain:Low	#Atten: 20 dB		Radio Device: BTS
0 dB/div Ref 20.00 dBr	n			
og	··· · · · · · · · · · · · · · · · · ·			
10.0				
).00				
0.0				
0.0				
0.0				
	- warden and the second s			
0.0				
i0.0				
0.0				mm
ro.o				
0.0				
enter 2.402 GHz				Span 3 N
Res BW 100 kHz		VBW 1 MHz		Sweep 1
Occupied Bandwid	th	Total Power	6.95 dBm	
•				
9	49.90 kHz			
Transmit Freq Error	-18.138 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	512.0 kHz	x dB	-6.00 dB	
	012.0 1112		0.00 48	
			STATUS	
G				

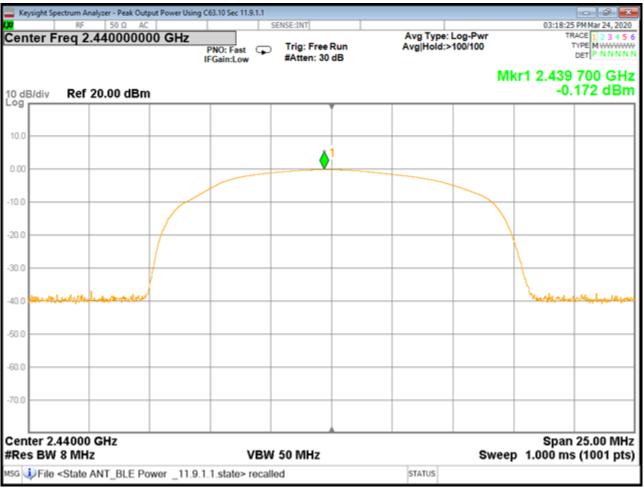
ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

RF 50 Ω AC		SENSE:INT		11:41:26 AM Apr 23,
enter Freq 2.44000000	GHz	Center Freq: 2.44000000	GHz	Radio Std: None
	G	Trig: Free Run #Atten: 20 dB	Avg Hold:>10/10	Radio Device: BTS
	#IFGain:Low	#Atten: 20 dB		Radio Device: D 13
0 dB/div Ref 20.00 dBn	<u> </u>			
og 0.0				
).00				
0.0				
0.0				
0.0				
0.0 Marine 1				
0.0				
0.0				
enter 2.44 GHz				Span 3 M
Res BW 100 kHz		VBW 1 MHz		Sweep 1
Occupied Bandwidt	h	Total Power	5.87 dBm	
1.	0818 MHz			
			00 00 M	
Transmit Freq Error	-20.935 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	521.8 kHz	x dB	-6.00 dB	
G			STATUS	
-				


GFSK BANDWIDTH high

ncee.	Report Number:	R20200110-20-E4	Rev	А
	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Swept SA						- 6 🛃
L RF 50 Ω AC		SENSE:INT	Aug Transland			M Feb 20, 202
larker 1 2.479900000000 GHz	PNO: Fast	Trig: Free Run	Avg Type: Log-F Avg Hold:>100/1	00	TY	CE 1 2 3 4 5 PE M
	IFGain:Low	#Atten: 30 dB				
				Mkr	1 2.479	900 GH 34 dBr
dB/div Ref 20.00 dBm					-0.1	34 UBI
		Ī				
10.0						
		1				
0.00						
0.0						
0.0	-/					
0.0						
10.0	×					
Where and on the and the and the and				house	La monte	
0.0						
0.0						
70.0						
enter 2.48000 GHz		A			Snan 3	25.00 MH
Res BW 3.0 MHz	VBW	50 MHz		Sweep	1.000 ms	(1001 pt
G			STATUS			
~						


GMSK pwr high

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

GMSK pwr low

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

GMSK pwr mid

Incee labs	Report Number:	R20200110-20-E4	Rev	А
	Prepared for:	Garmin International, Inc.		

	ectrum Analyzer - S	•						
	RF PRESEL 50 2.495182 PREAMP	000000 GHz	NO: Fast 🕠 Tri	g: Free Run tten: 0 dB	ALIGN AUTO Avg Type Avg Hold	e: RMS :>1500/1500	TR	AM May 08, 2 ACE 1 2 3 4 TYPE MA WW DET P A N N
10 dB/div	Ref 86.99) dBµV				Mkr2	2.487 5 40.8	09 5 GH 10 dBµ
77.0 77.0 77.0 77.0	e 1 Pass e 2 Pass							
57.0 47.0	Magayang Part of the Post of	Mr. Adrage - Marshar Marshar	and much have the second fill the second	_n^eq^g_eq_qATLi_g_eq_ff	well-deservation	mary 2 monthlemphan	เหตุระกูปและค่างคางสางุลา	1 humler-standard
37.0								
27.0								
6.99 -3.01								
	3500 GHz (CISPR) 1	MHz	VBW 50	MHz*		Sweep	Stop 2.5 1.000 ms	00000 G (1001 p
MKR MODE TF	f	× 2.498 713 0 GHz 2.487 509 5 GHz	۲ 52.689 dBµV 40.809 dBµV	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	
3 4 5								
6 7 8 9								
10 11								>
MSG					I STATUS			

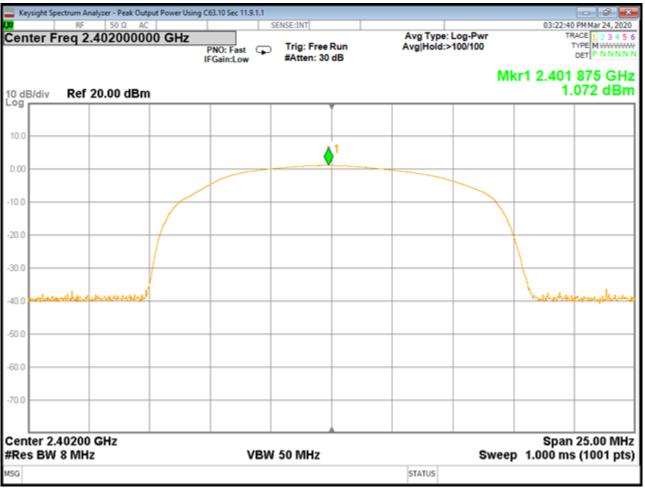
GFSK higher band edge restricted

*Limit per Part 15.209 is 73.98 dBµV/m for peak and 53.98 dBµV/m for average at 3m test distance. Peak and Average Trace values are shown with corresponding limits. Tabular data for worst case frequencies shown above can be found in section 4.5.

Incee labs	Report Number:	R20200110-20-E4	Rev	А
	Prepared for:	Garmin International, Inc.		

	zer - Swept SA						
Marker 2 2.3884 PASS PREA	90000000 GHz	PNO: Fast	SE:INT SOURCE OFF Trig: Free Run #Atten: 0 dB	ALIGN AUTO Avg Typ Avg Hold	e: RMS l:>1500/1500	TF	AM May 08, 2 RACE 1 2 3 4 TYPE MA WW DET P A N N
10 dB/div Ref 86	δ.99 dΒμV				N	1kr2 2.38 40.9	8 49 GI 03 dBµ
Trace 1 Pass 77.0 67.0 77.0							
57.0 47.0 37.0	when the second se		**************************************	กทหมากองไรการป _ม การจะกร	-dr.f.,1[;[i]];[i]];[i]];[i]];[i]]	2 ····	r
27.0 17.0							
-3.01						Stop 2.3	90000 G
#Res BW (CISPR)) 1 MHz ×	VBW 5	0 MHz*	FUNCTION WIDTH	Swee	p 1.000 ms	; (1001 p
1 N 1 f 2 N 2 f 3 4 5 5 6 7 7 8	2.380 93 GH 2.388 49 GH	z 52.698 dB	μV		- - 		
9 10 11 < MSG							>

GFSK Lower band edge Restricted


*Limit per Part 15.209 is 73.98 dBµV/m for peak and 53.98 dBµV/m for average at 3m test distance. Peak and Average Trace values are shown with corresponding limits. Tabular data for worst case frequencies shown above can be found in section 4.5.

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Swept SA						- 6
L RF 50 Ω AC	5	ENSE:INT	A			AM Feb 20, 202
larker 1 2.479900000000 GHz	PNO: Fast	Trig: Free Run #Atten: 30 dB	Avg Type: Lo Avg Hold:>10	g-Pwr 0/100	т	ACE 1 2 3 4 5 YPE M WWWW DET P N N N N
	IFGain:Low	#Atten: 30 dB				
				MKI	1 2.479	900 GH 134 dBr
0 dB/div Ref 20.00 dBm					-0.	134 UBI
		Ĭ				
10.0						
		1				
0.0	—					
0.0						
80.0			\			
	/					
0.0	×					
When the second of the second of the second s				Manager	Jogenspelers	montheres
0.0						
50.0						
0.0						
enter 2.48000 GHz		A			Span	25.00 MH
Res BW 3.0 MHz	VBW	50 MHz		Sweep	1.000 ms	(1001 pt
3G			STATUS			

GFSK pwr high

ncee.	Report Number:	R20200110-20-E4	Rev	А
labs	Prepared for:	Garmin International, Inc.		

GFSK pwr low

ncee labs	Report Number:	R20200110-20-E4	Rev	А
	Prepared for:	Garmin International, Inc.		

GFSK pwr mid

Incee labs	Report Number:	R20200110-20-E4	Rev	А
	Prepared for:	Garmin International, Inc.		

REPORT END