

Application For Grant of Certification

FOR

Model: 03754 2402-2480 MHz (DTS)

Broadband Digital Transmission System

FCC ID: IPH-03754 IC: 1792A-03754

FOR

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

FCC Designation: US5305 IC Test Site Registration: US0096

Test Report Number: 190318

Authorized Signatory: Scot D. Rogers

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214 Revision 2

Test: 190318

Model: 03754

Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

Garmin International, Inc.

SN's: 3986442368 / 3986442344

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

Page 1 of 40

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report For Grant of Certification Application

FOR

47 CFR, PART 15C - Intentional Radiators 47 CFR Paragraph 15.247 and Industry Canada RSS-GEN and RSS-247 License Exempt Intentional Radiator

For

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

Digital Transmission System Model: 03754

Frequency Range 2402-2480 MHz FCC ID: IPH-03754 IC: 1792A-03754

Test Date: March 18, 2019

Certifying Engineer:

Scot DRoserA

Scot D. Rogers Rogers Labs, Inc.

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

File: 03754 DTS TstRpt 190318 r2

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

SN's: 3986442368 / 3986442344

Page 2 of 40

TABLE OF CONTENTS	3
REVISIONS	5
FOREWORD	6
OPINION / INTERPRETATION OF RESULTS	6
EQUIPMENT TESTED	9
Equipment Function and Configuration	10
Equipment Configuration	11
APPLICATION FOR CERTIFICATION	12
APPLICABLE STANDARDS & TEST PROCEDURES	13
TESTING PROCEDURES	13
AC Line Conducted Emission Test Procedure	13
Radiated Emission Test Procedure	13
Antenna Port Conducted Emission Test Procedure	14
Diagram 1 Test arrangement for Conducted emissions	15
Diagram 2 Test arrangement for radiated emissions of tabletop equipment	16
Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)	17
Diagram 4 Test arrangement for Antenna Port Conducted emissions	18
TEST SITE LOCATIONS	18
LIST OF TEST EQUIPMENT	19
UNITS OF MEASUREMENTS	20
ENVIRONMENTAL CONDITIONS	20
STATEMENT OF MODIFICATIONS AND DEVIATIONS	20
INTENTIONAL RADIATORS	20
Antenna Requirements	20

Garmin International, Inc.

Model: 03754 Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

> Date: March 3, 2020 Page 3 of 40

Restricted Bands of Operation	21
Table 1 Harmonic Radiated Emissions in Restricted Bands Data	21
Summary of Results for Radiated Emissions in Restricted Bands	22
AC Line Conducted EMI Procedure	23
Figure 1 AC Line Conducted emissions of EUT line 1 (#2, EUT – 362-00087-00)	24
Figure 2 AC Line Conducted emissions of EUT line 2 (#2, EUT – 362-00087-00)	24
Figure 3 AC Line Conducted emissions of EUT line 1 (#3, EUT – Computer)	25
Figure 4 AC Line Conducted emissions of EUT line 2 (#3, EUT – Computer)	25
Table 2 AC Line Conducted Emissions Data L1 (#2, EUT – 362-00087-00)	26
Table 3 AC Line Conducted Emissions Data L2 (#2, -362-00087-00)	26
Table 4 AC Line Conducted Emissions Data L1 (#3, EUT – Computer)	27
Table 5 AC Line Conducted Emissions Data L2 (#3, EUT – Computer)	27
Summary of Results for AC Line Conducted Emissions	27
General Radiated Emissions Procedure	28
Table 6 General Radiated Emissions Data	29
Summary of Results for General Radiated Emissions	29
Operation in the Band 2400 – 2483.5 MHz	30
Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz	31
Figure 6 Plot of Transmitter Emissions Low Band Edge	31
Figure 7 Plot of Transmitter Emissions High Band Edge	32
Figure 8 Plot of Transmitter Emissions 6-dB% Occupied Bandwidth	32
Figure 9 Plot of Transmitter Emissions 99% Occupied Bandwidth	33
Figure 10 Plot of Transmitter Power Spectral Density	33
Transmitter Emissions Data	34
Table 7 Transmitter Radiated Emissions	34
Table 8 Transmitter Antenna Port Conducted Data	35
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	35
NNEX	36
Annex A Measurement Uncertainty Calculations	37

Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247

File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

Page 4 of 40

Annex B Additional Test Equipment	38
Annex C Rogers Qualifications	39
Annex D Rogers Labs Certificate of Accreditation	40

Revisions

Revision 2 Issued March 3, 2020 – updated equipment Function as requested

Revision 1 Issued April 2, 2019

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 -247 Date: March 3, 2020

Page 5 of 40

Foreword

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under Code of Federal Regulations Title 47 (47 CFR) Paragraph 15.247 and Industry Canada RSS-GEN, Issue 5 and RSS-247 Issue 2, operation in the 2400 – 2483.5 MHz band.

Name of Applicant: Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

M/N: 03754

FCC ID: IPH-03754 Industry Canada ID: 1792A-03754

Frequency Range: 2402-2480 MHz band

Mode	Power (Watts)	99% OBW (kHz)	6-dB OBW (kHz)
BLE (GMSK)	0.006	1,057.7	701.9

This report addresses EUT Operations as Digital Transmission System using the following Transmitter modulation: Bluetooth® BLE (GMSK)

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Emissions 15.205, RSS-GEN	-9.6	Complies
Emissions as per 47 CFR paragraphs 2 and 15.207	-8.2	Complies
Emissions as per 47 CFR paragraphs 2 and 15.209	-10.2	Complies
Harmonic Emissions per 47 CFR 15.247	-4.2	Complies
Power Spectral Density per 47 CFR 15.247	-16.7	Complies

Rogers Labs, Inc. Garmin International, Inc. SN's: 3986442368 / 3986442344

 4405 West 259th Terrace
 Model: 03754
 FCC ID: IPH-03754

 Louisburg, KS 66053
 Test: 190318
 IC: 1792A-03754

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: March 3, 2020

Revision 2 File: 03754 DTS TstRpt 190318 r2 Page 6 of 40

Tests performed include

47CFR

- 15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one-Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.
- (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).
- (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

RSS-247 Issue 2

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz

a) The minimum 6 dB bandwidth shall be 500 kHz.

b)The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d),(i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements

Rogers Labs, Inc. Garmin International, Inc. SN's: 3986442368 / 3986442344 4405 West 259th Terrace Model: 03754 FCC ID: IPH-03754 Louisburg, KS 66053 Test: 190318 IC: 1792A-03754 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 Date: March 3, 2020

Revision 2 File: 03754 DTS TstRpt 190318 r2 Page 7 of 40

d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

5.5 Unwanted emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. SN's: 3986442368 / 3986442344 Model: 03754 Test: 190318

Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

Page 8 of 40

Equipment Tested

<u>Equipment</u>	Model / PN	Serial Number
EUT	03754	3986442368
EUT#2	03754	3986442344
USB cable	320-01143-00	N/A
Laptop Computer	Latitude E6320	FCN03Q1
USB Printer	Dell 0N5819	5D1SL61
AC Adapter	362-00091-00	N/A

Test results in this report relate only to the items tested

SW Version: 1.01, Power setting 8 dBm

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

Page 9 of 40

Equipment Function and Configuration

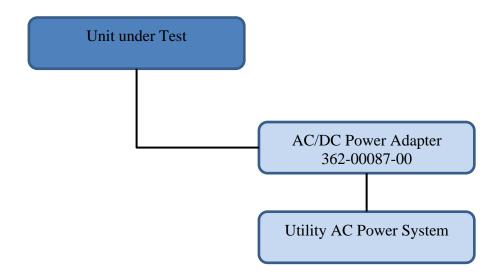
Model 03754 is a device incorporating wireless transmission. The BLE transceiver is a RF52840-QIAA SoC IC, powered by 3 Volts DC and using a 32MHz external clock. The transceiver provides operational capability in the 2402-2480 MHz band. The output of the transceiver is fed to a sheet metal antenna. The antenna has a gain of 1.07dBi and is connected to the main PCB. Model 03754 operates from direct current power provided by rechargeable battery and offers no other provision for power. The rechargeable battery must be recharged using the associated USB interface cable with a compliant USB port. Two AC power connected USB interface options were investigated during testing, AC Power adapter and Laptop Computer. The EUT was arranged as described by the manufacturer emulating typical user configurations for testing purposes. The EUT offers no other interface connection than those in the configuration options shown below as described by the manufacturer. Two samples were provided for testing, one representative of production hardware design, and the other modified for testing purposes replacing the integral antenna with RF connection port. The test samples were provided with test software enabling testing personnel the ability to enable transmitter functions on defined channels and modes. The test software enabled near 100% transmit duty cycle for testing purposes. The antenna modifications offered testing facility the ability to connect test equipment to the temporary antenna port for antenna port conducted emission testing. As requested by the manufacturer and required by regulations, the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2 Garmin International, Inc. Model: 03754

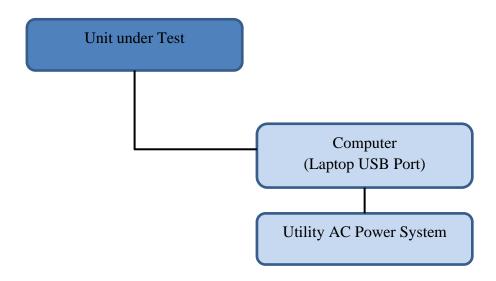
Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020

Page 10 of 40



Equipment Configuration


1) Unit operating off internal battery

2) Internal Battery Recharge with AC Adapter 362-00087-00

3) Internal Battery Recharge with USB Port on Computer (Laptop)

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc.

Model: 03754 Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020 Page 11 of 40

Application for Certification

(1) Manufacturer: Garmin International, Inc.

1200 East 151st Street

Olathe, KS 66062

(2) Identification: M/N: 03754

FCC ID: IPH-03754 IC: 1792A-03754

(3) Instruction Book:

Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:

Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:

Refer to Exhibit of Operational Description.

(6) Report of Measurements:

Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:

Refer to Exhibit for photographs of equipment.

- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from Direct Current Power provided from rechargeable internal battery. The design utilizes a unique interface port for use with the associated cable and compliant USB power port. The EUT offers no other interface ports as presented in this filing.
- (9) Transition Provisions of 47 CFR 15.37 are not requested.
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.

Model: 03754

Test: 190318

- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, Inc. Garmin International, Inc. SN's: 3986442368 / 3986442344

Louisburg, KS 66053 Phone/Fax: (913) 837-3214

4405 West 259th Terrace

Revision 2

214 Test to: CFR47 15C, RSS-Gen RSS-247

IC: 1792A-03754 Date: March 3, 2020

FCC ID: IPH-03754

File: 03754 DTS TstRpt 190318 r2 Page 12 of 40

Applicable Standards & Test Procedures

The following information is submitted in accordance with the eCFR Federal Communications Code of Federal Regulations, dated March 18, 2019, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247, and Industry Canada RSS-GEN Issue 5, and RSS-247 Issue 2. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013. This report documents compliance for the EUT operations as Digital Transmission Systems operation.

Testing Procedures

AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as defined in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50-µHy choke. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in exhibits for EUT placement used during testing.

Radiated Emission Test Procedure

Radiated emissions testing was performed as required in 47 CFR 15, KDB 558074 D01, v5, RSS-247 and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. The frequency spectrum from 9 kHz to 25,000 MHz was searched for during preliminary investigation. Refer to diagrams two and three showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

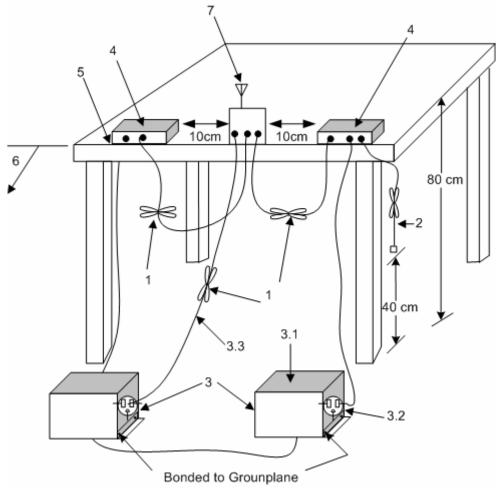
SN's: 3986442368 / 3986442344

Page 13 of 40

Antenna Port Conducted Emission Test Procedure

The EUT was assembled as required for operation placed on a benchtop. This configuration provided the ability to connect test equipment to the provided test antenna port. Antenna Port conducted emissions testing was performed presented in the regulations and specified in ANSI C63.10-2013. Testing was completed on a laboratory bench in a shielded room. The active antenna port of the device was connected to appropriate attenuation and the spectrum analyzer. Refer to diagram four showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2


Model: 03754 Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

Garmin International, Inc.

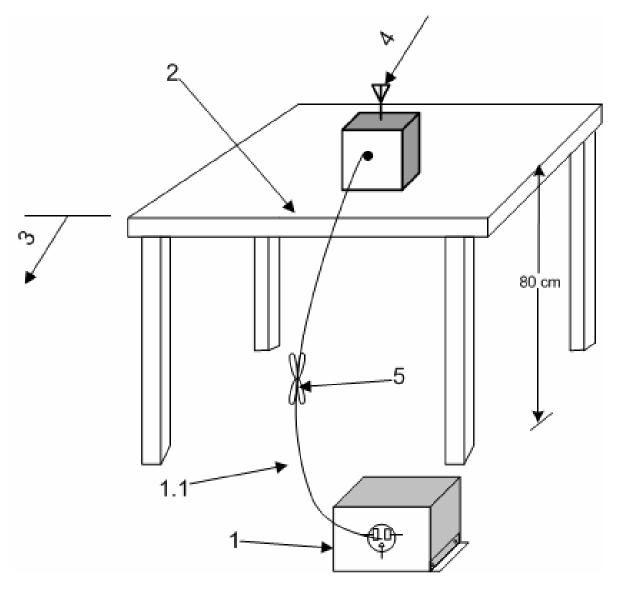
FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020 Page 14 of 40

SN's: 3986442368 / 3986442344

- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
- 2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4. Non-EUT components of EUT system being tested.
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
- 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

Diagram 1 Test arrangement for Conducted emissions

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2


Garmin International, Inc.

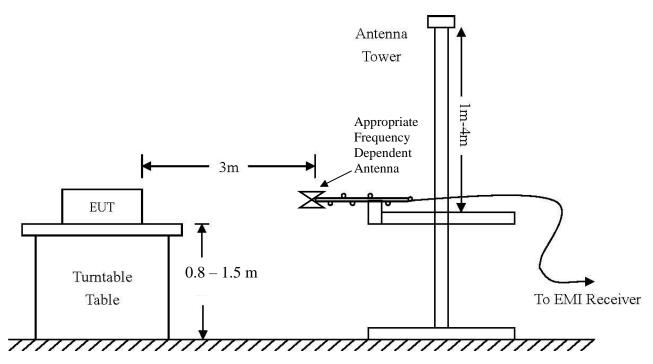
Model: 03754 Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

> Date: March 3, 2020 Page 15 of 40

- 1—A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).
- 1.1—LISN spaced at least 80 cm from the nearest part of the EUT chassis.
- 2—Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
- 3—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
- 4—For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Diagram 2 Test arrangement for radiated emissions of tabletop equipment


Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2 Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020

Page 16 of 40

AC Line Conducted Emissions (0.150 -30 MHz)					
RBW	AVG. BW	Detector Function			
9 kHz	30 kHz	Peak / Quasi Peak			
	Emissions (30-1000 MHz)				
RBW	AVG. BW	Detector Function			
120 kHz	300 kHz	Peak / Quasi Peak			
	Emissions (Above 1000 MHz)				
RBW	Video BW	Detector Function			
100 kHz	100 kHz	Peak			
1 MHz	1 MHz	Peak / Average			

Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

> Date: March 3, 2020 Page 17 of 40

Diagram 4 Test arrangement for Antenna Port Conducted emissions

Test Site Locations

Attenuator

Conducted EMI AC line conducted emissions testing performed in a shielded screen room

located at Rogers Labs, Inc., 4405 West 259th Terrace, Louisburg, KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area

Test Site (OATS) located at Rogers Labs, Inc., 4405 West 259th Terrace,

Louisburg, KS

Registered Site # FCC Site: US5305 and Industry Canada Registration: US0096

NVLAP Accreditation Lab code 200087-0

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 2

Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

IC: 1792A-03754 Date: March 3, 2020

SN's: 3986442368 / 3986442344

FCC ID: IPH-03754

Port

Page 18 of 40

List of Test Equipment

Equipment	Manufacturer	Model (SN)	Band Ca	al Date(m/d/y	y) Dua
<u>Equipment</u> ⊠ LISN	·	SN-50-25-10(1PA) (160611)	.15-30MHz	5/2/2018	5/2/2019
⊠ LISN		FCC-LISN-2.Mod.cd,(126)		10/16/2018	10/16/2019
⊠ Cable	-	. Sucoflex102ea(L10M)(3030°			10/16/2019
□ Cable		. Sucoflex102ea(1.5M)(30306	,	10/16/2018	10/16/2019
⊠ Cable		. Sucoflex102ea(1.5M)(30307		10/16/2018	10/16/2019
⊠ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/16/2018	10/16/2019
⊠ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/16/2018	10/16/2019
☐ Antenna	ARA	BCD-235-B (169)	20-350MHz	10/16/2018	10/16/2019
☐ Antenna	EMCO	3147 (40582)	200-1000MHz	10/16/2018	10/16/2019
	ETS-Lindgren	3117 (200389)	1-18 GHz	5/2/2018	5/2/2020
☐ Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/16/2018	10/24/2019
	Com Power	AH-840 (101046)	18-40 GHz	5/15/2017	5/15/2019
	Com Power	AL-130 (121055)	.001-30 MHz	10/16/2018	10/16/2019
	Sunol	JB-6 (A100709)	30-1000 MHz	10/16/2018	10/16/2019
	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	1/31/2019	1/31/2020
☐ Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/31/2019	1/31/2020
\square Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2019
	Com-Power	PA-010 (171003)	100Hz-30MHz	10/16/2018	10/16/2019
	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/16/2018	10/16/2019
	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/16/2018	10/16/2019
	Com-Power	PAM-840A (461328)	18-40 GHz	10/16/2018	10/16/2019
☐ Power Mete	r Agilent	N1911A with N1921A	0.05-40 GHz	5/2/2018	5/2/2019
\square Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	5/2/2018	5/2/2019
\square Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	5/2/2018	5/2/2019
☐ RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-1800 MHz	5/2/2018	5/2/2019
\square RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	5/2/2018	5/2/2019
\square RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	5/2/2018	5/2/2019
\square RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	5/2/2018	5/2/2019
\square RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-1800 MHz	5/2/2018	5/2/2019
☐ RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-1800 MHz	5/2/2018	5/2/2019
☐ RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-1800 MHz	5/2/2018	5/2/2019
☐ Attenuator	Fairview	SA6NFNF100W-14 (1625)	30-1800 MHz	5/2/2018	5/2/2019
	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	Mini-Circuits	VAT-3W2+ (14362)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	Mini-Circuits	VAT-3W2+ (14452)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	5/2/2018	5/2/2019
☐ Attenuator	JFW Industries	50FH-010-10 (1)	30-18000 MHz	5/2/2018	5/2/2019
⊠ Weather sta	tion Davis	6312 (A81120N075)		10/26/2018	10/26/2019

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020

Page 19 of 40

Units of Measurements

Conducted EMI Data is in dBµV; dB referenced to one microvolt

Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses

RFS $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB) - Gain (dB)$

Environmental Conditions

Ambient Temperature 22.8° C

Relative Humidity 40%

Atmospheric Pressure 1030.8 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrate compliance with the 47 CFR Part 15C, RSS-Gen, and RSS-247 emission requirements. There were no deviations to the specifications.

Intentional Radiators

The following information is submitted in support demonstration of compliance with the requirements of 47 CFR, Subpart C, paragraph 15.247 and Industry Canada RSS-247 and RSS-Gen the following information is submitted.

Antenna Requirements

The EUT incorporates integral antenna system and offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Rogers Labs, Inc. Garmin International, Inc. SN's: 3986442368 / 3986442344

 4405 West 259th Terrace
 Model: 03754
 FCC ID: IPH-03754

 Louisburg, KS 66053
 Test: 190318
 IC: 1792A-03754

 Phone/Fax: (913) 837-3214
 Test to: CFR47 15C, RSS-Gen RSS-247
 Date: March 3, 2020

Revision 2 File: 03754 DTS TstRpt 190318 r2 Page 20 of 40

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values consider the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Table 1 Harmonic Radiated Emissions in Restricted Bands Data

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m $(dB\mu V/m)$
2390.0	43.6	N/A	30.6	45.9	N/A	32.3	54.0
2483.5	59.3	N/A	32.9	59.1	N/A	37.1	54.0
4804.0	48.8	N/A	35.3	53.2	N/A	42.4	54.0
4884.0	48.2	N/A	35.4	51.0	N/A	39.8	54.0
4960.0	47.5	N/A	34.9	51.0	N/A	39.4	54.0
7206.0	51.7	N/A	38.6	54.1	N/A	41.1	54.0
7326.0	52.2	N/A	38.9	53.6	N/A	39.9	54.0
7440.0	51.2	N/A	38.2	53.5	N/A	39.8	54.0
12010.0	57.3	N/A	44.2	57.7	N/A	44.0	54.0
12210.0	57.7	N/A	44.4	57.1	N/A	44.2	54.0
12400.0	56.8	N/A	44.1	57.0	N/A	44.1	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

> Date: March 3, 2020 Page 21 of 40

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47 CFR Part 15C RSS-Gen, and RSS-247 Intentional Radiators. The EUT worst-case operation demonstrated a minimum radiated emission margin of -9.6 dB below the requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. SN's: 3986442368 / 3986442344 Model: 03754 FCC ID: IPH-03754 IC: 1792A-03754 Test to: CFR47 15C, RSS-Gen RSS-247 Date: March 3, 2020

File: 03754 DTS TstRpt 190318 r2 Page 22 of 40

AC Line Conducted EMI Procedure

The EUT was arranged in typical equipment configurations as offered by manufacturer and presented above in equipment configuration. AC Line Conducted emission testing was performed with the EUT placed on a 1 x 1.5-meter bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the AC line-conducted emissions followed the procedures of ANSI C63.10-2013. The EUT was configured as presented in the AC Line conducted configurations as directed by the manufacture and presented above in equipment configuration. The AC/DC Power adapter for the EUT was connected to the LISN for AC line-conducted emissions testing. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the test configuration. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequencies of each of the emissions, which demonstrated the highest amplitudes. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz and data recorded.

Refer to figures one and two showing plots of equipment configuration #2 AC/DC Power Adapter - EUT worst-case AC line conducted emissions. Refer to figures three and four for plots of equipment configuration #3, EUT – USB Computer interface AC Line conducted emissions.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 2

Test: 190318

Model: 03754

Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

Garmin International, Inc.

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

Date: March 3, 2020

Page 23 of 40

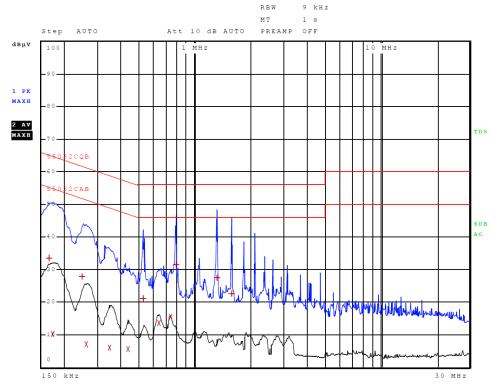


Figure 1 AC Line Conducted emissions of EUT line 1 (#2, EUT – 362-00087-00)

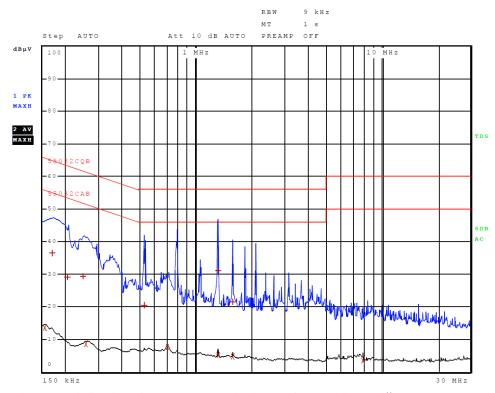


Figure 2 AC Line Conducted emissions of EUT line 2 (#2, EUT – 362-00087-00)

Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020 Page 24 of 40

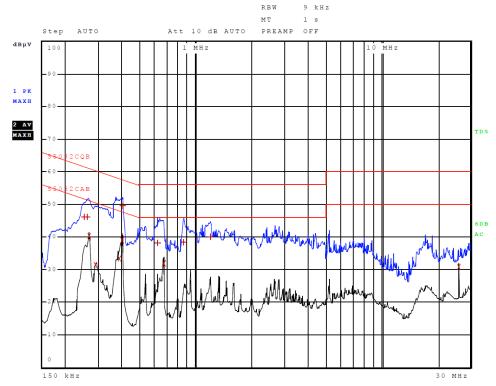


Figure 3 AC Line Conducted emissions of EUT line 1 (#3, EUT – Computer)

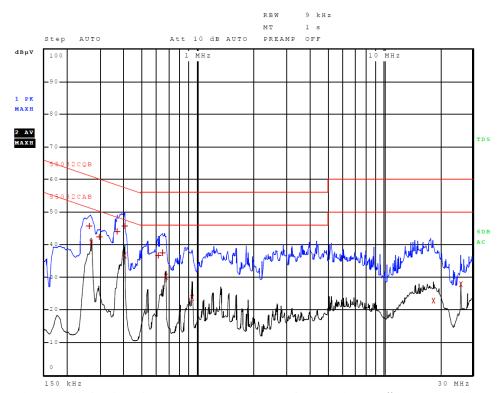


Figure 4 AC Line Conducted emissions of EUT line 2 (#3, EUT – Computer)

Garmin International, Inc.

Model: 03754 Test: 190318

Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754

IC: 1792A-03754 Date: March 3, 2020

Page 25 of 40

Table 2 AC Line Conducted Emissions Data L1 (#2, EUT – 362-00087-00)

Trace	Frequenc	y	Level (dBµV)	Detector	Delta Limit/dB
1	166.000000000	kHz	33.43	Quasi Peak	- 31.73
2	174.000000000	kHz	10.09	Average	-44.68
1	250.000000000	kHz	27.89	Quasi Peak	-33.86
2	262.000000000	kHz	7.03	Average	- 44.34
2	346.000000000	kHz	6.00	Average	-43.05
2	434.000000000	kHz	5.56	Average	- 41.62
1	522.000000000	kHz	21.10	Quasi Peak	-34.90
2	634.000000000	kHz	13.55	Average	- 32.45
2	734.000000000	kHz	15.46	Average	-30.54
1	790.000000000	kHz	31.36	Quasi Peak	-24.64
1	1.310000000	MHz	27.43	Quasi Peak	- 28.57
1	1.574000000	MHz	22.64	Quasi Peak	-33.36

Other emissions present had amplitudes at least 20 dB below the limit.

Table 3 AC Line Conducted Emissions Data L2 (#2, – 362-00087-00)

Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
2	154.000000000	kHz	13.63	Average	- 42.15
1	170.000000000	kHz	36.44	Quasi Peak	-28.52
1	206.000000000	kHz	29.14	Quasi Peak	-34.23
1	250.000000000	kHz	29.34	Quasi Peak	-32.41
2	258.000000000	kHz	8.53	Average	-42.97
1	522.000000000	kHz	20.44	Quasi Peak	- 35.56
2	702.000000000	kHz	7.61	Average	-38.39
2	1.310000000	MHz	5.20	Average	-40.80
1	1.310000000	MHz	30.95	Quasi Peak	- 25.05
1	1.570000000	MHz	21.62	Quasi Peak	-34.38
2	1.578000000	MHz	4.73	Average	-41.27
2	7.932000000	MHz	3.41	Average	-46.59

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

Page 26 of 40

Table 4 AC Line Conducted Emissions Data L1 (#3, EUT – Computer)

Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
1	254.000000000	kHz	46.03	Quasi Peak	- 15.60
1	262.000000000	kHz	46.20	Quasi Peak	- 15.16
2	266.000000000	kHz	40.15	Average	-11.09
2	290.000000000	kHz	31.41	Average	-19.11
2	390.000000000	kHz	33.33	Average	- 14.73
2	398.000000000	kHz	38.91	Average	-8.98
1	402.000000000	kHz	49.56	Quasi Peak	-8.25
1	622.000000000	kHz	38.14	Quasi Peak	- 17.86
2	670.000000000	kHz	31.86	Average	-14.14
1	858.000000000	kHz	38.33	Quasi Peak	- 17.67
1	1.202000000	MHz	39.95	Quasi Peak	- 16.05
2	25.872000000	MHz	30.87	Average	- 19.13

Other emissions present had amplitudes at least 20 dB below the limit.

Table 5 AC Line Conducted Emissions Data L2 (#3, EUT – Computer)

Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
1	262.000000000	kHz	45.62	Quasi Peak	- 15.74
2	266.000000000	kHz	40.66	Average	-10.58
1	294.000000000	kHz	42.42	Quasi Peak	-17.99
1	366.000000000	kHz	44.01	Quasi Peak	- 14.58
2	402.000000000	kHz	36.58	Average	- 11.23
1	402.000000000	kHz	45.61	Quasi Peak	- 12.20
1	610.000000000	kHz	36.68	Quasi Peak	- 19.32
1	642.000000000	kHz	37.44	Quasi Peak	- 18.56
2	670.000000000	kHz	30.20	Average	- 15.80
2	926.000000000	kHz	23.69	Average	-22.31
2	18.564000000	MHz	22.87	Average	- 27.13
2	25.872000000	MHz	27.88	Average	-22.12

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for AC Line Conducted Emissions

The EUT demonstrated compliance with the AC Line Conducted Emissions requirements of 47CFR Part 15C, RSS-247 and RSS-Gen. The EUT configurations #2 worst-case configuration demonstrated a minimum margin of -24.6 dB below the requirement. The EUT configuration #3 worst-case configuration demonstrated a minimum margin of -8.2 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Revision 2

Garmin International, Inc. Model: 03754 Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020 Page 27 of 40

General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available mode during testing. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated measurements were performed. Final data was taken with the EUT located on the OATS at 3 meters distance between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers above 1 GHz, notch filters and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2 Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

SN's: 3986442368 / 3986442344

Page 28 of 40

Table 6 General Radiated Emissions Data

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
37.1	31.4	24.7	N/A	35.1	29.3	N/A	40.0
39.6	31.7	25.8	N/A	34.9	28.7	N/A	40.0
42.2	30.4	24.0	N/A	34.8	29.8	N/A	40.0
51.5	28.7	19.4	N/A	34.1	29.2	N/A	40.0
55.0	28.2	22.2	N/A	32.9	27.5	N/A	40.0
135.1	23.8	16.4	N/A	18.9	13.8	N/A	40.0
201.6	22.2	17.5	N/A	16.5	11.5	N/A	40.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47 CFR Part 15C paragraph 15.209, RSS-247 and RSS-GEN Intentional Radiators. The EUT demonstrated a minimum margin of -10.24 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

> Date: March 3, 2020 Page 29 of 40

Operation in the Band 2400 - 2483.5 MHz

Test procedures of ANSI C63.10-2013 paragraph 6, and KDB 558074 D01 15.247 Meas Guidance v05 were used during transmitter testing. Test sample #2 was provided for testing antenna port conducted emissions. This sample was modified by replacing the internal antenna with a 50-ohm antenna port connector and attenuator for testing purposes. The transmitter peak and average power was measured at the antenna port using a wideband RF power meter as described in KDB 558074 and ANSI C63.10-2013. Average power measured did not include any time intervals during which the transmitter was off or transmitting at a reduced power level. The peak Power Spectral Density (PKPSD) was measured as defined in KDB 558074 and ANSI C63.10-2013. DTS Emission bandwidth was measured as described in KDB 558074 and ANSI C63.10-2013. The amplitude of each harmonic and general radiated emission was measured on the OATS at distance of 3 meters from the FSM antenna (radiated emission testing was performed on sample #1 representative of production equipment with integral antenna). The EUT was positioned on supporting turntable elevated as required above the ground plane, at a distance of 3 meters from the FSM antenna. Radiated emission investigations were performed from 9 kHz to 25,000 MHz. Each radiated emission was maximized by varying the FSM antenna height and polarization, and by rotating the turntable. The worst-case amplitude of each emission was then recorded from the analyzer display. The peak and quasi-peak amplitude of frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of frequencies above 1000 MHZ were measured using a spectrum analyzer. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 25 GHz. Radiated Emissions were measured in dBµV/m @ 3 meters. Plots were taken of transmitter performance (using sample #2) for reference in this and other documentation.

Refer to figures five through ten showing plots taken of the 2402-2480 MHz transmitter operation displaying compliance with the specifications.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 2

Garmin International, Inc. Model: 03754 Test: 190318

Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

SN's: 3986442368 / 3986442344

Page 30 of 40

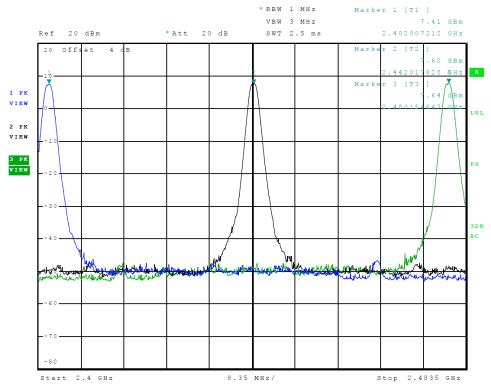


Figure 5 Plot of Transmitter Emissions Operation in 2402-2480 MHz

Figure 6 Plot of Transmitter Emissions Low Band Edge

Garmin International, Inc. Model: 03754

Test: 190318

Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754

IC: 1792A-03754 Date: March 3, 2020

Page 31 of 40

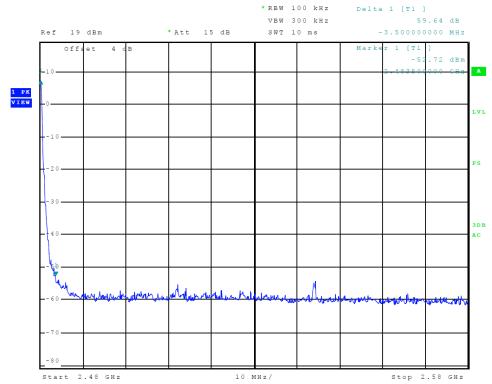


Figure 7 Plot of Transmitter Emissions High Band Edge

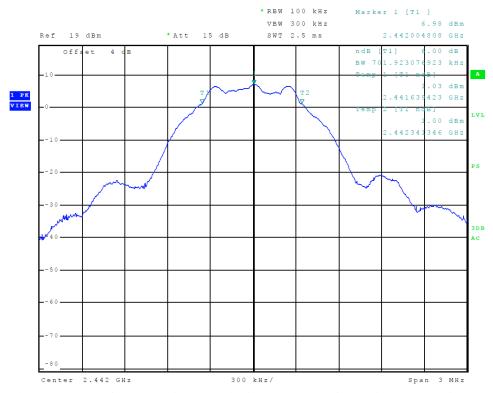


Figure 8 Plot of Transmitter Emissions 6-dB% Occupied Bandwidth

Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247
File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020

Page 32 of 40

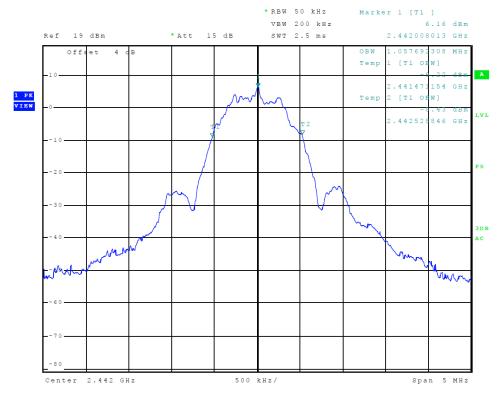


Figure 9 Plot of Transmitter Emissions 99% Occupied Bandwidth

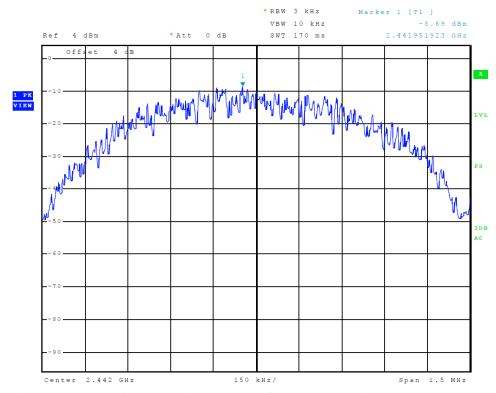


Figure 10 Plot of Transmitter Power Spectral Density

Garmin International, Inc. Model: 03754

Test: 190318
Test to: CFR47 15C, RSS-Gen RSS-247

File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020

Page 33 of 40

Transmitter Emissions Data

Table 7 Transmitter Radiated Emissions

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBμV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
2402.0		1	1		
4804.0	48.8	35.3	53.2	42.4	54.0
7206.0	51.7	38.6	54.1	41.1	54.0
9608.0	54.1	40.8	53.9	40.6	54.0
12010.0	57.3	44.2	57.7	44.0	54.0
14412.0	59.2	46.2	58.9	46.1	54.0
16814.0	63.0	49.8	62.4	49.8	54.0
2441.0					
4884.0	48.2	35.4	51.0	39.8	54.0
7326.0	52.2	38.9	53.6	39.9	54.0
9768.0	53.1	40.3	53.3	40.3	54.0
12210.0	57.7	44.4	57.1	44.2	54.0
14652.0	61.0	47.0	60.2	47.0	54.0
17094.0	62.5	49.5	62.3	49.4	54.0
2480.0					
4960.0	47.5	34.9	51.0	39.4	54.0
7440.0	51.2	38.2	53.5	39.8	54.0
9920.0	53.6	40.5	53.8	40.5	54.0
12400.0	56.8	44.1	57.0	44.1	54.0
14880.0	59.3	46.4	59.1	46.3	54.0
17360.0	62.7	49.3	61.6	49.2	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Garmin International, Inc.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Revision 2

Model: 03754 Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

Page 34 of 40

Table 8 Transmitter Antenna Port Conducted Data

Frequency MHz	Antenna Port Output Power (Watts)	99% Occupied Bandwidth (kHz)	6-dB Occupied Bandwidth (kHz)	Peak Power Spectral Density (dBm)
2402.0	0.006	1,049.7	697.1	-8.7
2442.0	0.006	1,057.7	701.9	-8.7
2480.0	0.006	1,057.7	701.9	-8.7

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated and conducted emission requirements of 47CFR Part 15.247, RSS-GEN, and RSS-247 Digital Transmission Systems. Output power measured at the antenna port was 0.006 Watts. The peak power spectral density measured at the antenna port presented a minimum margin of -16.7 dB below the requirements. The EUT demonstrated a minimum margin of -4.2 dB below the harmonic emissions requirements. There were no other significantly measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. There were no other deviations or exceptions to the requirements.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Revision 2

Garmin International, Inc.

Model: 03754

Test: 190318 Phone/Fax: (913) 837-3214 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754

> IC: 1792A-03754 Date: March 3, 2020

Page 35 of 40

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Additional Test Equipment
- Annex C Rogers Qualifications
- Annex D Rogers Labs Certificate of Accreditation

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 247 Date: March 3, 2020

Page 36 of 40

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16-4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty U _(lab)
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.14
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 2

Garmin International, Inc.

Model: 03754 Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

Date: March 3, 2020

Page 37 of 40

Annex B Additional Test Equipment

List of Test Equipment	Calibration	Date (m/d/y)	<u>Due</u>
Antenna: Schwarzbeck Model: BBA 9106/VHBB 9124 (9124-	627)	5/2/2018	5/2/2019
Antenna: Schwarzbeck Model: VULP 9118 A (VULP 9118 A-	534)	5/2/2018	5/2/2019
Antenna: EMCO 6509		10/16/2018	10/16/2020
Antenna: EMCO 3143 (9607-1277) 20-1200 MHz		5/2/2018	5/2/2019
Antenna: EMCO Dipole Set 3121C		2/22/2019	2/22/2020
Antenna: C.D. B-101		2/22/2019	2/22/2020
Antenna: Solar 9229-1 & 9230-1		2/22/2019	2/22/2020
Cable: Belden 8268 (L3)		10/16/2018	10/16/2019
Cable: Time Microwave: 4M-750HF290-750		10/16/2018	10/16/2019
Frequency Counter: Leader LDC-825 (8060153		5/2/2018	5/2/2019
Oscilloscope Scope: Tektronix 2230		2/22/2019	2/22/2020
Wattmeter: Bird 43 with Load Bird 8085		2/22/2019	2/22/2020
R.F. Generator: SMB100A6 s/n 100623		5/2/2018	5/2/2019
R.F. Generator: SBMBV100A s/n: 260771		5/2/2018	5/2/2019
R.F. Generators: HP 606A, HP 8614A, HP 8640B		2/22/2019	2/22/2020
R.F. Power Amp 65W Model: 470-A-1010		2/22/2019	2/22/2020
R.F. Power Amp 50W M185- 10-501		2/22/2019	2/22/2020
R.F. Power Amp A.R. Model: 10W 1010M7		2/22/2019	2/22/2020
R.F. Power Amp EIN Model: A301		2/22/2019	2/22/2020
LISN: Compliance Eng. Model 240/20		5/2/2018	5/2/2019
LISN: Fischer Custom Communications Model: FCC-LISN-50	-16-2-08	5/2/2018	5/2/2019
Audio Oscillator: H.P. 201CD		2/22/2019	2/22/2020
ESD Test Set 2010i		2/22/2019	2/22/2020
Oscilloscope Scope: Tektronix MDO 4104		2/22/2019	2/22/2020
EMC Transient Generator HVT TR 3000		2/22/2019	2/22/2020
AC Power Source (Ametech, California Instruments)		2/22/2019	2/22/2020
Fast Transient Burst Generator Model: EFT/B-101		2/22/2019	2/22/2020
Field Intensity Meter: EFM-018		2/22/2019	2/22/2020
KEYTEK Ecat Surge Generator		2/22/2019	2/22/2020
ESD Simulator: MZ-15		2/22/2019	2/22/2020
Shielded Room not required			

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2

Garmin International, Inc. Model: 03754 Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020 File: 03754 DTS TstRpt 190318 r2 Page 38 of 40

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 30 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Rogers Consulting Labs, Inc. 5 Years Electrical Engineer:

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- Several Specialized Training courses and seminars pertaining to Microprocessors and 3) Software programming.

Scot D Rogers

Scot D. Rogers

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 2

Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

FCC ID: IPH-03754 IC: 1792A-03754 Date: March 3, 2020

SN's: 3986442368 / 3986442344

Page 39 of 40

Annex D Rogers Labs Certificate of Accreditation

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200087-0

Rogers Labs, Inc.

Louisburg, KS

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-02-21 through 2019-03-31

Effective Dates

or the National Voluntary Laboratory Accreditation Program

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2 Garmin International, Inc. Model: 03754

Test: 190318 Test to: CFR47 15C, RSS-Gen RSS-247 File: 03754 DTS TstRpt 190318 r2

SN's: 3986442368 / 3986442344 FCC ID: IPH-03754 IC: 1792A-03754

Date: March 3, 2020

Page 40 of 40