

Test Report Serial Number:
Test Report Date:
Project Number:

45461521 R1.0 22 May 2020 1457

EMC Test Report - New Filing

Applicant:

Garmin International Inc. 1200 E. 151st. Street Olathe, KS, 66062 USA

FCC ID:

IPH-03699

Product Model Number / HVIN

A03699

IC Registration Number

1792A-03699

Product Name / PMN

A03699

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.249)

Part 15 Low Power Communication Device Transmitter (DXX)

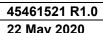
RSS-Gen, RSS-210 Issue 9

Low Power Transmitter (2400-2483.5MHz)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada


Industry Canada

Test Lab Certificate: 2470.01

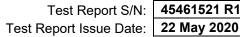
IC Registration 3874A-1

FCC Registration: CA3874

Table of Contents

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST RESULT SUMMARY	8
5.0 NORMATIVE REFERENCES	9
6.0 FACILITIES AND ACCREDITATIONS	10
7.0 DUTY CYCLE EVALUATION	
8.0 OCCUPIED BANDWIDTH	19
9.0 6DB BANDWIDTH	
10.0 FIELD STRENGTH	35
11.0 BAND EDGE	61
12.0 RADIATED SPURIOUS EMISSIONS - RESTRICTED BANDS	67
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	81
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	84
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	85

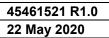
Table of Plots


Plot 7.1 – Duty Cycle – Normal Operation, ANT, On-Time	12
Plot 7.2 – Duty Cycle – Normal Operation, ANT, Total-Time	13
Plot 7.3 – Duty Cycle – Normal Operation, BLE, On-Time	14
Plot 7.4 – Duty Cycle – Normal Operation, BLE, Total-Time	
Plot 7.5 – Duty Cycle – Test Mode Operation, ANT	
Plot 7.6 – Duty Cycle – Test Mode Operation, BLE	
Tiot 1.0 Buty Gyold Test Mode Operation, BEE	17
Plot 8.1 – Occupied Bandwidth – 2402MHz, ANT	20
Plot 8.2 – Occupied Bandwidth – 2444MHz, ANT	
Plot 8.3 – Occupied Bandwidth – 2480MHz, ANT	
Plot 8.4 – Occupied Bandwidth – 2402MHz, BLE	
Plot 8.5 – Occupied Bandwidth – 2444MHz, BLE	
Plot 8.6 – Occupied Bandwidth – 2480MHz, BLE	25
Plot 9.1 – 6dB Bandwidth, 2402MHz, ANT	
Plot 9.2 – 6dB Bandwidth, 2444MHz, ANT	
Plot 9.3 – 6dB Bandwidth, 2480MHz, ANT	
Plot 9.4 – 6dB Bandwidth, 2402MHz, BLE	
Plot 9.5 – 6dB Bandwidth, 2444MHz, BLE	32
Plot 9.6 – 6dB Bandwidth, 2480MHz, BLE	33
Plot 10.1 – Field Strength, ANT, 2402MHz, Horizontal, Peak	36
Plot 10.2 – Field Strength, ANT, 2402MHz, Horizontal, RMS	
Plot 10.3 – Field Strength, ANT, 2402MHz, Vertical, Peak	
Plot 10.4 – Field Strength, ANT, 2402MHz, Vertical, RMS	
Plot 10.5 – Field Strength, ANT, 2444MHz, Horizontal, Peak	
Plot 10.6 – Field Strength, ANT, 2444MHz, Horizontal, RMS	
Plot 10.7 – Field Strength, ANT, 2444MHz, Vertical, Peak	
Plot 10.8 – Field Strength, ANT, 2444MHz, Vertical, RMS	
Plot 10.9 – Field Strength, ANT, 2480MHz, Horizontal, Peak	
Plot 10.10 – Field Strength, ANT, 2480MHz, Horizontal, RMS	
Plot 10.11 – Field Strength, ANT, 2480MHz, Horizontal, RMS	
Plot 10.12 – Field Strength, ANT, 2480MHz, Vertical, RMS	
Plot 10.13 – Field Strength, BLE, 2402MHz, Horizontal, Peak	
Plot 10.14 – Field Strength, BLE, 2402MHz, Horizontal, RMS	
Plot 10.15 – Field Strength, BLE, 2402MHz, Vertical, Peak	
Plot 10.16 - Field Strength, BLE, 2402MHz, Vertical, RMS	
Plot 10.17 – Field Strength, BLE, 2444MHz, Horizontal, Peak	
Plot 10.18 – Field Strength, BLE, 2444MHz, Horizontal, RMS	53
Plot 10.19 – Field Strength, BLE, 2444MHz, Vertical, Peak	
Plot 10.20 – Field Strength, BLE, 2444MHz, Vertical, RMS	55
Plot 10.21 – Field Strength, BLE, 2480MHz, Horizontal, Peak	56
Plot 10.22 - Field Strength, BLE, 2480MHz, Horizontal, RMS	57
Plot 10.23 - Field Strength, BLE, 2480MHz, Vertical, Peak	
Plot 10.24 – Field Strength, BLE, 2480MHz, Vertical, RMS	
Plot 11.1 – 2402MHz, ANT, Lower Band Edge	62
Plot 11.2 – 2480MHz, ANT, Upper Band Edge	
Plot 11.3 – 2402MHz, BLE, Lower Band Edge	
Plot 11.4 – 2480MHz, BLE, Upper Band Edge	

Test Report S/N: Test Report Issue Date: 22 May 2020

45461521 R1.0

Plot 12.1 – Spurious Emissions - 9kHz – 30MHz, Front Polarization Plot 12.2 – Spurious Emissions - 9kHz – 30MHz, Side Polarization Plot 12.3 – Spurious Emissions - 30MHz – 1000MHz, Horizontal Plot 12.4 – Spurious Emissions - 30MHz – 1000MHz, Vertical Plot 12.5 – Spurious Emissions - 3GHz – 10GHz, Horizontal Plot 12.6 – Spurious Emissions - 3GHz – 10GHz, Vertical Plot 12.7 – Spurious Emissions - 10GHz – 13.6GHz, Horizontal Plot 12.8 – Spurious Emissions - 10GHz – 13.6GHz, Vertical Plot 12.9 – Spurious Emissions - 13.6GHz – 18GHz, Horizontal Plot 12.10 – Spurious Emissions - 13.6GHz – 18GHz, Vertical Plot 12.11 – Spurious Emissions - 18GHz – 25GHz, Horizontal Plot 12.12 – Spurious Emissions - 18GHz – 25GHz, Vertical	69 70 71 72 73 74 75 76 77
Table of Tables	
Table 7.1 - Summary of Duty Cycle Evaluation	26 34 60 66 80 81
Table of Figures	
Figure A.1 – Test Setup Conducted Measurements	83 83



45461521 R1.0

1.0 DOCUMENT CONTROL

Revision History						
San	nples Tested By:	e(s) of Evaluation:	29 July - 22 August, 2019			
Rep	ort Prepared By:	Art Voss, P.Eng.	Re	port Reviewed By:	Ben Hewson	
Report		ription of Revision	Revised	Revised	Pavisian Pata	
Revision	Desc	ription of Revision	Section	Ву	Revision Date	
0.2	Initial Draft Release		n/a	Art Voss	23 August 2019	
	Revised FCC 731 Form, ISED Annex I-II Form n/a					
0.3	Deleted Duplicate Exhibit 17 - DUT Photos		n/a	Art Voss	3 September 2019	
	Revised Test	Report Section 2.0, DUT Info	2.0			
0.4	Revised Test Report Section 2.0, DUT Info		2.0	Art Voss	7 October 2019	
Revised DUT Batter		ed DUT Battery Info	7.0	Art Voss	21 October 2019	
0.5	Revised Te	Revised Term n/a for None Detected		AIT VOSS	21 October 2019	
1.0	Initial Release		n/a	Art Voss	22 May 2020	

2.0 CLIENT AND DUT INFORMATION

	Client Information					
Applicant Name	Garmin International Inc.					
	1200 East 151st. Street					
Applicant Address	Olathe, KS					
Applicant Address	66062					
	USA					
	DUT Information					
Davias Identificate)	FCC ID: IPH-03699					
Device Identifier(s):	ISED ID: 1792A-03699					
Device Type:	Digital BLE/ANT Transceiver					
Equipment Class (FCC):	Part 15 Low Power Communication Device Transmitter (DXX)					
Equipment Class (ISED):	Low Power Transmitter (2400-2483.5MHz)					
Device Model(s) / HVIN:	A03699					
Device Marketing Name / PMN:	A03699					
Firmware Version ID Number / FVIN:	-					
Host Marketing Name / HMN:	-					
Test Sample Serial No.:	T/A Sample - Identical Prototype					
Transmit Frequency Range:	2402 - 2480MHz					
Test Channels:	79 Channel Programmable					
Manuf. Max. Rated Output Power:	8dBm					
Manuf. Max. Rated BW/Data Rate:	ANT: 920kHz & BLE: 1.07MHz					
Antenna Make and Model:	PCB Single Ended Whip					
Antenna Type and Gain:	0dBi					
Modulation:	ANT: GFSK, BLE: GMSK					
Mode:	Simplex					
Emission Designator:	See Section 8.0					
DUT Power Source:	3VDC Non-Rechargeable Battery Coin(Type: CR2032)					
DUT Dimensions [HxWxD] (mm)	H x W x D: 10mm x 50mm x 30mm					
Deviation(s) from standard/procedure:	None					
Modification of DUT:	None					

Test Report S/N: Test Report Issue Date: 45461521 R1.0 22 May 2020

3.0 SCOPE

This Certification Report was prepared on behalf of:

Garmin International Inc.

,(the 'Applicant'), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

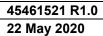
As per FCC CFR 47 Part §2.1091 and §2.1093 and Health Canada Safety Code 6, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

The Receiver of this *Equipment* is subject to Equipment Certification or Supplier's Declaration of Conformity (SDoC) in accordance with 47 CFR Part §15.101. The Receiver was evaluated in accordance with 47 CFR Part §15 Subpar B and ICES-003. A statement of the application the SDoC procedure appears in a separate exhibit from this report.

Application:

This application is for a new certification of a low power BLE/ANT Body Worn Health and Fitness transceiver.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.


- Why York

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

21 August 2019

Date

4.0 TEST RESULT SUMMARY

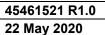
	TEST SUMMARY							
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result		
Cochon	Bootingtion of root	Reference	Part(s) FCC	Part(s) ISED	Date	cuit		
7.0	Duty Cycle and Transmission	ANSI C63.10-2013	§15.35(c)	n/a	12 Aug 2019	n/a		
7.0	Duration	KDB 558074 D01v05	g15.55(c)	II/a	12 Aug 2019	п/а		
0.0	Occupied Pandwidth	ANSI C63.10-2013	82 1040	RSS-Gen (6.7)	12 Aug 2019	Pass		
8.0	Occupied Bandw idth	KDB 558074 D01v05	§2.1049					
0.0	6dB Bandw idth	ANSI C63.10-2013	n/a	RSS-Gen (6.7)	12 Aug 2019	Pass		
9.0		KDB 558074 D01v05						
10.0	Field Strength (Fundamental)	ANSI C63.10-2013	\$45.040(=)(=)	RSS-Gen (6.12)	20 July 2010	Pass		
10.0	Field Strength (Fundamental)	KDB 558074 D01v05	§15.249(a)(e)	RSS-210 (B.10)	30 July 2019			
44.0	Don't Educ	ANSI C63.10-2013	\$45.040(=)(=)	RSS-Gen (6.12)	40 4 2040	Dana		
11.0	Band Edge	KDB 558074 D01v05	§15.249(a)(e)	RSS-210 (B.10)	12 Aug 2019	Pass		
42.0	Restricted Bands	ANSI C63.10-2013	§15.249(d)(e)	DSS Con (9.10)	12 Aug 2010	Poor		
12.0	Restricted darius	KDB 558074 D01v05	§15.209	RSS-Gen (8.10)	13 Aug 2019	Pass		

Test Station Day Log						
D 4	Ambient	Relative	Barometric	Test	Tests	
Date	Temp (°C)	Humidity (%)	Pressure (kPa)	Station	Performed Section(s)	
9 July 2019	24.0	28	101.6	OATS	10	
10 July 2019	24.0	22	101.3	OATS	10	
30 July 2019	27.3	14	101.1	EMC	7, 8, 9	
12 Aug 2019	24.9	21	102.0	EMC	7, 8, 9	
13 Aug 2019	27.1	46	101.9	OATS	11	

EMC - EMC Test Bench

SAC - Semi-Anechoic Chamber

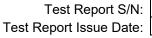
OATS - Open Area Test Site


TC - Temperature Chamber

LISN - LISN Test Area

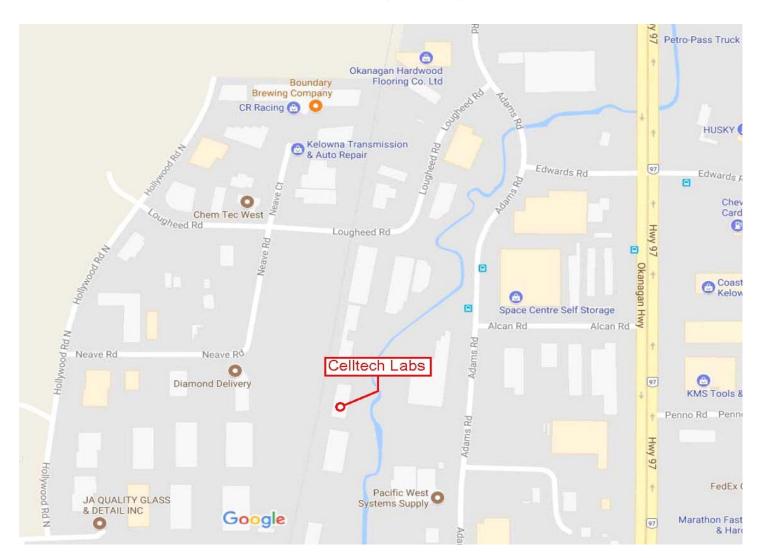
ESD - ESD Test Bench

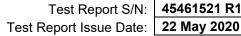
IMM - Immunity Test Area


RI - Radiated Immunity Chamber

5.0 NORMATIVE REFERENCES

		Normative References
ISO/IE	EC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI	C63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Sub Part C (15.249)	Intentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-210 Issue 9:	Licence-Exempt Radio Apparatus: Category I Equipment
FCC k	(DB	OET Major Guidance Publications, Knowledge Data Base
	558074 D01v05	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247


45461521 R1.0 22 May 2020



6.0 FACILITIES AND ACCREDITATIONS

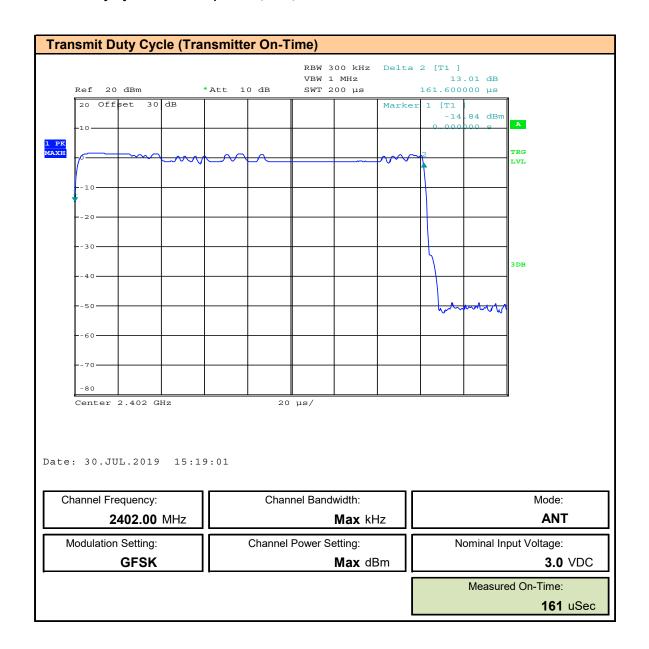
Facility and Accreditation:

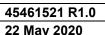
The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874A-1 and Industry Canada under Test Site File Number IC 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

45461521 R1.0

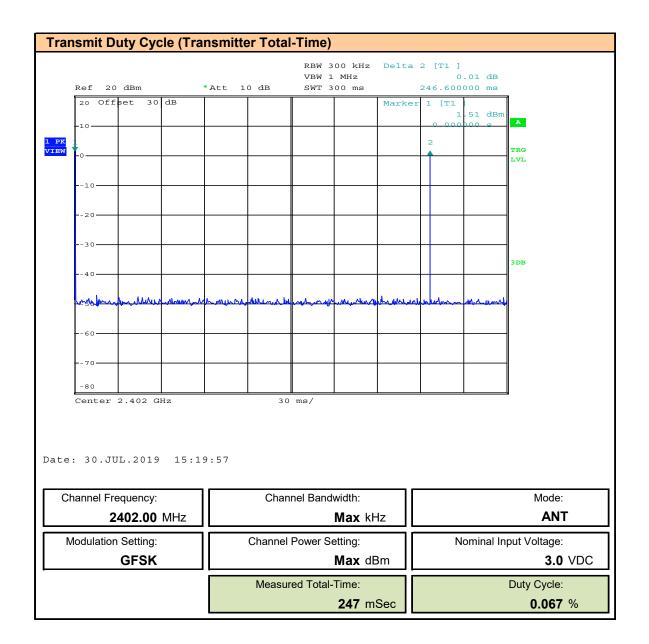
7.0 DUTY CYCLE EVALUATION

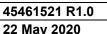
Test Procedure	
Normative Reference	KDB 558074 (6.0), ANSI C63.10 (11.6)
Limits	
KDB 558074 (6.0)	6.0 Duty cycle, transmission duration and maximum power control level
C63.10 (11.6)	b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on-and off-times of the transmitted signal.
	 Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average.
	4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.
Test Setup	Appendix A Figure A.1


Measurement Procedure

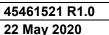

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Zero Span and Positive Trigger. The output power of the DUT was set to the manufacturer's highest output power setting at the Mid frequency channel as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The variation in Duty Cycle was determined to be less than +/- 2%.

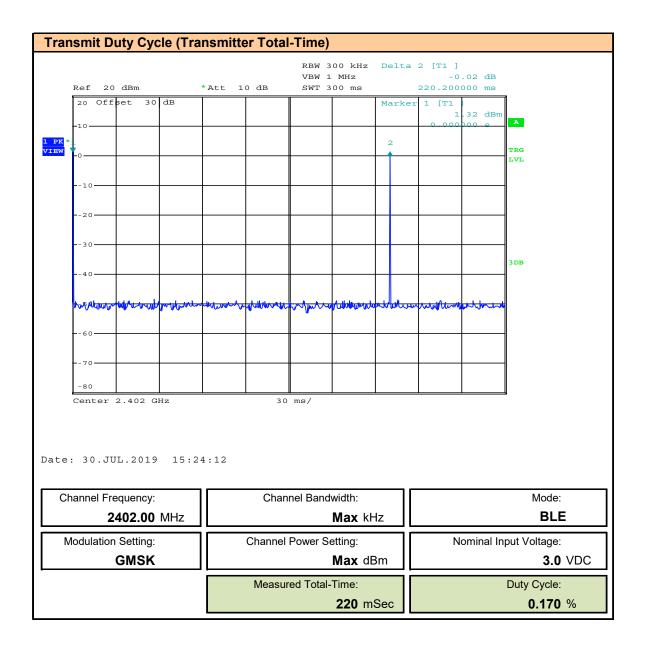
45461521 R1.0

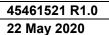

Plot 7.1 - Duty Cycle - Normal Operation, ANT, On-Time

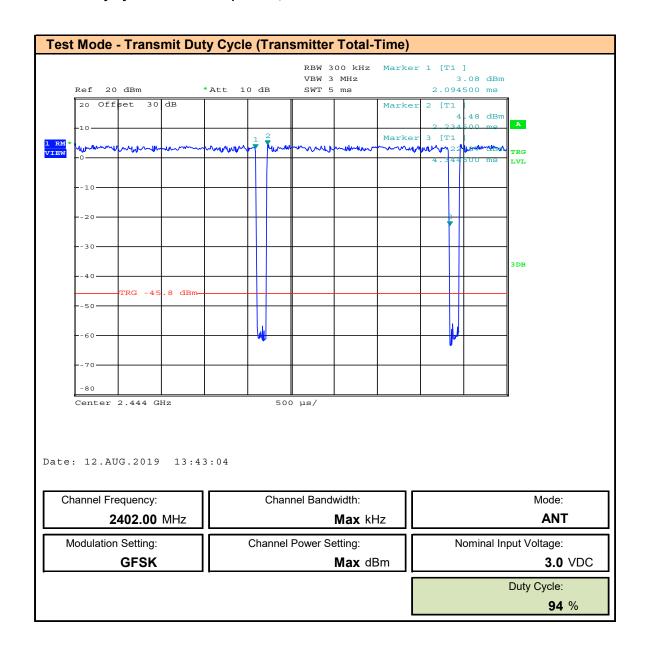


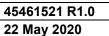
Plot 7.2 - Duty Cycle - Normal Operation, ANT, Total-Time

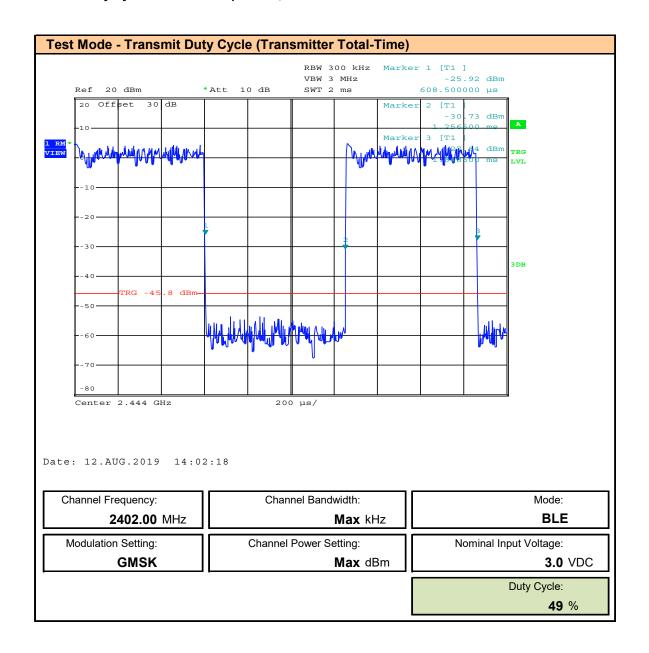



Plot 7.3 - Duty Cycle - Normal Operation, BLE, On-Time




Plot 7.4 - Duty Cycle - Normal Operation, BLE, Total-Time




Plot 7.5 - Duty Cycle - Test Mode Operation, ANT

Plot 7.6 - Duty Cycle - Test Mode Operation, BLE

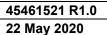
Test Report S/N: Test Report Issue Date: 22 May 2020

45461521 R1.0

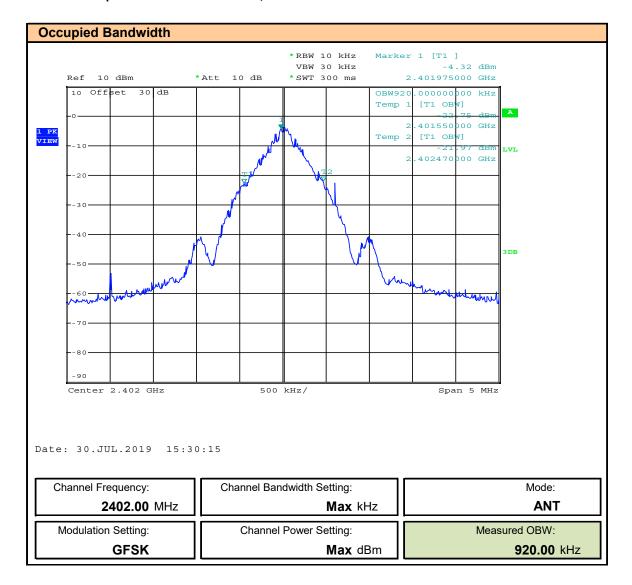
Table 7.1 - Summary of Duty Cycle Evaluation

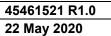
Transmit Duty Cycle Results						
Frequency	Bandwidth Setting	Supply Voltage	Mode	Operation	Measured Duty Cycle Cycle	
(MHz)	(kHz)	(VDC)			(%)	
			ANT	Normal	0.067	
2402	Max	3	BLE	Normal	0.170	
2402		3	ANT	Test Mode	94	
			BLE	Test Mode	49	

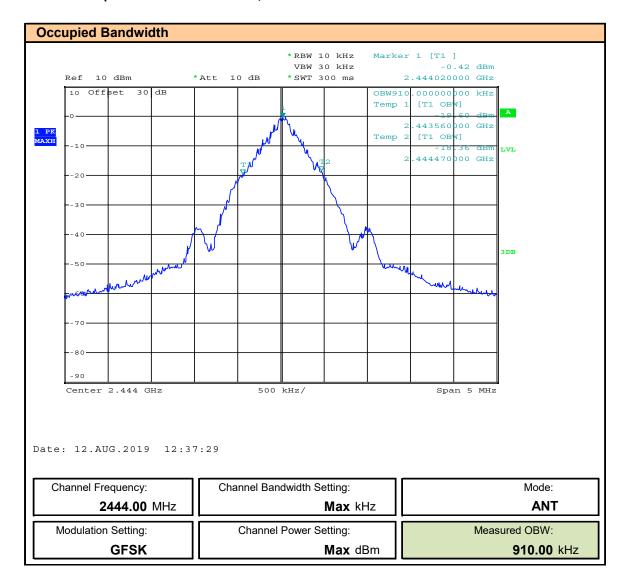
The variation of the transmit duty cycle was less than 2%

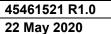

45461521 R1.0 22 May 2020

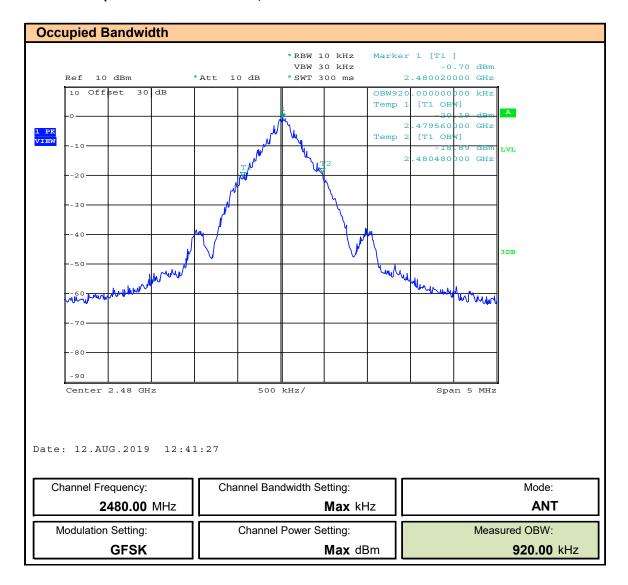
Test Procedure						
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),					
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)					
General Procedure						
KDB 558074 (8.3.2.1)	8.3.2.1 General					
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.					
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure					
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:					
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.					
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.					
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.					
	d) Step a) through step c) might require iteration to adjust within the specified range.					
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.					
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.					
Test Setup	Appendix A - Figure A.1					

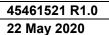

Measurement Procedure

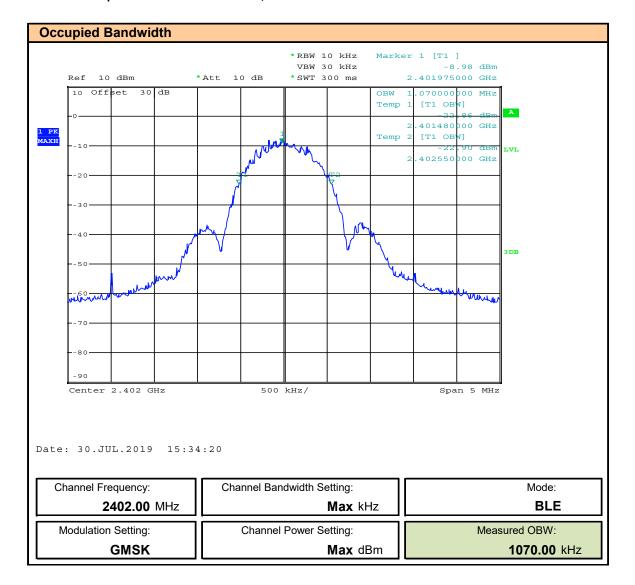

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The 99% Occupied Bandwidth was measured and recorded.

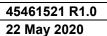

Plot 8.1 - Occupied Bandwidth - 2402MHz, ANT

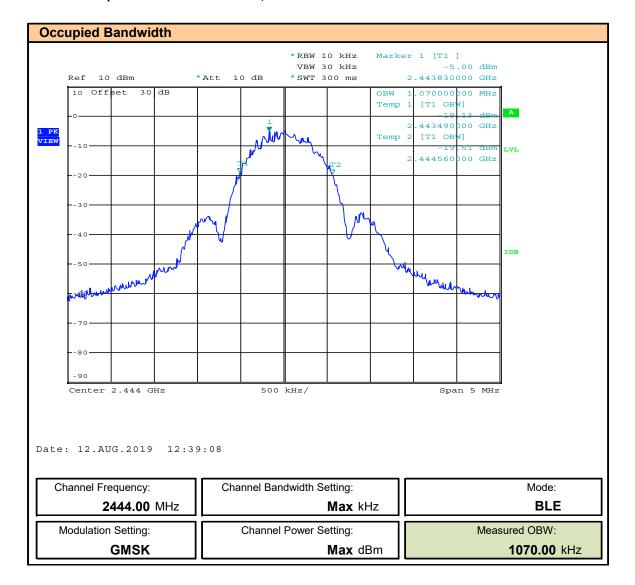


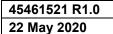

Plot 8.2 - Occupied Bandwidth - 2444MHz, ANT

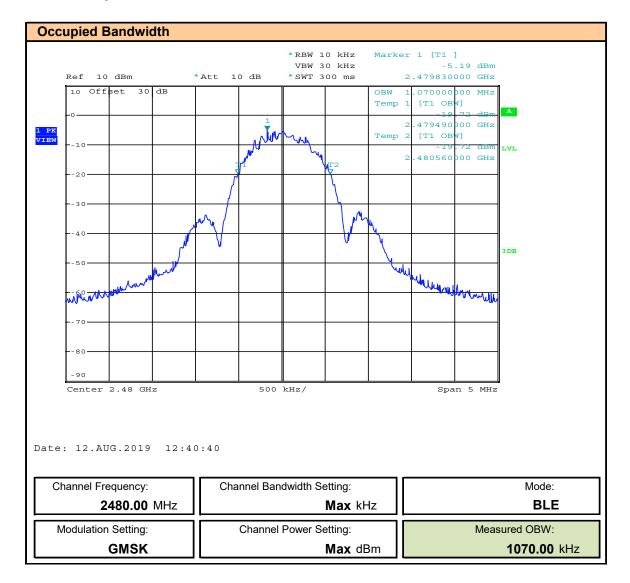



Plot 8.3 - Occupied Bandwidth - 2480MHz, ANT




Plot 8.4 - Occupied Bandwidth - 2402MHz, BLE




Plot 8.5 - Occupied Bandwidth - 2444MHz, BLE

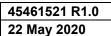
Plot 8.6 - Occupied Bandwidth - 2480MHz, BLE

Test Report S/N: Test Report Issue Date: 22 May 2020

45461521 R1.0

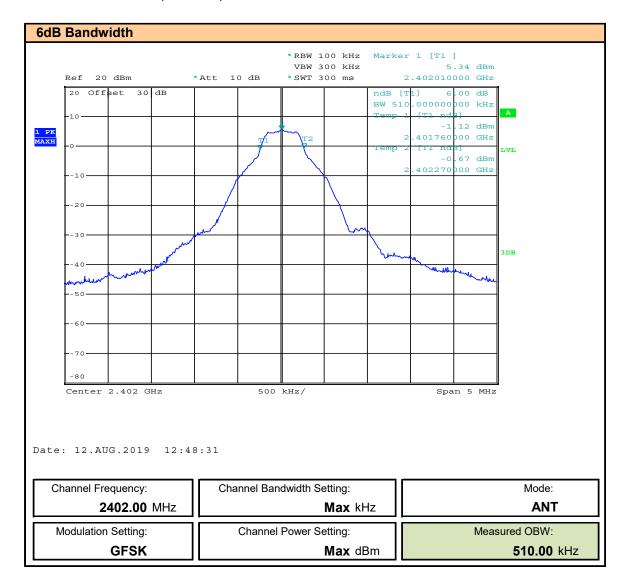
Table 8.1 - Summary of Occupied Bandwidth Measurements

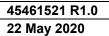
Occupied Bandwidth Measurements					
Frequency	Bandwidth Setting	Modulation	Mode	Measured OBW (kHz)	Emission Designator
(MHz) 2405.00	(MHz)			920	920KF1D
2440.00	Max	GFSK	ANT	910	910KF1D
2480.00				920	920KF1D
2405.00				1070	1M07F1D
2440.00		GMSK	BLE	1070	1M07F1D
2480.00				1070	1M07F1D

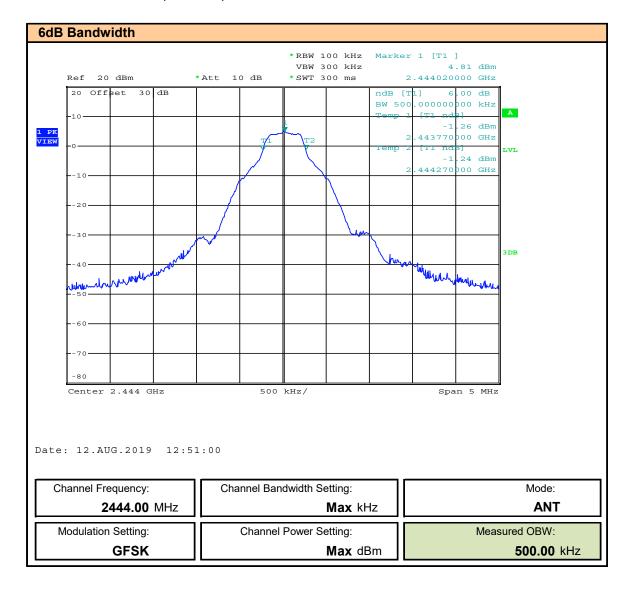

45461521 R1.0 22 May 2020

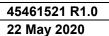
9.0 6DB BANDWIDTH

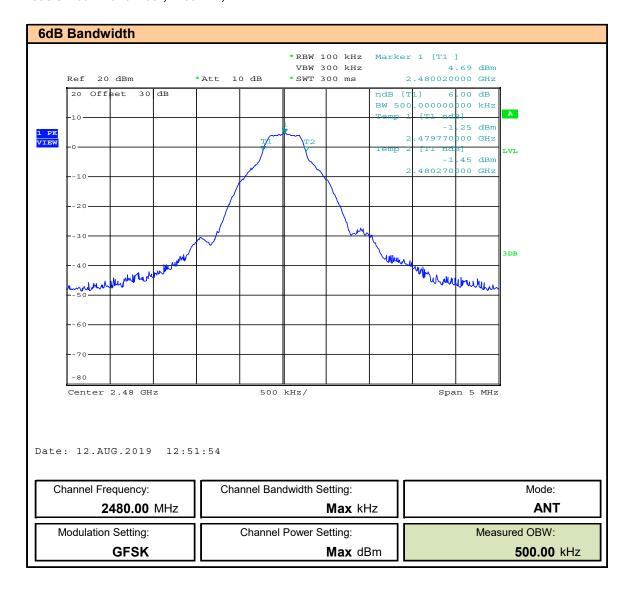
Test Procedure				
Normative	FCC 47 CFR §2.1049, §15.247(a)(2), RSS-Gen (6.7), RSS-247 (5.2)(a),			
Reference	KDB 558074 (8.2), ANSI C63.10 (11.8.2)			
Limits				
47 CFR §15.247(a)(2)	(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:			
	(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.			
RSS-247 (5.2)(a)	5.2 Digital transmission systems			
	DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400 - 2483.5 MHz:			
	a) The minimum 6 dB bandwidth shall be 500 kHz.			
General Procedure	General Procedure			
KDB 558074 (8.2)	11.8.2 Option 2			
C63.10 (11.8.2)	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz , VBW $\geq 3 \text{ X}$ RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \text{ dB}$.			
Test Setup	Appendix A - Figure A.1			

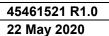

Measurement Procedure

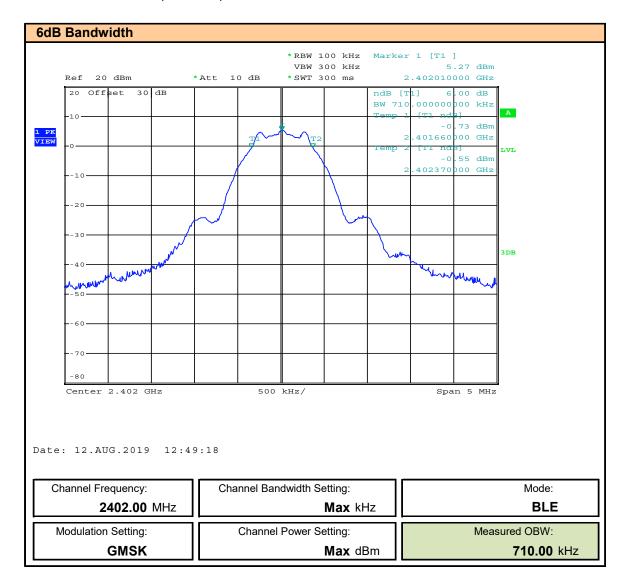

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle.

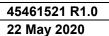

Plot 9.1 - 6dB Bandwidth, 2402MHz, ANT

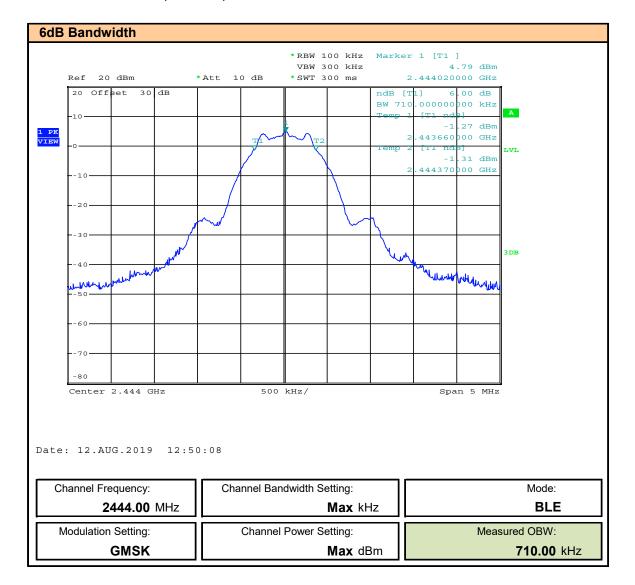


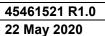

Plot 9.2 - 6dB Bandwidth, 2444MHz, ANT

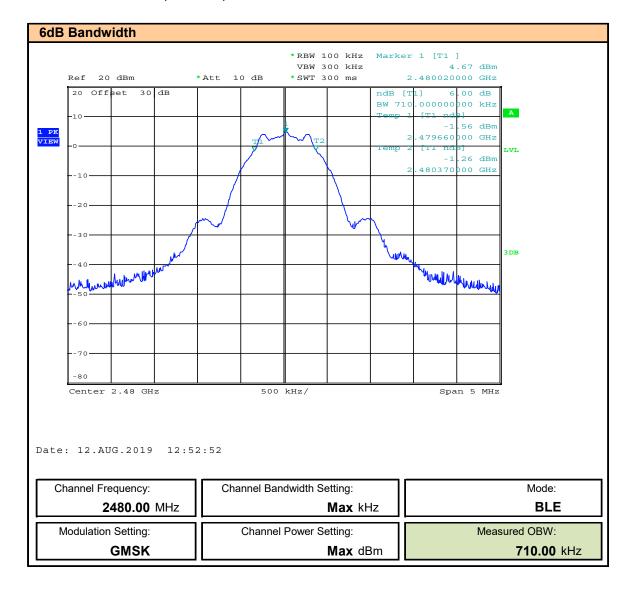



Plot 9.3 - 6dB Bandwidth, 2480MHz, ANT

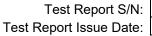



Plot 9.4 - 6dB Bandwidth, 2402MHz, BLE




Plot 9.5 - 6dB Bandwidth, 2444MHz, BLE

Plot 9.6 - 6dB Bandwidth, 2480MHz, BLE



Test Report S/N: Test Report Issue Date: 22 May 2020

45461521 R1.0

Table 9.1 - Summary of 6dB Bandwidth Measurements

6dB Bandw	6dB Bandwidth Measurements				
Frequency	Bandwidth Setting	Modulation	Mode	Measured OBW	
(MHz)	(MHz)			(kHz)	
2405.00				510	
2440.00	Max	GFSK	ANT	500	
2480.00				500	
2405.00		GMSK	BLE	710	
2440.00				710	
2480.00				710	

45461521 R1.0 22 May 2020

10.0 FIELD STRENGTH

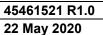
	Test Procedure		
	Normative Reference	FCC 47 CFR §2.1046	
		KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.6)	
ĺ	General Procedure		

C63.10 (6.5.4)

6.5.4 Final radiated emission tests

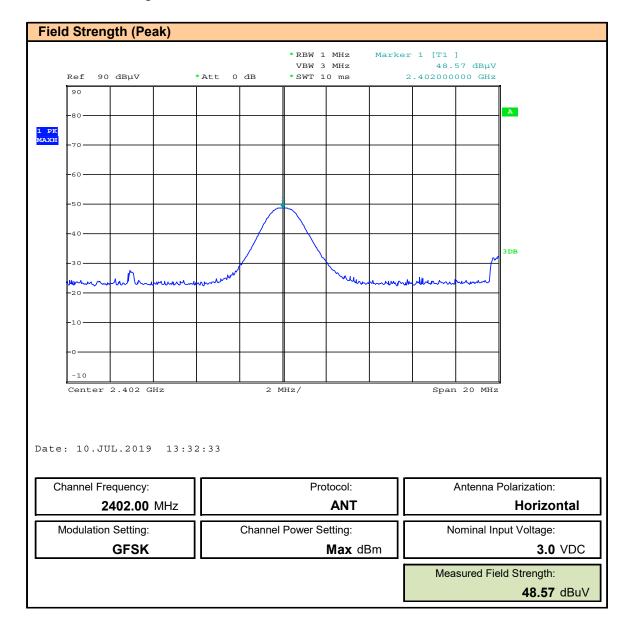
Using the orientation and equipment arrangement of the EUT, and based on the measurement results found during the exploratory measurement in 6.5.3, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. The final measurement shall follow all the procedures in 6.3 with the EUT operating on frequencies per 5.6. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable) and the frequency and amplitude of the six highest spurious emissions relative to the limit; emissions more than 20 dB below the limit do not need to be reported.

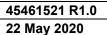
Measurements are performed with the EUT rotated from 0° to 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. Variations in cable or wire placement shall be explored to maximize the measured emissions.

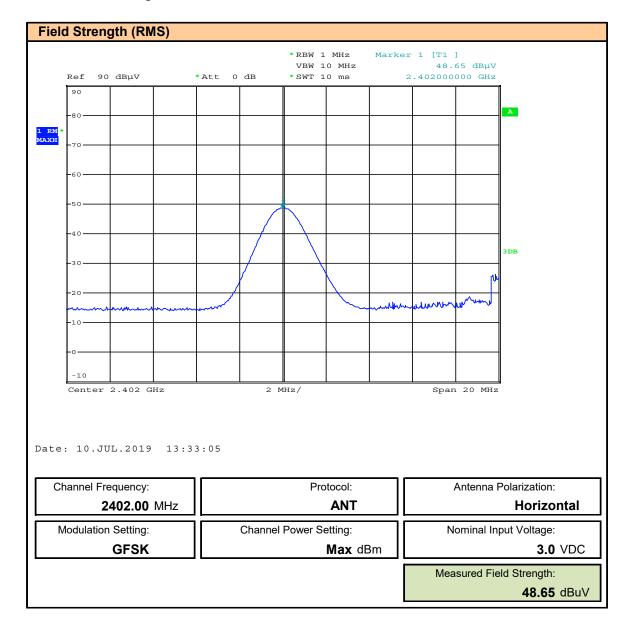

Test Setup

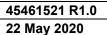
Appendix A

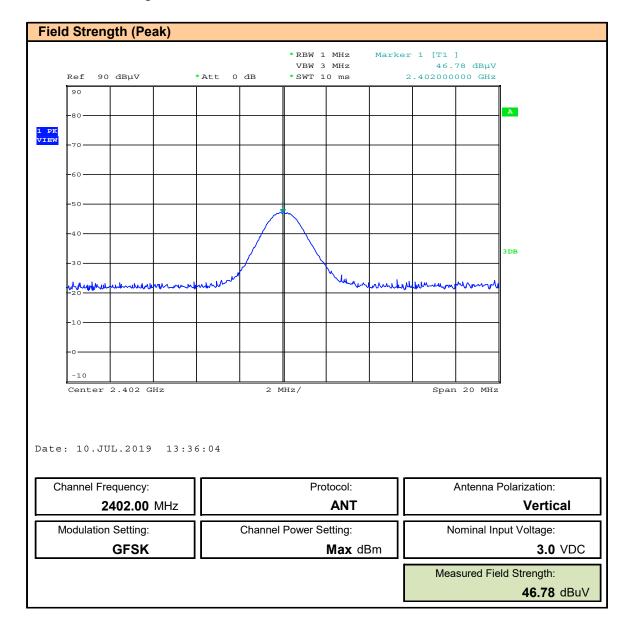
Figure A.2

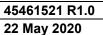

Measurement Procedure

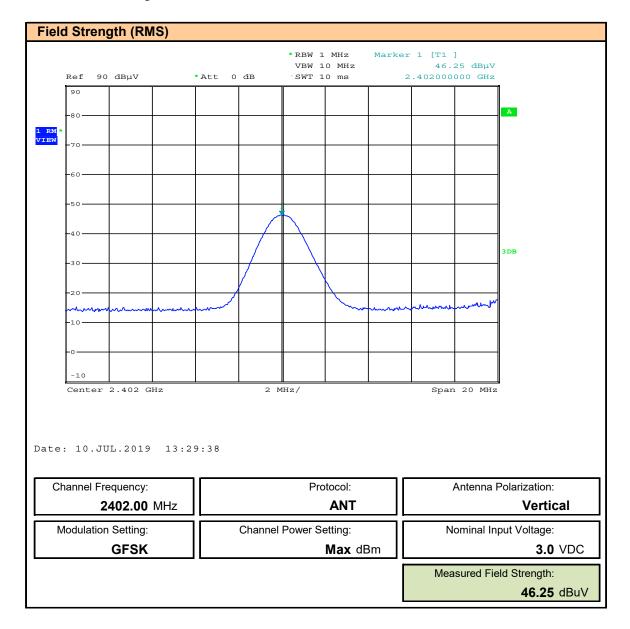

The DUT place on a 80cm high turntable on an Open Area Test Site (OATS) at a distance of 3m from the measurement antenna. The DUT was set to transmit at maximum power and duty cycle. The DUT was rotated 360 degrees and scanned with the receive antenna elevated from 1 to 4m. The emissions were measured and recorded.

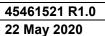

Plot 10.1 - Field Strength, ANT, 2402MHz, Horizontal, Peak

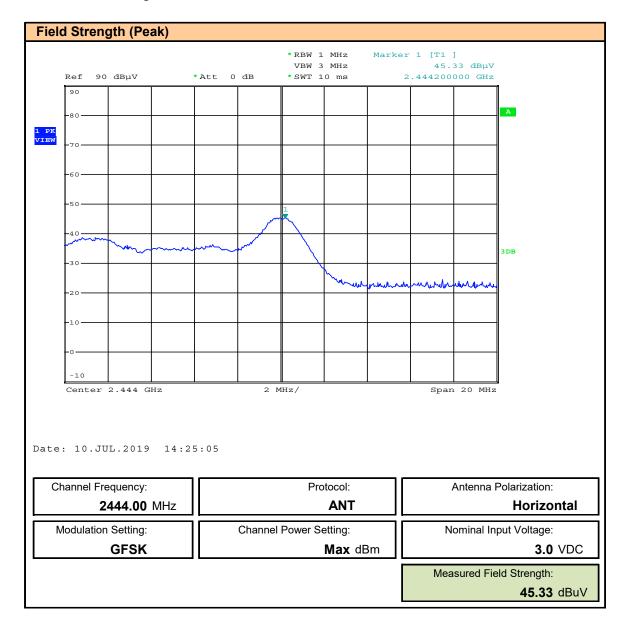


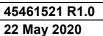

Plot 10.2 - Field Strength, ANT, 2402MHz, Horizontal, RMS

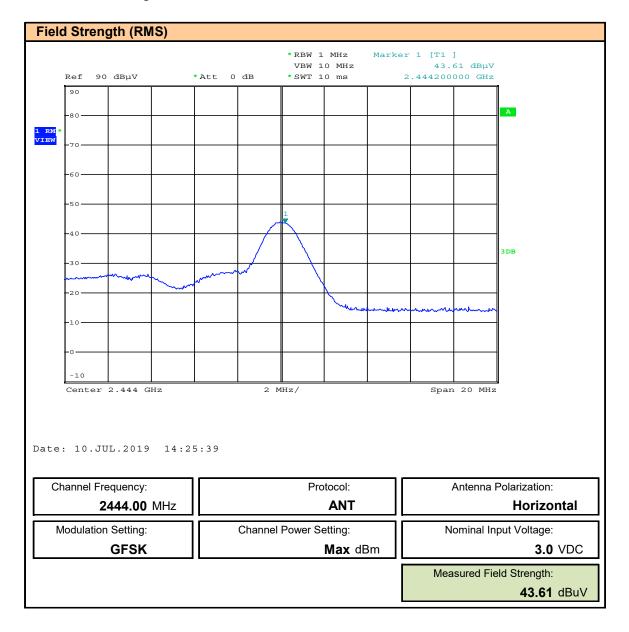


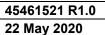

Plot 10.3 - Field Strength, ANT, 2402MHz, Vertical, Peak

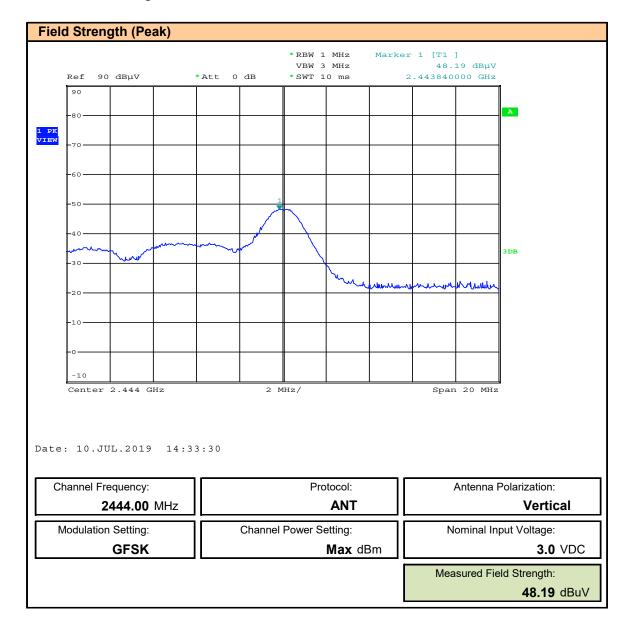


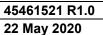

Plot 10.4 - Field Strength, ANT, 2402MHz, Vertical, RMS

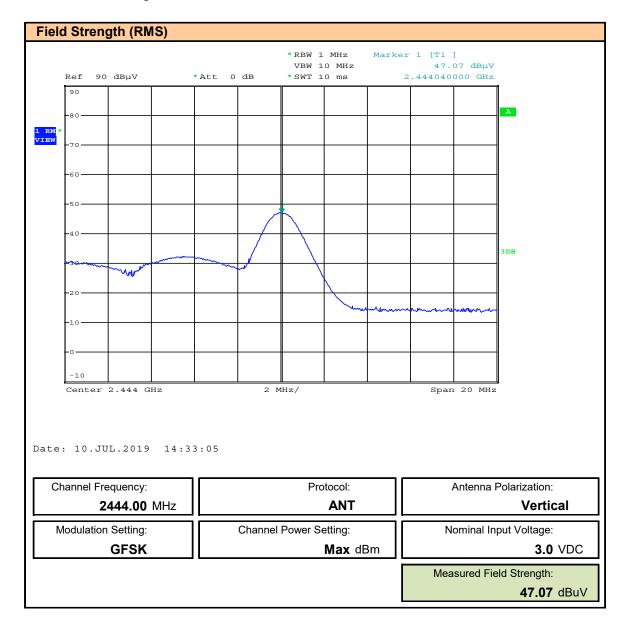


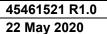

Plot 10.5 - Field Strength, ANT, 2444MHz, Horizontal, Peak

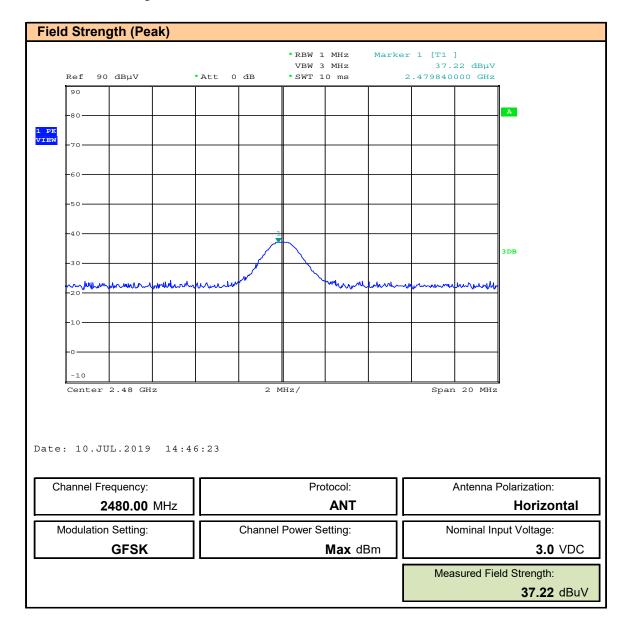


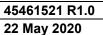

Plot 10.6 - Field Strength, ANT, 2444MHz, Horizontal, RMS

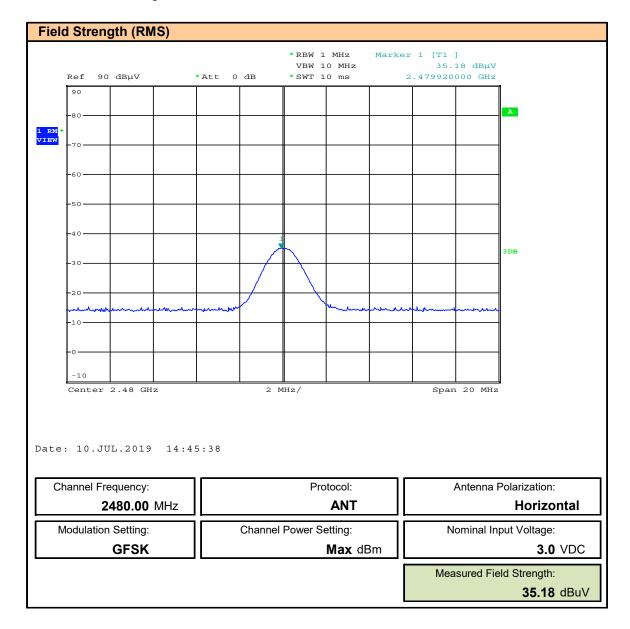


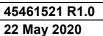

Plot 10.7 - Field Strength, ANT, 2444MHz, Vertical, Peak

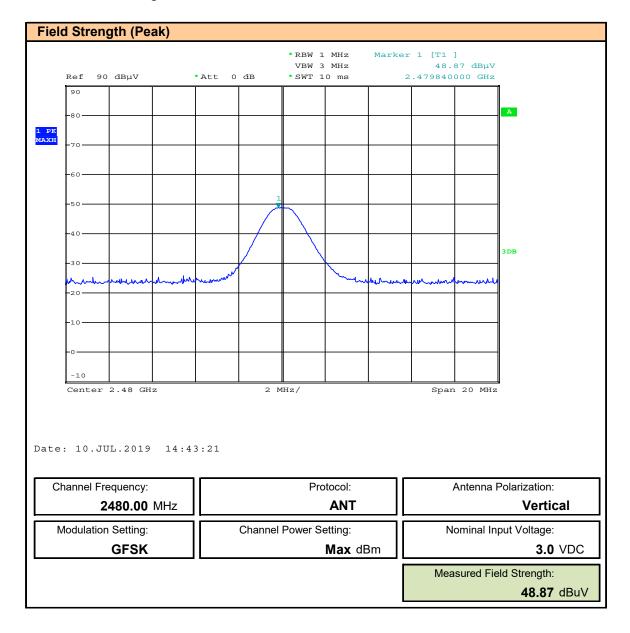


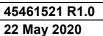

Plot 10.8 - Field Strength, ANT, 2444MHz, Vertical, RMS

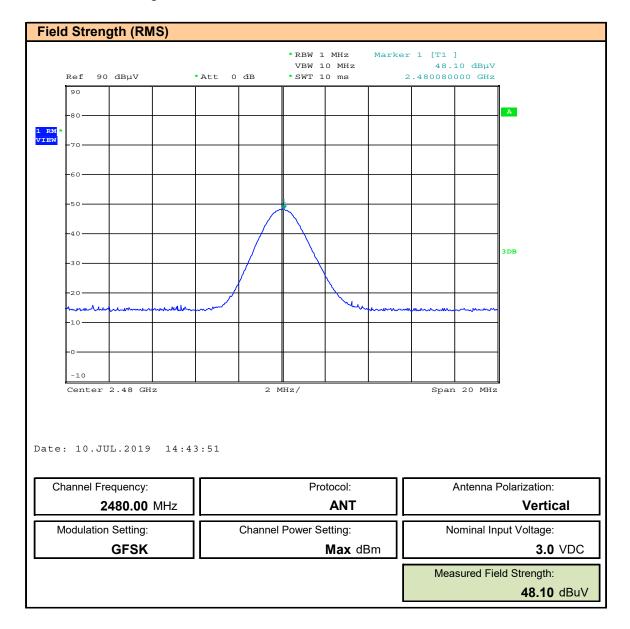


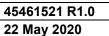

Plot 10.9 - Field Strength, ANT, 2480MHz, Horizontal, Peak

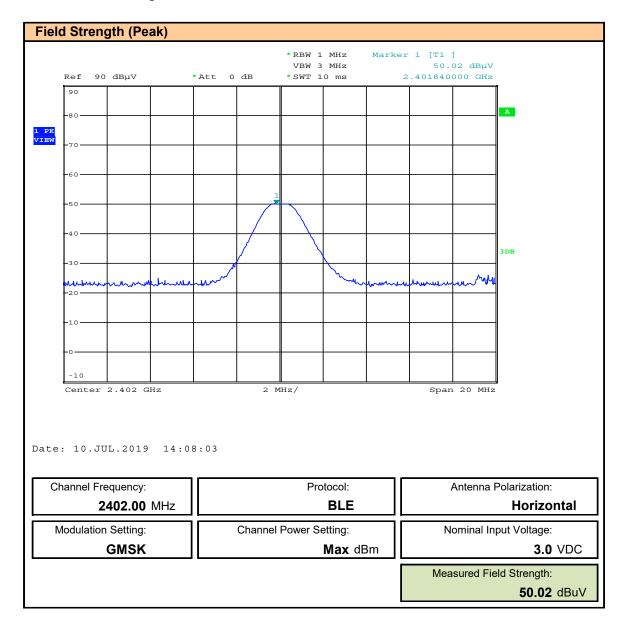


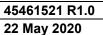

Plot 10.10 - Field Strength, ANT, 2480MHz, Horizontal, RMS

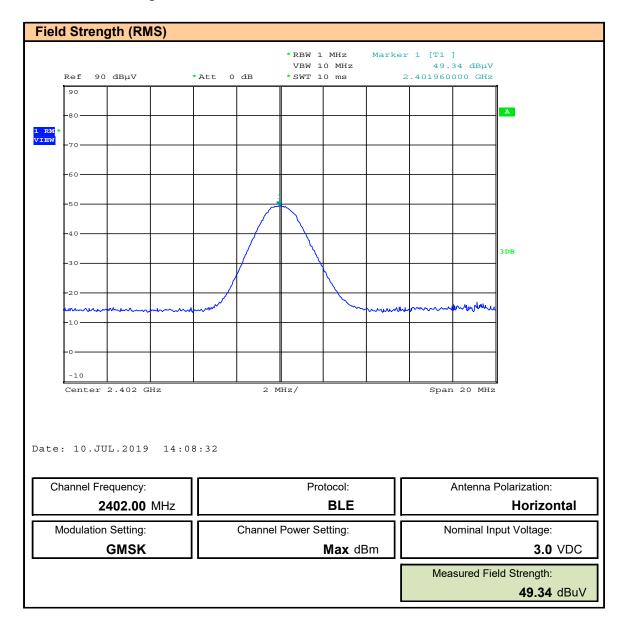


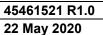

Plot 10.11 - Field Strength, ANT, 2480MHz, Vertical, Peak

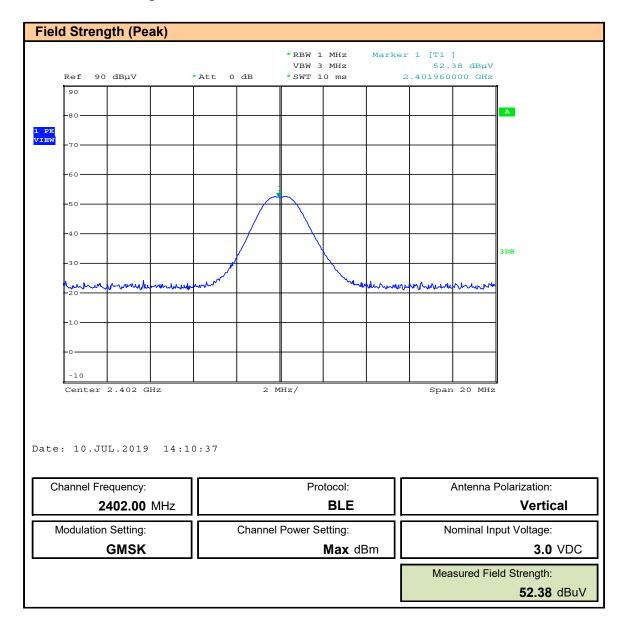


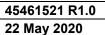

Plot 10.12 - Field Strength, ANT, 2480MHz, Vertical, RMS

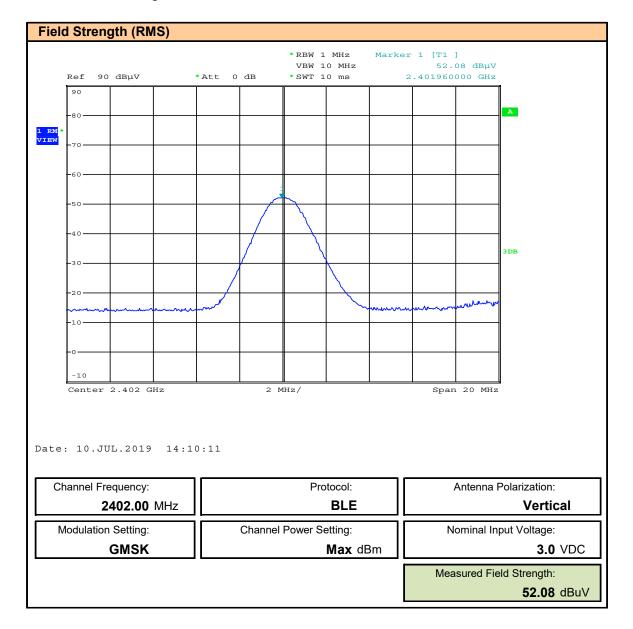


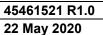

Plot 10.13 - Field Strength, BLE, 2402MHz, Horizontal, Peak

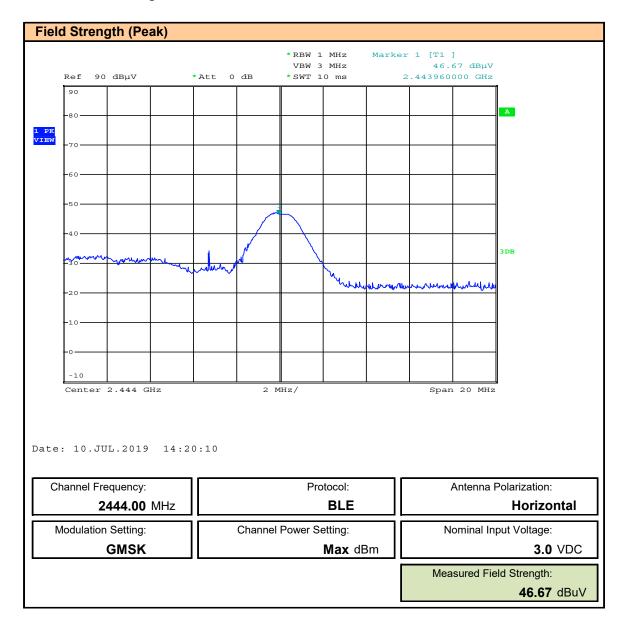


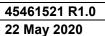

Plot 10.14 - Field Strength, BLE, 2402MHz, Horizontal, RMS

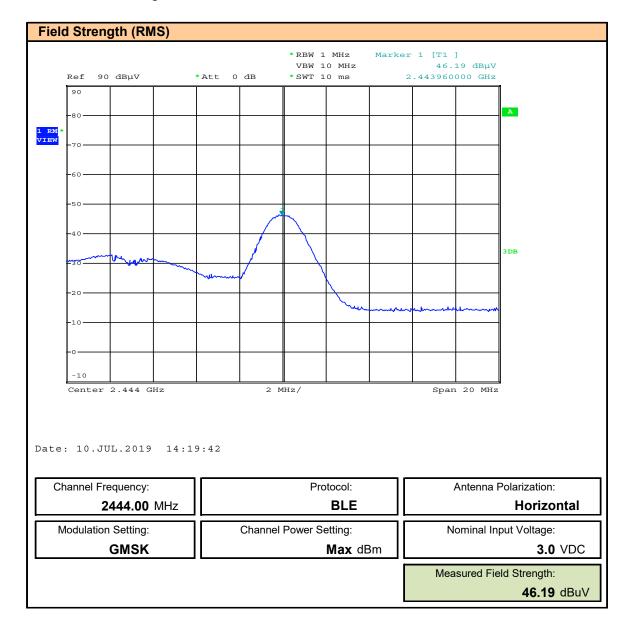


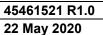

Plot 10.15 - Field Strength, BLE, 2402MHz, Vertical, Peak

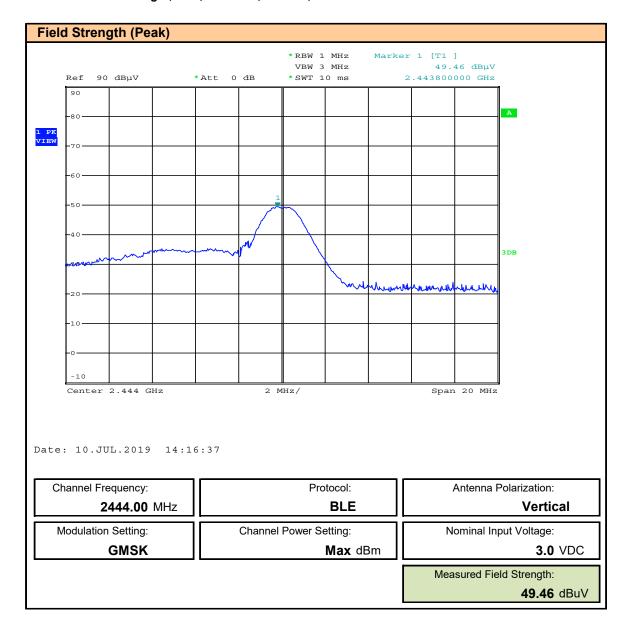


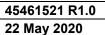

Plot 10.16 - Field Strength, BLE, 2402MHz, Vertical, RMS

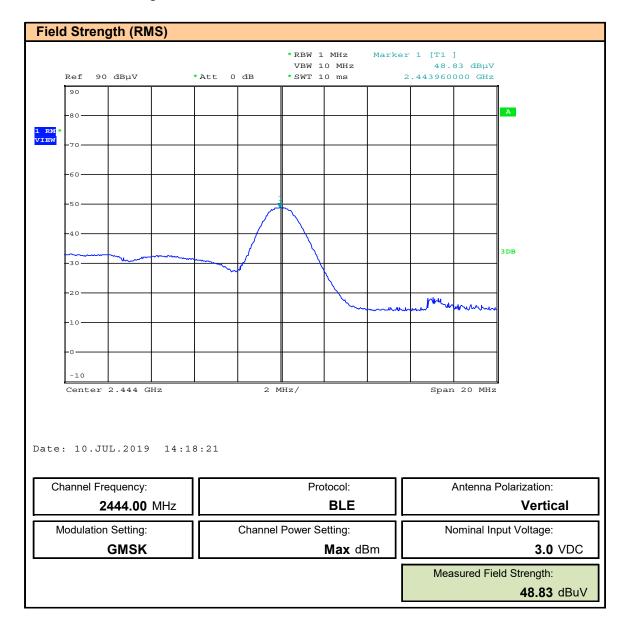


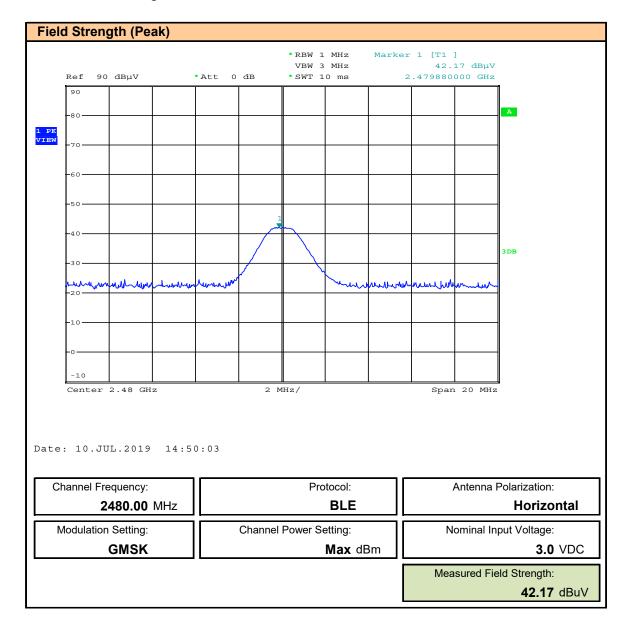

Plot 10.17 - Field Strength, BLE, 2444MHz, Horizontal, Peak

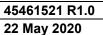


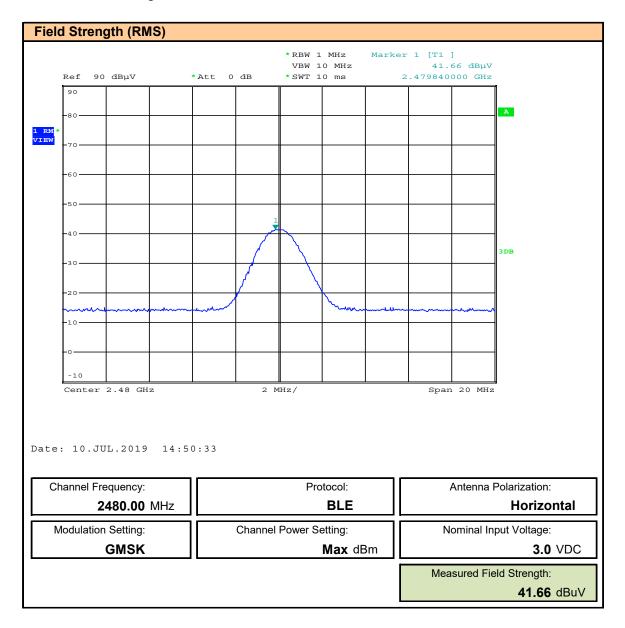

Plot 10.18 - Field Strength, BLE, 2444MHz, Horizontal, RMS

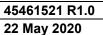


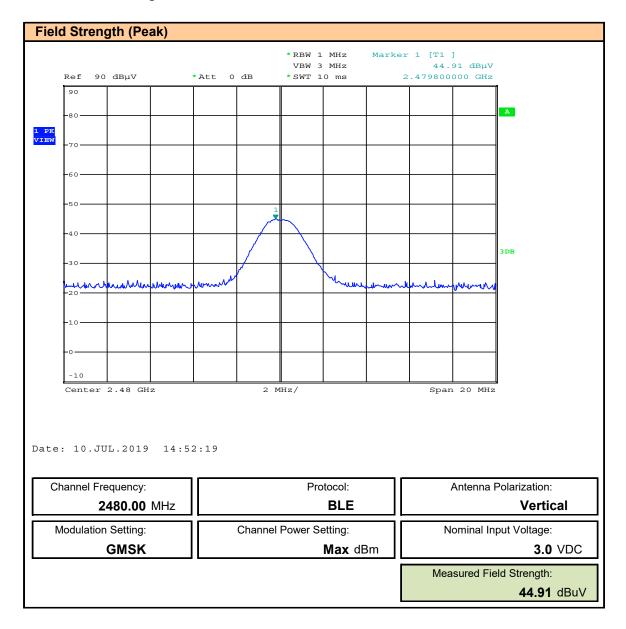

Plot 10.19 - Field Strength, BLE, 2444MHz, Vertical, Peak

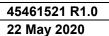


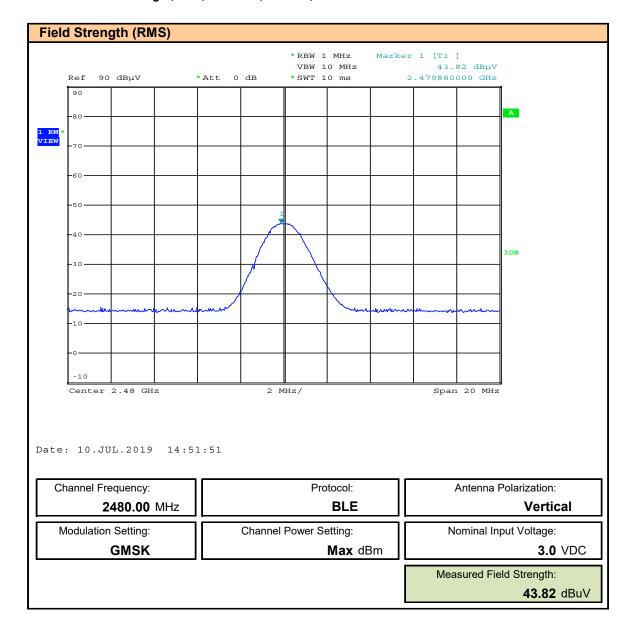

Plot 10.20 - Field Strength, BLE, 2444MHz, Vertical, RMS

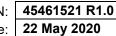

Plot 10.21 - Field Strength, BLE, 2480MHz, Horizontal, Peak




Plot 10.22 - Field Strength, BLE, 2480MHz, Horizontal, RMS




Plot 10.23 - Field Strength, BLE, 2480MHz, Vertical, Peak



Plot 10.24 - Field Strength, BLE, 2480MHz, Vertical, RMS

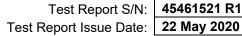
Table 10.1 - Summary of Field Strength Measurements, ANT

FCC §15.249(a), RSS-210 Radiated Field Strength													
Frequency (MHz)	Mode	OBW (kHz)	Modulation	Power	Supply	Detector	Antenna Detector Polarization	Measured Field Strength	Cable Loss	Antenna [ACF]	Corrected Field Strength		Margin
				Setting ⁽¹⁾ (dBm)	Voltage (VDC)			[FS _{Meas}] (dBuV @ 3m)	[L _c] (dBm)		[FS _{corr}] (dBuV @3m)		(dB)
2402.0		(KIIZ)		(ubiii)	(VDC)			48.57	(ubiii)	(ub)	81.47	(ubuv)	32.5
2444.0	ANT	920	20 GFSK	Max			Horizontal	45.33			78.23	114.0	35.8
2480.0								37.22		28.3	70.12		43.9
2400.0						Peak		46.78			79.68		34.3
													32.9
2444.0					3.0		Vertical	48.19	4.6 28		81.09		
2480.0								48.87			81.77		32.2
2402.0							Horizontal	48.65			81.55	94.0	12.5
2444.0					RMS			43.61			76.51		17.5
2480.0						DMC		35.18			68.08		25.9
2402.0						KIVIS	Vertical	46.25			79.15		14.9
2444.0								47.07			79.97		14.0
2480.0								48.10			81.00		13.0
				•							Result:	Com	plies

 $FS_{Corr} = FS_{Meas} + ACF + L_{C}$

Table 10.2 - Summary of Field Strength Measurements, BLE

FCC §15.2	FCC §15.249(a), RSS-210 Radiated Field Strength												
Frequency		OBW (kHz)	Modulation	Power Supply Setting ⁽¹⁾ Voltage (dBm) (VDC)	Supply		Antenna	Measured Field Strength	Cable Loss	Receive Antenna	Corrected Field Strength	Limit	Margin
	Mode				Detector	Polarization	[FS _{Meas}]	[L _c] [ACF	[ACF]	[FS _{Corr}]			
(MHz)					(VDC)		Folarization	(dBuV @ 3m)	(dBm)	(dB)	(dBuV @3m)	(dBuV)	(dB)
2402.0								50.02			82.92		31.1
2444.0	BLE	1000	GMSK	Мах			Horizontal	46.67			79.57	114.0	34.4
2480.0						Peak		42.17			75.07		38.9
2402.0						reak	Vertical	52.38			85.28		28.7
2444.0								49.46	4.6 28.3		82.36		31.6
2480.0					3.0			44.91		28.3	77.81		36.2
2402.0					3.0		Horizontal	49.34			82.24	94.0	11.8
2444.0						RMS -		46.19			79.09		14.9
2480.0								41.66			74.56		19.4
2402.0						KIVIO	RIVIS	52.08			84.98		9.0
2444.0							Vertical	48.83			81.73		12.3
2480.0							1 [43.82			76.72		17.3
Result: Complies									plies				


 $FS_{Corr} = FS_{Meas} + ACF + L_{C}$

Margin = Limit - FS_{Corr}

Margin = Limit - FS_{Corr}

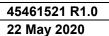
⁽¹⁾ The output power is factory set to maximum

⁽¹⁾ The output power is factory set to maximum

45461521 R1.0

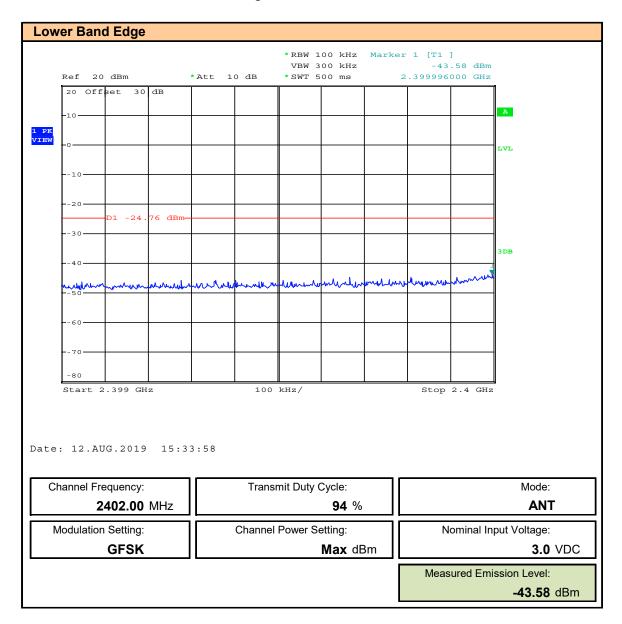
11.0 BAND EDGE

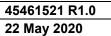
Test Procedure								
Normative Reference	FCC 47 CFR §2.1051, §15.249(d)(e), RSS-Gen (6.12), RSS-210 (B.10)							
Normative Reference	ANSI C63.10 (6.10.3)							
Limits								
C63.10 (6.3.10)	6.10.3 Unlicensed wireless device operational configuration							
	Set the EUT to operate at 100% duty cycle or equivalent "normal mode of operation." Testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band. Testing shall be performed for each frequency with every applicable unlicensed wireless device configuration. If more than one power output level is available, then testing shall be done with the appropriate maximum power output for each antenna combination or modulation, as recorded in the unlicensed wireless device conducted power measurement results. The highest gain of each antenna type shall be used for this test.							

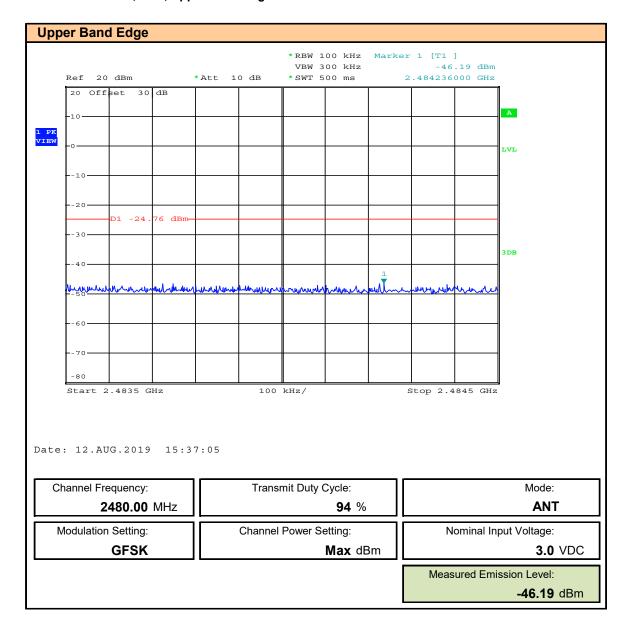

⁵⁴ For unlicensed wireless devices unable to be configured for 100% duty cycle even in test mode, configure the system for the longest duration duty cycle supported.

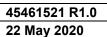
Test Setup Appendix A Figure A.1

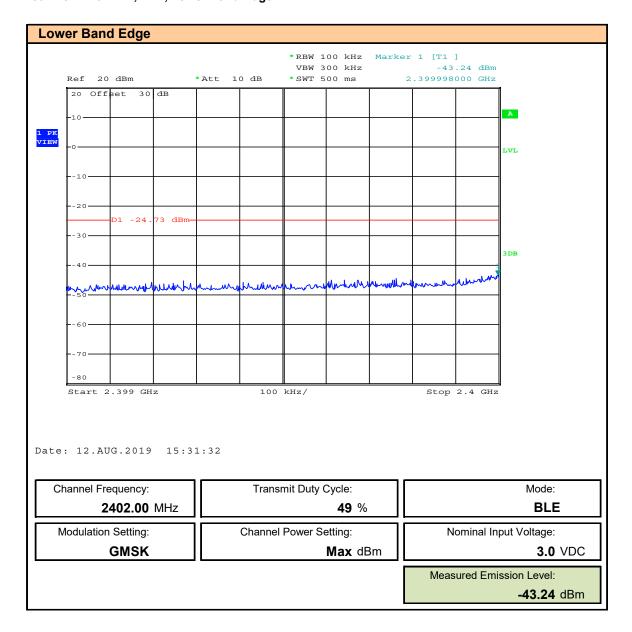
Measurement Procedure

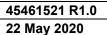

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. The output power of the DUT was set to the manufacturer's highest output power setting at the Low and High frequency channels as permitted by the device. The unwanted band edge emissions were measured and recorded.

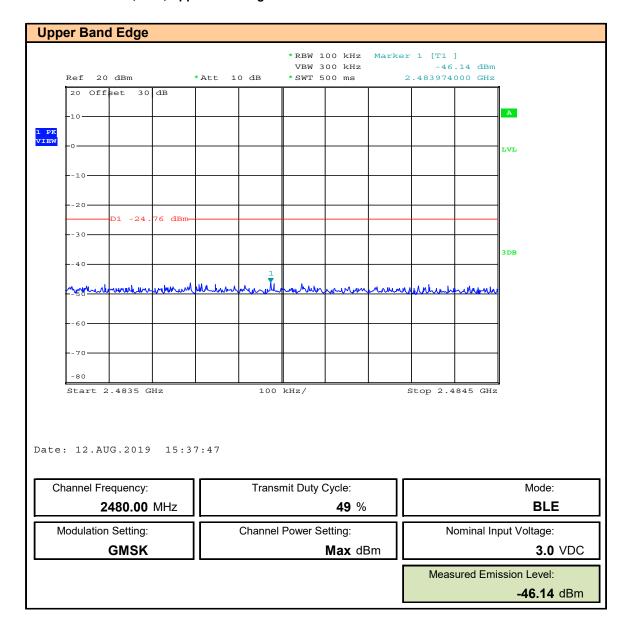

⁵⁵ Some radios operating, for example, in the 2.4 GHz band, have hardware capability to operate at frequencies outside the band permitted by the regulatory authority. Testing shall only be done at the lowest and highest frequencies within the allowed frequency band (see Annex A for examples of regulatory requirements and frequency ranges).


Plot 11.1 - 2402MHz, ANT, Lower Band Edge

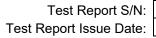



Plot 11.2 - 2480MHz, ANT, Upper Band Edge




Plot 11.3 - 2402MHz, BLE, Lower Band Edge

Plot 11.4 - 2480MHz, BLE, Upper Band Edge



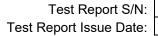


Table 11.1 - Summary of Band Edge Measurements

Band Edge Emission Measurement								
Frequency		Modulation		Supply	Transmit	Measured	Limit	
ricquency	Mode		Power		Duty	Emission	Line	Margin
Range			Setting ⁽¹⁾	Voltage	Cycle	[E _{Meas}]	[A _L]	
(MHz)			(dBm)	(VDC)	(%)	(dBm)	(dBm)	(dB)
2399- 2400	ANT	GFSK	Мах	3.0	94	-43.58	-24.76	18.82
2483.5 - 2485.5	AINT					-46.19		21.43
2399- 2400	BLE	GMSK			49	-43.24	-24.76	18.48
2483.5 - 2485.5	DLE					-46.14		21.38
Result:								plies

⁽¹⁾ The output power is factory set to maximum

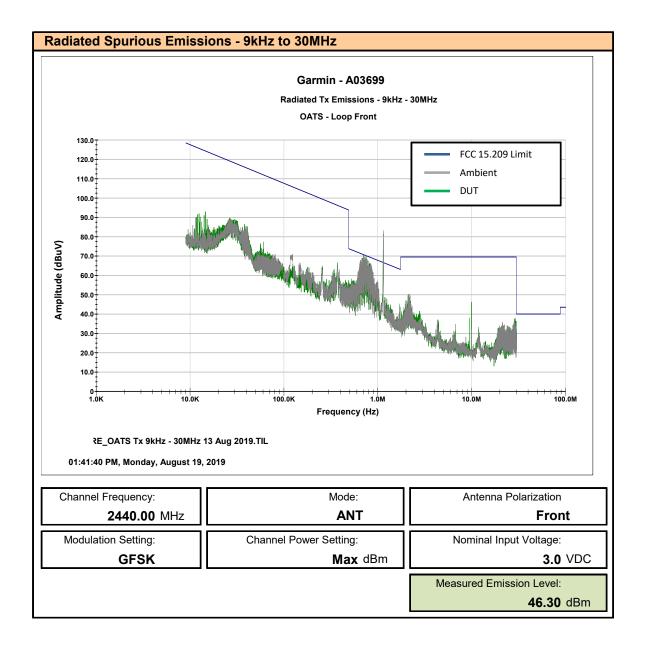
Margin = $A_L - E_{MEAS}$

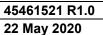
12.0 RADIATED SPURIOUS EMISSIONS - RESTRICTED BANDS

Test Procedure								
Normative Reference	FCC 47 CFR §2.1046							
	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.6)							
General Procedure								
C63.10 (6.5.4)	6.5.4 Final radiated emission tests							
	Using the orientation and equipment arrangement of the FLIT, and based on the							

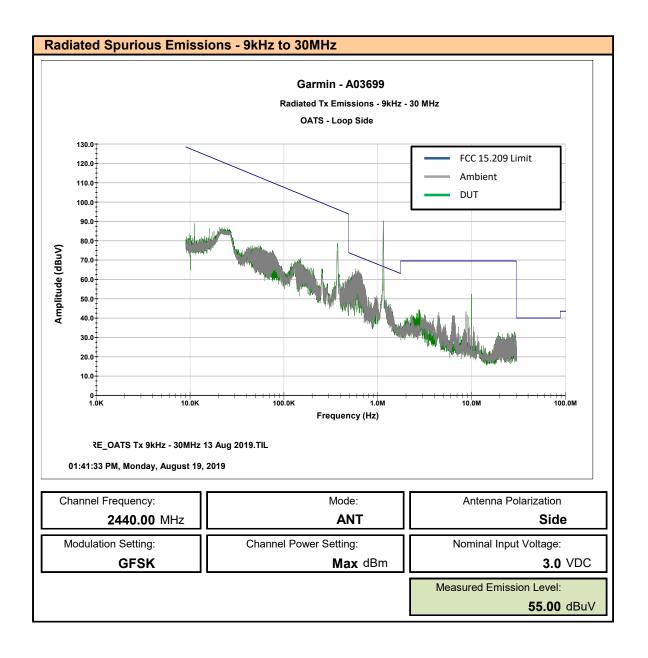
Using the orientation and equipment arrangement of the EUT, and based on the measurement results found during the exploratory measurement in 6.5.3, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. The final measurement shall follow all the procedures in 6.3 with the EUT operating on frequencies per 5.6. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable) and the frequency and amplitude of the six highest spurious emissions relative to the limit; emissions more than 20 dB below the limit do not need to be reported.

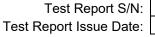
Measurements are performed with the EUT rotated from 0° to 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. Variations in cable or wire placement shall be explored to maximize the measured emissions.

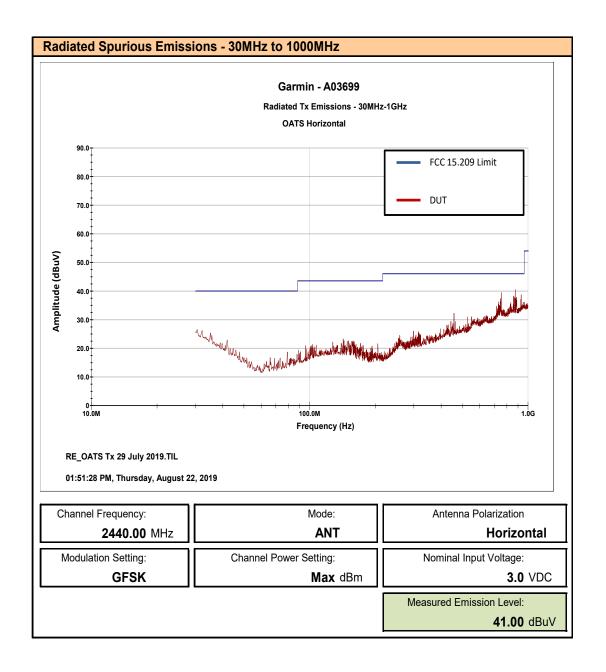

Test Setup Appendix A Figure A.2

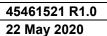

Measurement Procedure

The DUT place on a 80cm high turntable on an Open Area Test Site (OATS) at a distance of 3m from the measurement antenna. The DUT was set to transmit at maximum power and duty cycle. The DUT was rotated 360 degrees and scanned with the receive antenna elevated from 1 to 4m. The emissions were measured to the 10th harmonic and recorded.


Plot 12.1 - Spurious Emissions - 9kHz - 30MHz, Front Polarization

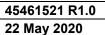


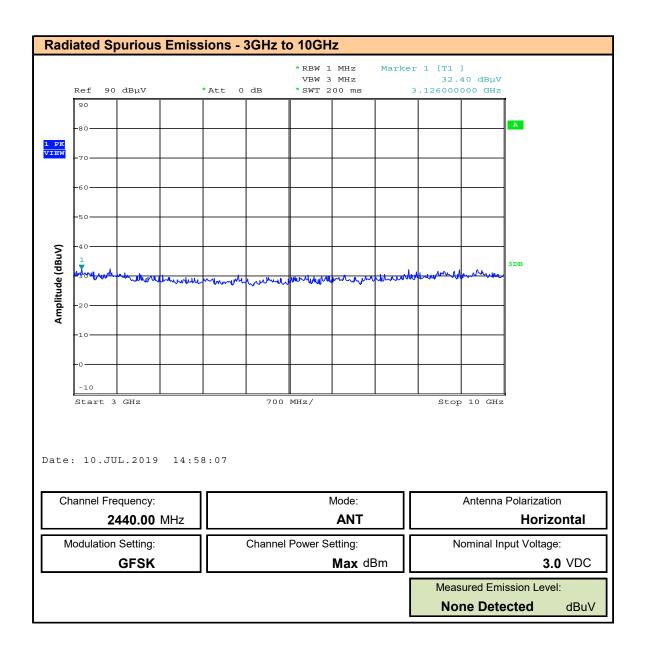

Plot 12.2 - Spurious Emissions - 9kHz - 30MHz, Side Polarization

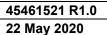


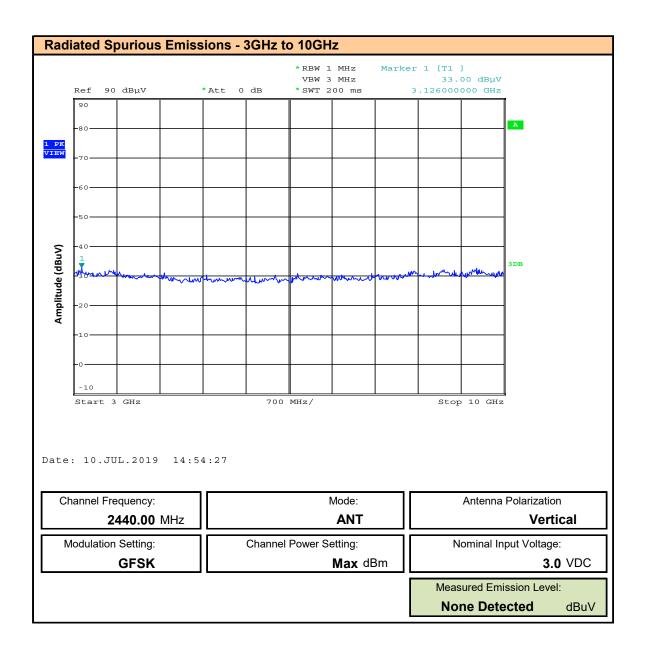
Celltech
Testing and Engineering Services Lab

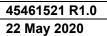

Plot 12.3 - Spurious Emissions - 30MHz - 1000MHz, Horizontal

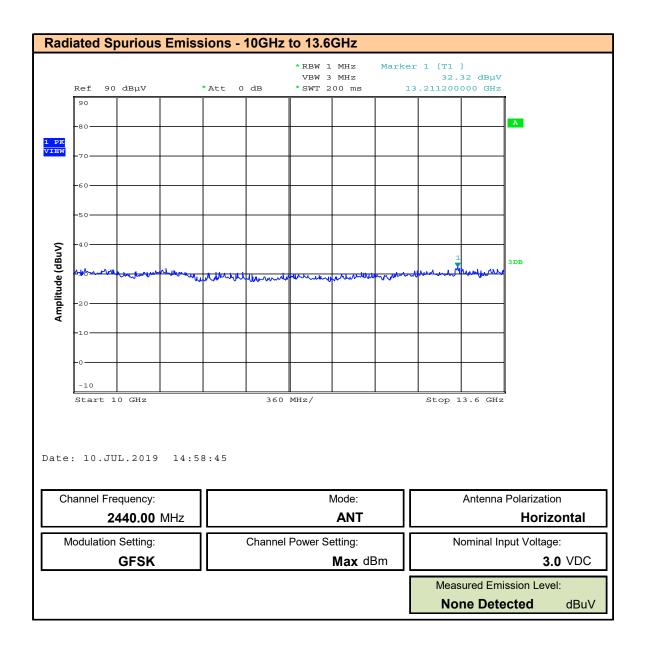


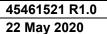

Plot 12.4 - Spurious Emissions - 30MHz - 1000MHz, Vertical

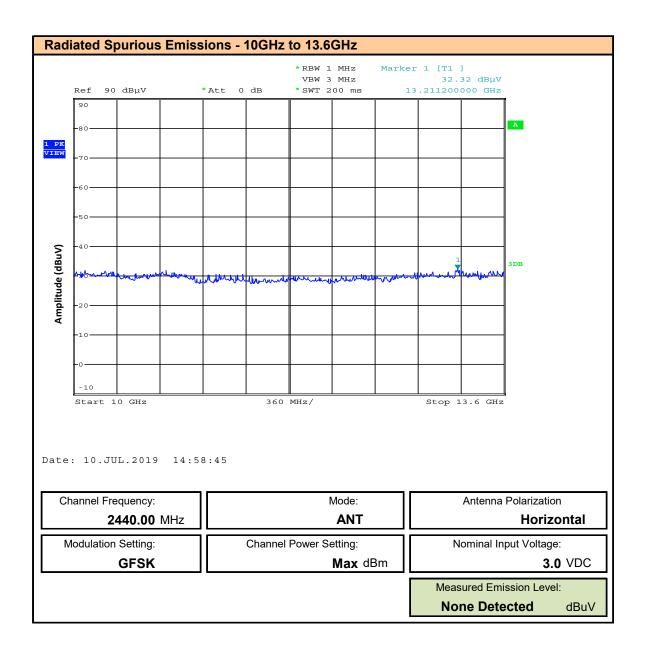


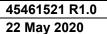

Plot 12.5 - Spurious Emissions - 3GHz - 10GHz, Horizontal

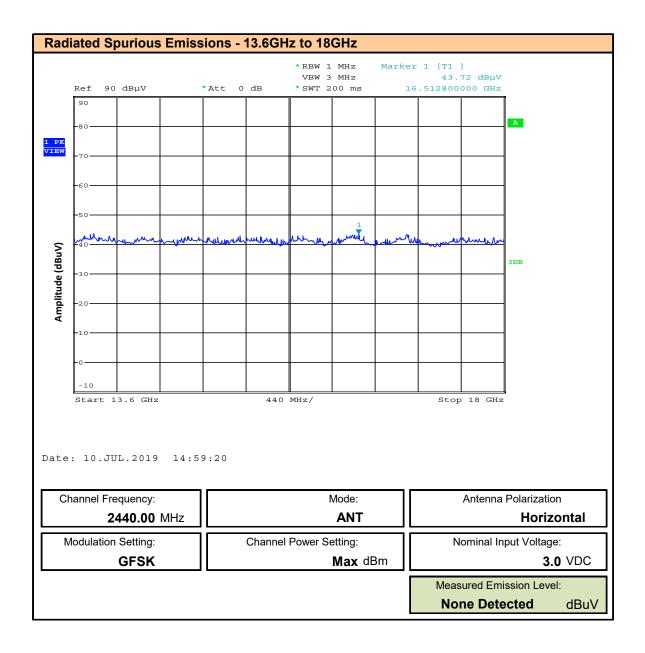


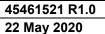

Plot 12.6 - Spurious Emissions - 3GHz - 10GHz, Vertical

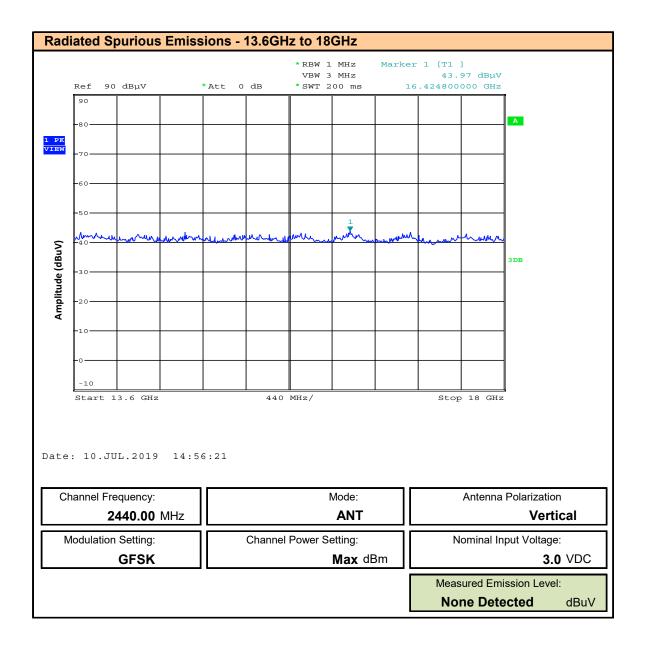


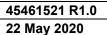

Plot 12.7 - Spurious Emissions - 10GHz - 13.6GHz, Horizontal

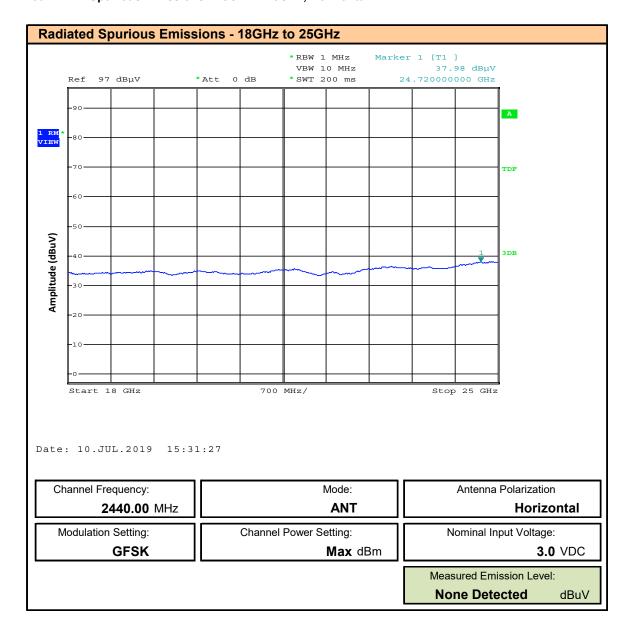


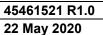

Plot 12.8 - Spurious Emissions - 10GHz - 13.6GHz, Vertical

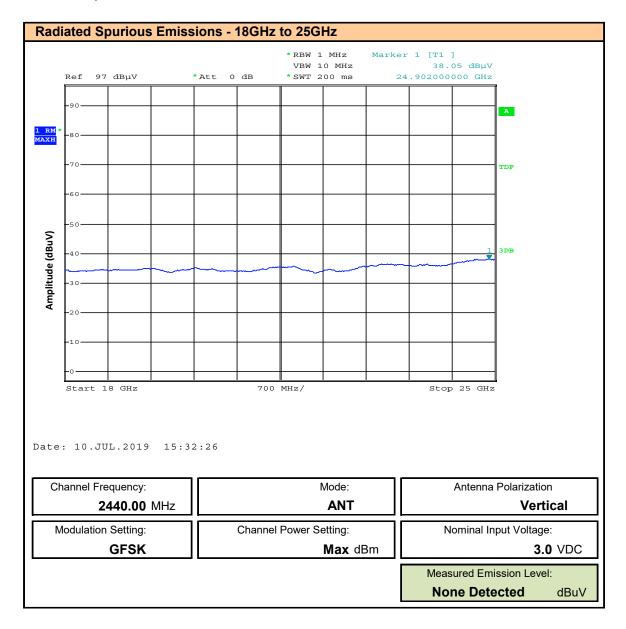



Plot 12.9 - Spurious Emissions - 13.6GHz - 18GHz, Horizontal




Plot 12.10 - Spurious Emissions - 13.6GHz - 18GHz, Vertical




Plot 12.11 - Spurious Emissions - 18GHz - 25GHz, Horizontal

Plot 12.12 - Spurious Emissions - 18GHz - 25GHz, Vertical

Test Report S/N: Test Report Issue Date:

45461521 R1.0 22 May 2020

Table 12.1 - Summary of Radiated Emissions - Restricted Band

Emission Level Measurement					
Frequency	Emission	Antenna	Measured	Limit	
Frequency	Lillission	Antenna	Emission ⁽¹⁾	Line	Margin
Range	Frequency	Polarization	[E _{Meas}]	[A _L]	
			(dBuV)	(dBm)	(dB)
9kHz - 30MHz	9.992MHz	Front	46.3	69.5	23.2
9kHz - 30MHz	9.992MHz	Side	52.4	69.6	17.2
30MHz - 1GHz	874	Horizontal	40.5	46.0	5.5
30MHz - 1GHz	930	Vertical	38.4	46.0	7.6
Result:				Com	plies

⁽¹⁾ Antenna Correction Factors (ACF) and cable loss corrected.

Margin = $A_L - E_{MEAS}$

No other spurious emissions within 20dB of the limit or above the ambient emissions were detected

APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 - Setup - Conducted Measurements Equipment

	Equipment List				
Asset Number	Manufacturer	Model Number	Description		
00241	R&S	FSU40	Spectrum Analyzer		

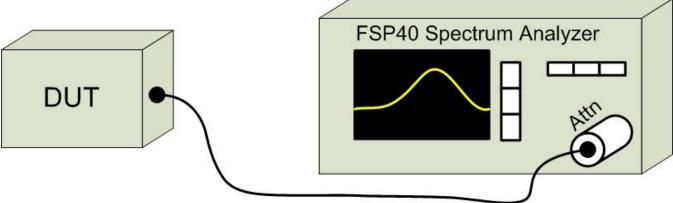


Figure A.1 – Test Setup Conducted Measurements

Test Report S/N: Test Report Issue Date: 22 May 2020

45461521 R1.0

Table A.2 - Setup - Radiated Emissions Equipment

	Equipment List				
Asset Number	Manufacturer	Model Number	Description		
00051	HP	8566B	Spectrum Analyzer		
00049	HP	85650A	Quasi-peak Adapter		
00047	HP	85685A	RF Preselector		
00072	EMCO	2075	Mini-mast		
00073	EMCO	2080	Turn Table		
00071	EMCO	2090	Multi-Device Controller		
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier		
00241	R&S	FSU40	Spectrum Analyzer		
00050	Chase	CBL-6111A	Bilog Antenna		
00275	Coaxis	LMR400	25m Cable		
00276	Coaxis	LMR400	4m Cable		
00278	TILE	34G3	TILE Test Software		
00034	ETS	3115	Double Ridged Guide Horn		
00085	EMCO	6502	Loop Antenna		
00161	Waveline Inc.	889	Standard Gain Horn 18-26GHz		
00162	Waveline Inc.	889	Standard Gain Horn 18-26GHz		
00163	Waveline Inc.	1099	Standard Gain Horn 26-40GHz		
00164	Waveline Inc.	1099	Standard Gain Horn 26-40GHz		
00165	Waveline Inc.	801-KF	Waveguide Adapter 18-26GHz		
00166	Waveline Inc.	801-KF	Waveguide Adapter 18-26GHz		
00167	Waveline Inc.	1001-KF	Waveguide Adapter 26-40GHz		
00168	Waveline Inc.	1001-KF	Waveguide Adapter 26-40GHz		

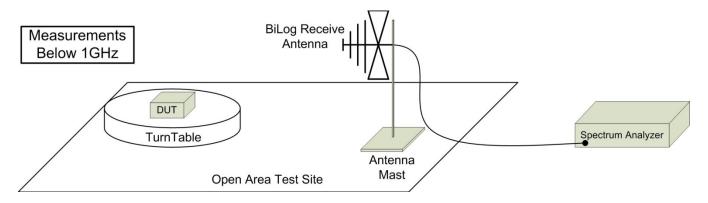


Figure A.2 – Test Setup Radiated Emissions Measurements 30-1000MHz

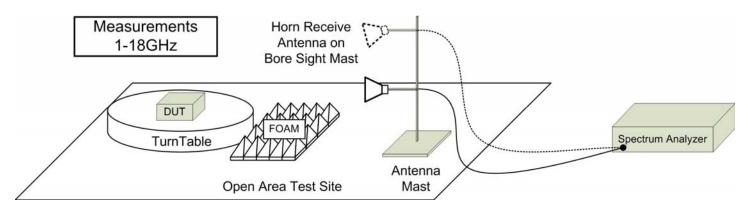


Figure A.3 – Test Setup Radiated Emissions Measurements 1-18GHz

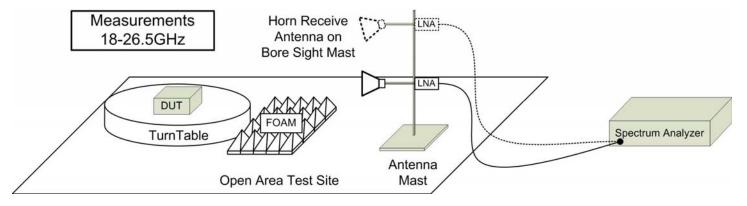
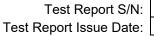
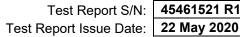



Figure A.4 – Test Setup Radiated Emissions Measurements 18-26.5GHz


45461521 R1.0 22 May 2020

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

	ipment l	LISU						
(*)	Asset	Manufacturer	Model	Serial	Description	Last	Calibration	Calibration
	Number	Wandacturer	Number	Number	Description	Calibrated	Interval	Due
*	00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 202
*	00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 202
	00035	ETS	3115	6276	Double Ridged Guide Horn	22 Mar 2019	Triennial	21 Mar 2022
*	00085	EMCO	6502	9203-2724	Loop Antenna	11 Jun 2019	Triennial	11 Jun 2022
*	00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCF
	00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCF
	00163	Waveline Inc.	1099		Standard Gain Horn 26-40GHz	NCR	n/a	NCF
	00164	Waveline Inc.	1099		Standard Gain Horn 26-40GHz	NCR	n/a	NCF
*	00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCF
T	00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCF
\exists	00167	Waveline Inc.	1001-KF		Waveguide Adapter 26-40GHz	NCR	n/a	NCF
十	00168	Waveline Inc.	1001-KF		Waveguide Adapter 26-40GHz	NCR	n/a	NCF
*	00047	HP	85685A	2837A00826	RF Preselector	23 Jun 2017	Triennial	23 Jun 2020
*	00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2017	Triennial	23 Jun 2020
*	00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2017	Triennial	23 Jun 2020
\dashv	00223	HP	8901A	3749A07154	Modulation Analyzer	27 Dec 2017	Triennial	27 Dec 2020
\dashv	00224	HP	8903B	3729A18691	Audio Analyzer	28 Dec 2017	Triennial	28 Dec 2020
*	00224	R&S	FSU40	100500	Spectrum Analyzer	15 May 2018	Triennial	15 May 202
*	00005	HP	8648D	3847A00611	Signal Generator	21 Jun 2017	Triennial	21 Jun 2020
-	00003	R&S	SMR20	100104			Triennial	
\dashv	00008		DS1102E	DS1ET150502164	Signal Generator	29 May 2017		29 May 2020 7 Nov 2020
\dashv		Rigol			Oscilloscope	7 Nov 2017	Triennial	
\dashv	00254	LeCroy	WM8600A	532	Oscilloscope	NCR	n/a	NCF
\dashv	00110	Gigatronics	8652A	1875801	Power Meter	26 Mar 2019	Triennial	26 Mar 2022
+	00237	Gigatronics	80334A	1837001	Power Sensor	26 Mar 2019	Triennial	26 Mar 2022
_	00232	ETS Lindgren	HI-6005	91440	Isotropic E-Field Probe	18 Dec 2017	Triennial	18 Dec 2020
4	00003	HP	53181A	3736A05175	Frequency Counter	21 Jun 2017	Triennial	21 Jun 2020
_	00257	Com-Power	LI-215A	191934	LISN	5 Jan 2018	Triennial	5 Jan 202
\perp	00041	AR	10W1000C	27887	Power Amplifier	NCR	n/a	NCF
	00106	AR	5SIG4	26235	Power Amplifier	NCR	n/a	NCF
	00280	AR	25A250AM6	22702	Power Amplifier	NCR	n/a	NCF
*	00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	COU	n/a	COL
	00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
*	00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
*	00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
\exists	00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CNF
*	00234	WR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	Nev
寸	00236	Nokia	-	236	ESD Table	NCR	n/a	NCF
寸	00255	Expert ESD	A4001	A4001-155	ESD Target	COU	n/a	COL
\dashv	00064	NARDA	3020A	n/a	Bi-Directional Coupler	COU	n/a	COL
\dashv	00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COL
*	00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COL
*	00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COL
*	00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COL
*	00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COL
*	00270	TMS	LMR400	n/a	4m Cable	COU	n/a	COL
	00277	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCF
*			J 4 G3	II/d	TILE TEST SURWARE	NCR	II/d	INCE

* Used during the course of this investigation

NCR: No Calibration Required COU: Calibrate On Use

45461521 R1.0

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})				
Th	This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2				
	30MHz - 200MHz				
	$U_{LAB} = 5.14dB$ $U_{CISPR} = 6.3dB$				
	200MHz - 1000MHz				
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$				
	1GHz - 6GHz				
	U _{LAB} = 4.80dB				
	6GHz - 18GHz				
	$U_{LAB} = 5.1dB$ $U_{CISPR} = 5.5dB$				
	If the calculated uncertainty U _{lab} is less than U _{CISPR} then:				
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit				
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit				
	If the calculated uncertainty \mathbf{U}_{lab} is $\mathbf{greater}$ than \mathbf{U}_{CISPR} then:				
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit				
4	4 Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U_{lab} - U_{CISPR}), EXCEEDS the disturbance limit				