

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED DTS TEST REPORT

Prepared for:	Garmin International Inc
i i opai oa i oi i	

Address: 1200 E. 151st Street Olathe, Kansas, 66062, USA

- Product: A03690
- Test Report No: R20191028-24-E2C

Approved By:

Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE: 16 June 2020

88

Total Pages:

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

REVISION PAGE

Rev. No.	Date	Description
0	28 February 2020	Original – NJohnson
		Prepared by CFarrington
А	8 June 2020	Updated average power measurements.
		Repeated band edge measurements as radiated
В	15 June 2020	Updated band edge measurements and calibration table.
С	16 June 2020	Updated test dates and calibration table.

Prepared for: Garmin

CON	NTENTS	
Rev	ision Pa	age2
1.0	Sun	nmary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Lab	oratory description7
	3.1	Laboratory description7
	3.2	Test Personnel7
	3.3	Test equipment8
4.0	Deta	ailed results9
	4.1	Duty Cycle
	4.2	Radiated emissions10
	4.3	Output Power
	4.4	Bandwidth
	4.5	Bandedges
	4.6	Power Spectral Density71
	4.7	Conducted AC Mains Emissions
Арр	endix A	: Sample Calculation85
Арр	endix B	- Measurement Uncertainty87
REF		ND

Prepared for: Garmin

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. The EUT has been tested according to the following specifications:

APPLIED STANDARDS AND REGULATIONS				
Standard Section	Test Type	Result		
FCC Part 15.35 RSS Gen, Issue 4, Section 6.10	Duty Cycle	Pass		
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Peak output power	Pass		
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Bandwidth	Pass		
FCC Part 15.209 RSS-Gen Issue 4, Section 7.1	Receiver Radiated Emissions	Pass		
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 4, Section 8.9	Transmitter Radiated Emissions	Pass		
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Power Spectral Density	Pass		
FCC Part 15.209, 15.247(d) RSS-247 Issue 2 Section 11.13	Band Edge Measurement	Pass		
FCC Part 15.207 RSS-Gen Issue 4, Section 7.1	Conducted Emissions	Pass		

See Section 4 for details on the test methods used for each test.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Prepared for: Garmin

2.0 **EUT DESCRIPTION**

2.1 **EQUIPMENT UNDER TEST**

Model	A03690
EUT Received	19 December 2019
EUT Tested	6 January 2020 – 9 June 2020
Serial No.	3319367796 (conducted antenna port measurements); 3319367789 (radiated measurements)
Operating Band	2400.0 - 2483.5 GHz
Device Type	802.11b, 802.11g, 802.11n
Antenna	Trace Antenna
Power Supply	Internal Battery/ Charger: Garmin (Phi Hong) MN: PSAF10R-050Q (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

Prepared for: Garmin

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low (Channel 1)	2412
Middle (Channel 6)	2437
High (Channel 11)	2462

As well as the following modes:

WIFI Mode	
802.11b	
802.11g	
802.11n (HT20))

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, highest and one channel in the middle.

2.3 DESCRIPTION OF SUPPORT UNITS

NA

Prepared for: Garmin

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

All testing was performed by Karthik Vepuri of NCEE Labs. The results were reviewed by Nic Johnson.

Prepared for: Garmin

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Rohde & Schwarz Test Receiver	ES126	100037	30 Jan 2018	30 Jan 2020
Keysight MXE Signal Analyzer	N9038A	MY59050109	23 Apr 2019	23 Apr 2021
SunAR RF Motion Hybrid Antenna	JB1	A082918-1	15 Oct 2018	15 Oct 2020
EMCO Horn Antenna	3115	6416	26 Jan 2018	26 Jan 2021
EMCO Horn Antenna	3116	2576	31 Jan 2018	31 Jan 2021
Rohde & Schwarz Preamplifier	TS-PR18	3545700803	09 Mar 2018*	09 Mar 2020*
Trilithic High Pass Filter	6HC330	23042	09 Mar 2018*	09 Mar 2020*
Rohde & Schwarz LISN	ESH3-Z5	836679/010	26 Jul 2019	26 Jul 2020
Rohde & Schwarz Test Software	ES-K1	12575	NA	NA
TDK Emissions Lab Software	V11.25	700307	NA	NA
TDK Emissions Lab Software RF Cable (preamplifier to antenna)	V11.25 MFR-57500	700307 01-07-002	NA 09 Mar 2018*	NA 09 Mar 2021*
TDK Emissions Lab Software RF Cable (preamplifier to antenna) RF Cable (antenna to 10m chamber bulkhead)	V11.25 MFR-57500 FSCM 64639	700307 01-07-002 01E3872	NA 09 Mar 2018* 09 Mar 2018*	NA 09 Mar 2021* 09 Mar 2021*
TDK Emissions Lab Software RF Cable (preamplifier to antenna) RF Cable (antenna to 10m chamber bulkhead) RF Cable (10m chamber bulkhead to control room bulkhead)	V11.25 MFR-57500 FSCM 64639 FSCM 64639	700307 01-07-002 01E3872 01E3874	NA 09 Mar 2018* 09 Mar 2018* 09 Mar 2018*	NA 09 Mar 2021* 09 Mar 2021* 09 Mar 2021*
TDK Emissions Lab Software RF Cable (preamplifier to antenna) RF Cable (antenna to 10m chamber bulkhead) RF Cable (10m chamber bulkhead to control room bulkhead) RF Cable (Control room bulkhead to RF switch)	V11.25 MFR-57500 FSCM 64639 FSCM 64639 FSCM 64639	700307 01-07-002 01E3872 01E3874 01E3871	NA 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018*	NA 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021*
TDK Emissions Lab Software RF Cable (preamplifier to antenna) RF Cable (antenna to 10m chamber bulkhead) RF Cable (10m chamber bulkhead to control room bulkhead) RF Cable (Control room bulkhead to RF switch) RF Cable (RF switch to test receiver)	V11.25 MFR-57500 FSCM 64639 FSCM 64639 FSCM 64639 FSCM 64639	700307 01-07-002 01E3872 01E3874 01E3871 01F1206	NA 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018*	NA 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021*
TDK Emissions Lab Software RF Cable (preamplifier to antenna) RF Cable (antenna to 10m chamber bulkhead) RF Cable (10m chamber bulkhead to control room bulkhead) RF Cable (Control room bulkhead to RF switch) RF Cable (RF switch to test receiver) RF switch – Rohde and Schwarz	V11.25 MFR-57500 FSCM 64639 FSCM 64639 FSCM 64639 FSCM 64639 TS-RSP	700307 01-07-002 01E3872 01E3874 01E3871 01F1206 1113.5503.14	NA 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018*	NA 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021*
TDK Emissions Lab Software RF Cable (preamplifier to antenna) RF Cable (antenna to 10m chamber bulkhead) RF Cable (10m chamber bulkhead to control room bulkhead) RF Cable (Control room bulkhead to RF switch) RF Cable (RF switch to test receiver) RF switch – Rohde and Schwarz N connector bulkhead (10m chamber)	V11.25 MFR-57500 FSCM 64639 FSCM 64639 FSCM 64639 FSCM 64639 TS-RSP PE9128	700307 01-07-002 01E3872 01E3874 01E3871 01F1206 1113.5503.14 NCEEBH1	NA 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018* 09 Mar 2018*	NA 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021* 09 Mar 2021*

*Internal Characterization

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 8 of 88

4.0 DETAILED RESULTS

4.1 DUTY CYCLE

Duty Cycle measurements were not conducted as the EUT is capable of continuous transmission.

Rev

Prepared for: Garmin

4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10:2013:

- 1. Section 6.5, "Radiated emissions from unlicensed wireless devices in the frequency range of 30 MHz to 1000 MHz"
- 2. Section 6.6, "Radiated emissions from unlicensed wireless devices above 1 GHz"
- 3. Section 11.11, "Measurement in nonrestricted frequency bands"
- 4. Section 11.12, "Emissions in restricted bands"

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note about requirement from FCC Part 15.247(d) and RSS-247, Section 5.5:

In addition to the limits shown above, all emissions were also required to be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. All measurements were performed with a 1 MHz bandwidth, but the bandwidth conversion from 1 MHz to 100 kHz would be equally applied to the highest emission and the spurious emissions, so it would not affect the delta measurement.

Since the fundamental emissions was at least 20 dB over the spurious emissions limits from 15.209 and all spurious emissions were below the 15.209 limit, this requirement was met.

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Prepared for: Garmin

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. All 802.11 modes were examined (b, g, n, HT20) and it was found the 802.11n mode produced the highest emissions. All final measurements were performed with the EUT transmitting continuously in this mode.

Prepared for: Garmin

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

Figure 1 - Radiated Emissions Test Setup

EUT operating conditions

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range. EUT was set to transmit in 80211b, 80211g and 80211n.

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

Test results:

Figure 2 - Radiated Emissions Plot, Receive

Frequency	Level Limit Margin Height Angle Pol					
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
70.440000	24.70	40.00	15.30	100.00	295.00	VERT
338.040000	37.41	46.00	8.60	100.00	167.00	HORI

Table 1 - Radiated Emissions Quasi-peak and Peak Measurements, Receive

Figure 3 - Radiated Emissions Plot, 802.11b

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
70.440000	23.44	40.00	16.60	100	359	VERT

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above.

Figure 4 - Radiated Emissions Plot, 802.11g

Table 3 - Radiated Emissions	Quasi-peak Measurements, 8	802.11g
-------------------------------------	----------------------------	---------

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
70.320000	32.37	40.00	7.60	109	360	VERT

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above.

Figure 5 - Radiated Emissions Plot, 802.11n

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
71.520000	32.45	40.00	7.60	100	261	VERT

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above.

Frequency	Level	Limit	Margin	Height	Angle	Pol	Radio	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2412.000000	105.91	N/A	N/A	155	255	HORI	802.11b	Low
2437.000000	106.91	N/A	N/A	155	255	HORI	802.11b	Mid
2462.000000	108.52	N/A	N/A	155	255	HORI	802.11b	High
2412.000000	103.17	N/A	N/A	155	255	HORI	802.11g	Low
2437.000000	107.68	N/A	N/A	155	255	HORI	802.11g	Mid
2462.000000	106.76	N/A	N/A	155	255	HORI	802.11g	High
2412.000000	102.06	N/A	N/A	155	255	HORI	802.11n	Low
2437.000000	106.88	N/A	N/A	155	255	HORI	802.11n	Mid
2462.000000	105.99	N/A	N/A	155	255	HORI	802.11n	High

Table 5 - Radiated Emissions Peak Measurements

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were at least 6 dB below the limit.
- 4. Margin value = Emission level Limit value.
- 5. All 3 possible 802.11 modes were tested. The highest of each is presented in the tables.

Prepared for: Garmin

4.3 OUTPUT POWER

Test Method: ANSI C63.10:

1. Section(s) 11.9.2.2.2 "Integrated Band Power Method"

Limits of power measurements:

The maximum allowed average output power is 30 dBm.

Test procedures:

The EUT was connected to a spectrum analyzer directly with a low-loss shielded coaxial cable with 100 MHz RBW and 300 MHz VBW. Power was determined using integrated power measurement.

Deviations from test standard:

No deviation.

Test setup:

Figure 6 – Peak Output Power Measurements Test Setup

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

The uncertainty for conducted peak power measurements is ± 1.1 dB and average power is ± 1.37 dB

Prepared for: Garmin

CHANNEL	CHANNEL FREQUENCY (MHz)	WIFI Type	PEAK OUTPUT POWER (dBm) MU = ±1.37	Method	RESULT
Low	2412	802.11b	23.94	Conducted	PASS
Middle	2437	802.11b	24.06	Conducted	PASS
High	2462	802.11b	23.14	Conducted	PASS
Low	2412	802.11g	21.82	Conducted	PASS
Middle	2437	802.11g	26.68	Conducted	PASS
High	2462	802.11g	21.90	Conducted	PASS
Low	2412	802.11n	21.25	Conducted	PASS
Middle	2437	802.11n	24.78	Conducted	PASS
High	2462	802.11n	21.52	Conducted	PASS

Average Output Power

CHANNEL	CHANNEL FREQUENCY (MHz)	WIFI Type	Average OUTPUT POWER (dBm) MU = ±1.37	Method	RESULT
Low	2412	802.11b	15.90	Conducted	PASS
Middle	2437	802.11b	15.77	Conducted	PASS
High	2462	802.11b	16.09	Conducted	PASS
Low	2412	802.11g	11.17	Conducted	PASS
Middle	2437	802.11g	14.47	Conducted	PASS
High	2462	802.11g	11.39	Conducted	PASS
Low	2412	802.11n	9.84	Conducted	PASS
Middle	2437	802.11n	13.08	Conducted	PASS
High	2462	802.11n	10.08	Conducted	PASS

Figure 7 – Peak Output Power, Low Channel, 802.11b

Page 20 of 88

Figure 8 – Peak Output Power, Mid Channel, 802.11b

Figure 9 – Peak Output Power, High Channel, 802.11b

Page 22 of 88

Figure 10 – Peak Output Power, Low Channel, 802.11g

Figure 11 – Peak Output Power, Mid Channel, 802.11g

Figure 12 – Peak Output Power, High Channel, 802.11g

Page 25 of 88

Figure 13 – Peak Output Power, Low Channel, 802.11n

Page 26 of 88

Figure 14 – Peak Output Power, Mid Channel, 802.11n

Figure 15 – Peak Output Power, High Channel, 802.11n

Page 28 of 88

Keysight Spectrum Analyzer - Channel Av Power WIFI Using C63.10 2013 St	ec 11.9.2.2	
LX T RF 50 Ω AC	SENSE:INT	03:04:50 PM Jan 07, 2020
	Trig: Free Run Avg Hold:>100/100	Radio Stu. None
#IFGain:Low	#Atten: 30 dB	Radio Device: BTS
10 dB/div Ref 25.00 dBm		
Log		
15.0		
5.00		
-5.00		
-15.0		
-25.0		
-35.0		
-45.0		
55.0		
-33.0		
-65.U		
Center 2.412 GHz		Span 25 MHz
#Res BW 1 MHz	VBW 8 MHz	Sweep 1 ms
Channel Power	Power Spectral Density	
15 90 dBm / 20 MHz	-57 11 dBm /нz	
	07.671	
Mod VIEL State AV output power WIEL state saved	STATUS	

Figure 16 – Average Output Power, Low Channel, 802.11b

Figure 17 – Average Output Power, Mid Channel, 802.11b

Figure 18 – Average Output Power, High Channel, 802.11b

Page 31 of 88

Figure 19 – Average Output Power, Low Channel, 802.11g

Page 32 of 88

Figure 20 – Average Output Power, Mid Channel, 802.11g

Page 33 of 88

Figure 21 – Average Output Power, High Channel, 802.11g

Figure 22 – Average Output Power, Low Channel, 802.11n

Page 35 of 88

Figure 23 – Average Output Power, Mid Channel, 802.11n

Page 36 of 88

Figure 24 – Average Output Power, High Channel, 802.11n

Page 37 of 88

Garmin Prepared for:

BANDWIDTH 4.4

Test Method: ANSI C63.10,

1. Section(s) 11.8.1 "DTS Bandwidth, Option 1"

Limits of bandwidth measurements:

The 99% occupied bandwidth is displayed.

The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW. Bandwidth measuring functionality of the spectrum analyzer was used to make the measurement.

The 6 dB bandwidth is defined as the bandwidth of which is higher than peak power minus 6dB.

Deviations from test standard:

No deviation

Test setup:

Figure 25 – Peak Output Power Measurements Test Setup

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

99% Occupied Bandwidth

Prepared for: Garmin

CHANNEL	CHANNEL FREQUENCY (MHz)	WIFI Type	99% Occupied BW (MHz)
Low	2412	802.11b	13.397
Middle	2437	802.11b	13.393
High	2462	802.11b	13.358
Low	2412	802.11g	16.360
Middle	2437	802.11g	16.402
High	2462	802.11g	16.361
Low	2412	802.11n	17.573
Middle	2437	802.11n	17.600
High	2462	802.11n	17.565

6dB Bandwidth

CHANNEL	CHANNEL FREQUENC Y (MHz)	WIFI Type	6 dB BW (MHz)
Low	2412	802.11b	8.371
Middle	2437	802.11b	8.486
High	2462	802.11b	8.830
Low	2412	802.11g	16.38
Middle	2437	802.11g	16.42
High	2462	802.11g	16.35
Low	2412	802.11n	17.00
Middle	2437	802.11n	17.51
High	2462	802.11n	17.42

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

🔤 Keysight	Spectrum Analyzer - Occupied BW				
	RF 50 Ω AC		SENSE:INT) GH7	02:40:57 PM Jan 07, 2020
Sweep	Time 2.40 ms	``	☐ Trig: Free Run	Avg Hold:>10/10	Radio Sta. None
		IFGain:Low	#Atten: 40 dB		Radio Device: BTS
10 dB/div	Ref 20.00 dBm	۱ <u> </u>			
10.0					
0.00		manapana	- manager and	month man the second	
10.00				a total a strategy and a	The state of the s
-10.0	مرسمي				J. M. Marken Ma
-20.0					- And
-30.0 <mark>^~~</mark> ~	Wandle of the				
-40.0					
-50.0					
-60.0					
-70.0					
Contor	2 4 4 2 CH 7				Enan 25 MHz
#Res B	W 100 kHz		#VBW 300 kH	Z	Sweep 2.4 ms
			Tatal Damas	06 4 dBm	
Occ	upled Bandwidt	n	Total Power	20.4 aBm	
	13	.397 MHz			
Tran	smit Freq Error	8.416 kHz	% of OBW Power	99.00 %	
x dB	Bandwidth	8.371 MHz	x dB	-6.00 dB	
MSG					
				STATUS	

Figure 26 - Bandwidth, Low Channel, 802.11b

ncee.	
. labs	

С

Prepared for: Garmin

Figure 27 - Bandwidth, Mid Channel, 802.11b

ncee	
lahs	ľ

С

Prepared for: Garmin

Figure 28 - Bandwidth, High Channel, 802.11b

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 42 of 88

ncee	
labs	

Prepared for: Garmin

Figure 29 - Bandwidth, Low Channel, 802.11g

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 43 of 88

ncee
Jahe
• • • Ian9

С

Prepared for: Garmin

Figure 30 - Bandwidth, Mid Channel, 802.11g

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 44 of 88

ncee.
labs

Prepared for: Garmin

Figure 31 - Bandwidth, High Channel, 802.11g

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 45 of 88

ncoo	
IIGG.	
lahs	

Prepared for: Garmin

Figure 32 - Bandwidth, Low Channel, 802.11n

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 46 of 88

ncee.	Report Number:	R20191028-24-E2		С
	Prepared for:	Garmin		

Keysight Specti	rum Analyzer - Occupied Ban	dwidth Sec. WIFI C63.10 2013 Se	ec. 11.8.1		
X Center Fre	RF 50 Ω AC	GHz	SENSE:INT Center Freq: 2.43700000	0 GHz	12:01:14 PM Jan 08, 2020 Radio Std: None
	2.401000000	IFGain:Low	⊃ Trig: Free Run #Atten: 40 dB	Avg Hold:>10/10	Radio Device: BTS
10 dB/div	Ref 20.00 dBm				
10.0					
0.00	mon	- Ammanana Amara	how would have been been been been been been been be	monom	-Aver-
-10.0			Y		
-20.0	- And -				- Wing
-30.0	www.				
-40.0					
-50.0					
-60.0					
-70.0					
Contor 3.4	27 CH-				Cnon 26 MHz
#Res BW 1	100 kHz		#VBW_300 kH	z	Sweep 2.4 ms
Occupi	ied Bandwidth	า	Total Power	24.0 dBm	
	17	.600 MHz			
Transmi	it Freq Error	3.468 kHz	% of OBW Power	99.00 %	
x dB Ba	ndwidth	17.51 MHz	x dB	-6.00 dB	
MSG				STATUS	

Figure 33 - Bandwidth, Mid Channel, 802.11n

Prepared for: Garmin

Figure 34 - Bandwidth, High Channel, 802.11n

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 48 of 88

Garmin Prepared for:

BANDEDGES 4.5

Test Method: ANSI C63.10:

- 1. Section 6.10.5 (used for restricted bands)
- 2. Section 11.11, "Measurement in unrestricted frequency bands"

Limits of bandedge measurements:

For emissions outside of the allowed band of operation (2400.0MHz – 2480.0MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

The EUT was tested in the same method as described in section 4.4 - Bandwidth. The resolution bandwidth was set to 100kHz and video bandwidth to 300 kHz the EMI receiver was used to scan from the bandedge to the fundamental frequency with a quasi-peak detector. The highest emissions level beyond the bandedge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.

Deviations from test standard:

No deviation.

Test setup:

See Section 4.3

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Prepared for: Garmin

Test results:

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level dBm	Fundamental Level (dBm)	Delta	Min (dBc)	Result
1	2400.0 (Unrestricted, Peak)	-33.976	7.970	41.946	20	PASS
1	2400.0 (Unrestricted, Average)	-44.593	-2.148	42.445	20	PASS
11	2483.5 (Unrestricted, Peak)	-56.091	8.482	64.572	20	PASS
11	2483.5 (Unrestricted, Average)	-64.374	-1.353	62.905	20	PASS

Highest Out of Band Emissions, 802.11b

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m)	Limit* (dBm)	Margi n	Result
1	2340.0 (Restricted, Peak)	53.385	74.00	20.615	PASS
1	2340.0 (Restricted, Average)	40.488	54.00	13.512	PASS
11	2483.5 (Restricted, Peak)	52.871	74.00	21.129	PASS
11	2483.5 (Restricted, Average)	40.991	54.00	13.009	PASS

Margin= Limit-Level

*Limits from Part 15.209

Unrestricted band measurements were performed conducted while restricted band measurements were performed radiated.

ncee.	Report Number:	R20191028-24-E2	Rev	С
. labs	Prepared for:	Garmin		

Figure 35 - Band-edge Measurement, Low Channel, Fundamental, Peak

ncee.	Report
labs	Prer

epared for: Garmin

Figure 36 - Band-edge Measurement, Low Channel, Fundamental, Average

ncee.	
labs	Ī

С

Prepared for: Garmin

Figure 37 - Band-edge Measurement, High Channel, Fundamental, Peak

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 53 of 88

NCCC	
labs	ncee
• IAN2	libbo
	IADS

Prepared for: Garmin

Figure 38 - Band-edge Measurement, High Channel, Fundamental, Average

ncee.	Report Number:	R20191028-24-E2	Rev	С
. labs	Prepared for:	Garmin		

🔤 Key	sight Spect	rum An	alyzer - Restricted	LBE using C63.1	0 Sec 6.10.5								
LXI I	. T	RF	50 Ω AC			SI	ENSE:INT SOUR	CE OFF	AL	IGN AUTO		09:45:2	8 AM Jun 09, 2020
Mar PAS	ker 1 2 S	2.384 PR	5600000	00 GHz	PNO: Fast IFGain:High	, -	Trig: Free #Atten: 0 d	Run IB		Avg Typ Avg Hold	e: RMS l:>1000/1000	Т	RACE 1 2 3 4 5 6 TYPE MA WWWW DET PANNNN
10 dE	3/div	Ref 0 Ref 3	offset 34.35 d 86.34 dΒμ ¹	B V								Mkr1 2.38 53.3	4 56 GHz 85 dBμV
76.3	Trace	1 Pa	ss										
66.3	Trace	2 F a	55										
56.3							<u></u>						
46.3	ar when		_{┍┪╾} ᢤᡄᢪᡳᢛᢓᡑᠫᢩᡀᠼᢞᡭ ^{ᠺ᠕} ᢧ᠆	₩ ₽₩₽₩₽ [₩] ₩₽₩₽₽₽₽₽₽	have a second	ر بر وی وجار را	www.werkenburger	Mathe	~~~ <u>2</u> ~	₩₩~ ₩ ₩₩₩₩₩₩₩	the supering way and	ware mar	have been a surger of the
36.3				· · · ·			· · · · · ·	·	V		·	······································	
26.3													
16.3													
6.34													
-3.66													
			<u></u>										
Star #Res	t 2.380 s BW 1	000 (.0 M	GHZ HZ			#VBV	V 50 MHz*				Swee	Stop 2.3 p 1.000 ms	90000 GHz s (1001 pts)
MKR I		SCL	>	(Y	FUN	CTION	FUNCT	ION WIDTH		FUNCTION VALUE	^
1	N 1	f	2	.384 56 GH	z 53	.385 d	BuV						
2	N 2	T	7	.385 /4 GH	z 40	.488 a	Βμν						
4													
5													
7													
8													
10													
<													>
MSG 🤇	File <\	Vifi B	HBE restricte	ed.png> sav	ed					STATUS			

Figure 39 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak and Average

Peak and average trace are shown and compared to their respective limits. Reference offset has been added to account for transducer value of 28.389 dBuV/m @ 3m and cable loss of 5.96 dB.

	600
	GGG.
	lahe
•	

Prepared for: Garmin

	Keysight Spectrum Analyzer - Restricted HBE C63.10 Sec 6.10.5											
ι,xi Ma⊺	LT rker	12	RF 48	50 Ω AC 4523000000 GHz	7	SENSE:	INT SOUF	CE OFF	ALIGN AUTO Avg T	ype: RMS	09:58:15 TF	AM Jun 09, 2020
PA	SS		PI	REAMP	PNO: Fast G	⊃ Tri #A	ig: Free tten: 0 d	Run IB	Avg H	old:>1000/1000	-	
			Dof	Offeret 34,49 dP						Mkr	1 2.484 5	23 0 GHz
10 c	IB/di∖	/	Ref	86.48 dBµV							52.8	71 dBµV
763	Tra	ace	<u>1 Pa</u>	ss								
66.		ace	2 Pa	333								
56.	5		1									
46.	5 22	2		and warden to practice of	to be a second and the second s	ware to an	wald with the second	and and	*********	part of the second second second	mar	uhilyyyynenadderryw
36.	5 – ¥											
26.9	5											
16.	5											
6.4	з											
-3.5	2											
		100									.	
sta #Re	nt 2.4 es Bl	483 W 1	500 .0 N	GHZ NHZ	VB	W 50	MHz*			Swee	Stop 2.5 5 1.000 ms	00000 GHz (1001 pts)
MKR	MODE	TRC	SCL	Х	Y		FUN	CTION	FUNCTION WIDTH	F	UNCTION VALUE	^
1	N N	1 2	f f	<u>2.484 523 0</u> 2.483 945 5	GHz 52.871 GHz 40.991	dBµV dBµV						
3												
5												
7												
8												
10												
<												> *
MSG										S		

Figure 40 - Band-edge Measurement, High Channel, Restricted Frequency, Peak and Average

Peak and average trace are shown and compared to their respective limits. Reference offset has been added to account for transducer value of 28.45 dBuV/m @ 3m and cable loss of 6.04 dB.

The Nebraska Center for Excellence in Electronics	
4740 Discovery Drive	
Lincoln, NE 68521	

Page 56 of 88

Prepared for: Garmin

Highest Out of Band Emissions, 802.11g

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level dBm	Fundamental Level (dBm)	Delta	Min (dBc)	Result
1	2400.0 (Unrestricted, Peak)	-31.773	2.571	34.343	20	PASS
1	2400.0 (Unrestricted, Average)	-46.740	-7.173	39.561	20	PASS
11	2483.5 (Unrestricted, Peak)	-43.908	2.662	46.571	20	PASS
11	2483.5 (Unrestricted, Average)	-57.031	-7.051	49.971	20	PASS

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m)	Limit* (dBm)	Margin	Result
1	2340.0 (Restricted, Peak)	63.837	74.00	10.163	PASS
1	2340.0 (Restricted, Average)	45.721	54.00	8.279	PASS
11	2483.5 (Restricted, Peak)	66.013	74.00	7.987	PASS
11	2483.5 (Restricted, Average)	48.938	54.00	5.062	PASS

Margin= Limit-Level *Limits from Part 15.209

Unrestricted band measurements were performed conducted while restricted band measurements were performed radiated.

n	COO
	UUU,
•	labs
	•

Prepared for: Garmin

Figure 41 - Band-edge Measurement, Low Channel, Fundamental, Peak

nree	
11000	-
.	5
•	-

Prepared for: Garmin

Figure 42 - Band-edge Measurement, Low Channel, Fundamental, Average

Prepared for: Garmin

Figure 43 - Band-edge Measurement, High Channel, Fundamental, Peak

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 60 of 88

007
IGGC,
labs
•

Figure 44 - Band-edge Measurement, High Channel, Fundamental, Average

1Cee .	Report Number:	R20191028-24-E2	Rev
. labs	Prepared for:	Garmin	

🛄 Key	sight Spec	trum A	nalyzer - Restricted	LBE using C63.10	Sec 6.10.5								
L <mark>XI</mark> L Mort		RF	50 Ω AC			S	ENSE:INT S	OURCE OFF	ALI		RMS	09:47:42	2 AM Jun 09, 2020
PAS	s	P	REAMP		PNO: Fast FGain:High	Ģ	Trig: Fr #Atten:	ee Run 0 dB		Avg Hold:	>1000/1000		
10 dE	3/div	Ref Ref	Offset 34.35 c `86.34 dBu	ів V							Ν	/kr1 2.38 63.8	9 98 GHz 37 dBµV
Log	Trace	1 P	ass										
76.3	Trace	2 P	ass										1 <mark>/</mark>
66.3													
56.3	w.t	ماريا(ما	and the state of the second	and a second state	erected to be a co	wyd/wyd	محماجا مريع	allangert-t-tell-sou	and the second	na halloward	Marthonmanna	against all and the second of the	2/
46.3										<u> </u>			
36.3													
26.3													
16.3													
6.34													
-3.66													
Star #Res	t 2.380 s BW 1	000 .0 N	GHz /IHz		;	#VBV	V 50 MH	Z*			Swee	Stop 2.3 p 1.000 ms	90000 GHz s (1001 pts)
MKR N		SCL	;	x		Y	F	UNCTION	FUNCTI	ON WIDTH	F	UNCTION VALUE	^
1	N 1	f		2.389 98 GHz	63.	837 d							
3				2.009 90 0112		7214							
4													
6													
8													
9													_
11													~
< MSG		_								STATUS			>

Figure 45 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak and Average

Peak and average trace are shown and compared to their respective limits. Reference offset has been added to account for transducer value of 28.389 dBuV/m @ 3m and cable loss of 5.96 dB.

Prepared for: Garmin

Number of the set of	Mar	vsight S L T ker '	pectrum RI 1 2.4	Analyzer - Restricted 50 Ω AC 839785000	HBE C63.10 Sec 6.	10.5 PNO: Fast	SENSE:IN	NT SOUR g: Free I	RCE OFF	ALIGN AUTO Avg Avg H	Type: RMS lold:>1000/1000)	09:56:16 TR	AM Jun 09, 2020 ACE 123456 TYPE MA WWW DET PANNNN
36.5 26.5	10 di Log 66.5 56.5 46.5	3/div Tra	Re Re re 1 f 1 e 2 f	f Offset 34.49 (f 86.48 dBµ ass ass	1 B V	≌larada(win),-ia,	J. Alue ~ John	an fl/madal	hunn	wi ne h wat lengtheda	W Where y knows and	Ikr1 2	.483 9	78 5 GHz 13 dBµV
#Res BW 1.0 WHZ VBW 50 WHZ* Sweep 1.000 ms (1001 pts) MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE A 1 N 1 f 2.483 978 5 GHz 66.013 dBµV A </th <th>36.5 26.5 16.5 6.48 -3.52 Star</th> <th>t 2.4</th> <th>8350</th> <th>0 GHz</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Stop 2.5</th> <th>000000 GHz</th>	36.5 26.5 16.5 6.48 -3.52 Star	t 2.4	8350	0 GHz									Stop 2.5	000000 GHz
<	#Re MKR 1 2 3 4 5 6 7 8 9 10 11 11 <	S BW	V 1.0 TRC SC 1 f 2 f	MHz 2.4 2.4	X 83 978 5 GHz 83 500 0 GHz	VBV <u>66.013</u> 48.938	V 50 N dBµV dBµV	AHZ *	CTION	FUNCTION WIDTI	Sw.	FUNCT	.000 ms	(1001 pts)

Figure 46 - Band-edge Measurement, High Channel, Restricted Frequency, Peak and Average

Peak and average trace are shown and compared to their respective limits. Reference offset has been added to account for transducer value of 28.45 dBuV/m @ 3m and cable loss of 6.04 dB.

The Nebraska Center for Excellence in Electronics	
4740 Discovery Drive	
Lincoln, NE 68521	

Prepared for: Garmin

Highest Out of Band Emissions, 802.11n

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level dBm	Fundamental Level (dBm)	Delta	Min (dBc)	Result
1	2400.0 (Unrestricted, Peak)	-33.155	2.394	35.549	20	PASS
1	2400.0 (Unrestricted, Average)	-48.738	-7.982	40.756	20	PASS
11	2483.5 (Unrestricted, Peak)	-44.274	2.401	46.674	20	PASS
11	2483.5 (Unrestricted, Average)	-56.782	-7.707	49.076	20	PASS

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m)	Limit* (dBm)	Margin	Result
1	2340.0 (Restricted, Peak)	65.748	74.00	8.252	PASS
1	2340.0 (Restricted, Average)	45.391	54.00	8.609	PASS
11	2483.5 (Restricted, Peak)	65.910	74.00	8.090	PASS
11	2483.5 (Restricted, Average)	48.297	54.00	5.703	PASS

Margin= Limit-Level *Limits from Part 15.209

Unrestricted band measurements were performed conducted while restricted band measurements were performed radiated.

Prepared for: Garmin

Figure 47 - Band-edge Measurement, Low Channel, Fundamental, Peak

Prepared for: Garmin

Figure 48 - Band-edge Measurement, Low Channel, Fundamental, Average

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 66 of 88

Prepared for: Garmin

Figure 49 - Band-edge Measurement, High Channel, Fundamental, Peak

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 67 of 88

Prepared for: Garmin

Figure 50 - Band-edge Measurement, High Channel, Fundamental, Average

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 68 of 88

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

🔤 Keysight Spectrum Analyzer - Restricted LBE using C63.10 Sec 6.10.5														
LXI I	LT		RF	50 Ω AC			SENSE:I	NT SOUF	CE OFF	AL	IGN AUTO		09:49:5	1 AM Jun 09, 2020
Marker 1 2		.389330000000 GHz		00 GHz	PNO: Fast 😱 Trig: Free			Avg Type: RMS Run Avg Hold:>1000/10			RMS 1000/1000	Т	RACE 1 2 3 4 5 6 TYPE MA WWWW	
PAS	s		Р	REAMP	IF	Gain:High	#A1	tten: 0 d	B					DET P A N N N N
			Dof	Offeet 34 35 /								N	lkr1 2.38	9 33 GHz
10 di	3/div		Ref	86.34 dBµ	v								65.7	748 dBµV
76.3	Tra	ice	1 Pa	ss										± 1
66.3		ice	2 -	455										
56.3		And	مان الم	and the second states of the second	http://www.e.go.org	All haven	wanter	after the Ast	and the	Judager	mar hours	and the second second	y whether and	4.40.61.61 (mil/m ⁴⁰ 6./ ² /247 20
46.3													~	<u> </u>
36.3														
26.3														
16.3														
6.34	\vdash													
-3.66														
Star	∟ t 2.3	380	000	GHz									Stop 2.3	90000 GHz
#Re	s BV	N 1	.0 N	AHz		#\	/BW 50	MHz*				Swee	5 1.000 ms	s (1001 pts)
MKR	MODE	TRC	SCL		x	Y	·	FUN	CTION	FUNCT	FION WIDTH	F	UNCTION VALUE	^
1	N	1	f		2.389 33 GHz	65.74	48 dBµV							
2	N	2	T		2.389 93 GHZ	45.3	91 dBµV							
4														
5														
6														
8														
9														
10														
11														×
MSG										_				

Figure 51 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak and Average

Peak and average trace are shown and compared to their respective limits. Reference offset has been added to account for transducer value of 28.389 dBuV/m @ 3m and cable loss of 5.96 dB.

Prepared for: Garmin

Keysight Spectrum Analyzer - Restricted HBE C63.10 Sec 6.10.5														
LXI	LT	-	RF	50 Ω A	с		SENSE:		RCE OFF	AL	IGN AUTO		09:53:50	6 AM Jun 09, 2020
Ma	rker	1 2	.48	3780500	000 GHz						Avg Ty	pe:RMS	TF	RACE 1 2 3 4 5 6
						PNO: Fast	🗔 Tri	g: Free	Run		Avg Ho	d:>1000/1000		
PA	55		Р	REAMP	I	FGain:High	- #A	tten: 0 c	IB					DETPANNNN
												Mkr	1 2 483 7	80 5 GHz
10.	inza:.		Ref	Offset 34.49	dB								65 9	10 dBuV
Log		1	Re	00.40 UD	1 ¥				v					
76.		ace	$\frac{1P}{2P}$	ass										
CC.	.[]	ce	2 P	ass										
00.:	- Vlye	**	-	manthally	he how have been a series	Multi mili unha	d t							
56.9	5 <mark>62</mark>				The second secon	en Janaka (her bladin & kredie	~~~!!!!	Lather and	alles have a	ትማትለመቢያ	بلم المرادينية	<i>مار ب</i> الاستى الدولية ماريك	al unglished and	Alata Art. Hat allow
46.	5 k													
36														~
20														
26.														
16.	5													
6.4	3┣──													
-3.5														
Sta	rt 2.	483	500	GHz									Stop 2.5	00000 GHz
#Re	es Bl	W 1	.0 N	ЛНz		VB	W 50	MHz*				Swee	p 1.000 ms	s (1001 pts)
MKD	MODE	TPC	901		×	V		ELIN	CTION	EUNCT				
1	N	1 1	JUL f	2/	A 183 780 5 CH	65.91		FUN		FUNCI		F	UNCTION VALUE	
2	N	2	f	2.4	183 533 0 GHz	48.29	7 dBµV							
3														
4														
6														
7														
8														
10														
11														~ ~
<														>
MSG	MSG Istatus													
	_	_	_							_				

Figure 52 - Band-edge Measurement, High Channel, Restricted Frequency, Peak and Average

Peak and average trace are shown and compared to their respective limits. Reference offset has been added to account for transducer value of 28.45 dBuV/m @ 3m and cable loss of 6.04 dB.

The Nebraska Center for Excellence in Electronics	
4740 Discovery Drive	
Lincoln, NE 68521	

Prepared for: Garmin

4.6 POWER SPECTRAL DENSITY

Test Method: ANSI C63.10,

1. Section 11.10.2 "Method PKPSD (peak PSD)"

Limits of power measurements:

The maximum PSD allowed is 8 dBm.

Test procedures:

1. The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable.

2. The resolution bandwidth was set to 3 kHz and the video bandwidth was set to 10 kHz to capture the signal. The analyzer used a peak detector in max hold mode.

Test setup:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable on a bench top.

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

Prepared for: Garmin

Power Spectral Density

CHANNEL	CHANNEL FREQUENCY (MHz)	WIFI Type	PEAK PSD(dBm)	Method	Limit (dBm)	RESULT
Low	2412	802.11b	-3.446	Conducted	8.00	PASS
Middle	2437	802.11b	-3.957	Conducted	8.00	PASS
High	2462	802.11b	-5.001	Conducted	8.00	PASS
Low	2412	802.11g	-10.917	Conducted	8.00	PASS
Middle	2437	802.11g	-5.766	Conducted	8.00	PASS
High	2462	802.11g	-10.469	Conducted	8.00	PASS
Low	2412	802.11n	-11.853	Conducted	8.00	PASS
Middle	2437	802.11n	-9.233	Conducted	8.00	PASS
High	2462	802.11n	-12.871	Conducted	8.00	PASS

Figure 53 - Power Spectral Density, Low Channel, 802.11b

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

Figure 54 - Power Spectral Density, Mid Channel, 802.11b

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

Figure 55 - Power Spectral Density, High Channel, 802.11b

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

Figure 56 - Power Spectral Density, Low Channel, 802.11g

ncee.	Report Number:	R20191028-24-E2	Rev	С
. Jabs	Prepared for:	Garmin		

Figure 57 - Power Spectral Density, Mid Channel, 802.11g

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

Figure 58 - Power Spectral Density, High Channel, 802.11g

Figure 59 - Power Spectral Density, Low Channel, 802.11n

ncee.	Report Number:	R20191028-24-E2	Rev	С
. labs	Prepared for:	Garmin		

Figure 60 - Power Spectral Density, Mid Channel, 802.11n

Page 80 of 88

ncee.	Report Number:	R20191028-24-E2	Rev	С
. labs	Prepared for:	Garmin		

Figure 61 - Power Spectral Density, High Channel, 802.11n

Prepared for: Garmin

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the middle channel.

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

Test Results:

Figure 62 - Conducted Emissions Plot, Line

Prepared for: Garmin

. Figure 63 - Conducted Emissions Plot, Neutral

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 84 of 88

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee.	Report Number:	R20191028-24-E2	Rev	С
labs	Prepared for:	Garmin		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = 10^[Power (dBm)/10] / 1000

Voltage $(dB\mu V) = Power (dBm) + 107$ (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6}

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

Prepared for: Garmin

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±3.82 dB
Radiated Emissions, 3m	1GHz - 18GHz	±4.44 dB
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB
Antenna port conducted	9 kHz – 25 GHz	±0.50 dB

Values were calculated per CISPR 16-4-2:2011

Expanded uncertainty values are calculated to a confidence level of 95%.

NCEE

Г

С

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 88 of 88