

4740 Discovery Drive | Lincoln, NE 68521 tel-402.323.6233 | tel-888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International Inc.

Address: 1200 E. 151st Street

Olathe, Kansas, 66062, USA

Product: A03645

Test Report No: R20181219-20-13B

Approved by:

Nic S. Johnson, NCE

Technical Manager

iNARTE Certified EMC Engineer #EMC-003337-NE

DATE: 15 July 2019

Total Pages: 96

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Report Number:	R20181219-20-13	Rev	В
Prepared for:	Garmin		

REVISION PAGE

Rev. No.	Date	Description
0	21 June 2019	Original – NJohnson
		Prepared by KVepuri/CFarrington
Α	15 July 2019	Includes NCEE Labs report R20181219-20-13 and its amendment in
		full -NJ
В	13 August 2019	Includes NCEE Labs report R20181219-20-13A and its amendment
		in fullNJ

Report Number:

Prepared for:

R20181219-20-13

Garmin

Rev

В

CONTENTS

Rev	ision Pa	ge	2
1.0	Sun	nmary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	6
	2.3	Description of support units	6
3.0	Lab	oratory description	7
	3.1	Laboratory description	7
	3.2	Test personnel	7
	3.3	Test equipment	8
4.0	Deta	ailed results	9
	4.1	Duty Cycle	9
	4.2	Output Power	10
	4.3	Bandwidth	30
	4.4	Radiated emissions	41
	4.5	Power Spectral Density	51
	4.6	Bandedges	62
	4.7	Conducted AC Mains Emissions	90
Арр	endix A	: Sample Calculation	93
Арр	endix B	- Measurement Uncertainty	95
DED	ODT EN	JD.	06

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. The EUT has been tested according to the following specifications:

APPLIED STANDARDS AND REGULATIONS					
Standard Section	Test Type	Result			
FCC Part 15.35 RSS Gen, Issue 4, Section 6.10	Duty Cycle	Pass			
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Peak output power	Pass			
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Bandwidth	Pass			
FCC Part 15.209 RSS-Gen Issue 4, Section 7.1	Receiver Radiated Emissions	Pass			
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 4, Section 8.9	Transmitter Radiated Emissions	Pass			
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Power Spectral Density	Pass			
FCC Part 15.209, 15.247(d) RSS-247 Issue 2 Section 11.13	Band Edge Measurement	Pass			
FCC Part 15.207 RSS-Gen Issue 4, Section 7.1	Conducted Emissions	Pass			

See Section 4 for details on the test methods used for each test.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 4 of 96

Report Number:	R20181219-20-13	Rev	В
Prepared for:	Garmin		

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary

The Equipment Under Test (EUT) was a battery powered device. It features 802.11b, 802.11g, 802.11n, and has transmit and receives capabilities.

EUT	A03645
EUT Received	16 April 2019
EUT Tested	5 June 2019- 12 June 2019
Serial No.	3991631270 (radiated unit); 3991631460 (conducted unit)
Operating Band	2400 – 2483.5 MHz
Device Type	802.11 b, 802.11 g, 802.11 n
Power Supply	Internal Battery/ Charger: Garmin (Phi Hong) MN: PSAI10R-050Q (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

Page 5 of 96

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low	2412 MHz
Mid	2437 MHz
High	2462 MHz

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, middle and highest frequency channels.

The EUT was tested for spurious emissions while running off of battery power.

2.3 DESCRIPTION OF SUPPORT UNITS

None

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01 FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review/editing
2	Karthik Vepuri	Test Engineer	Testing and report
3	Caleb Farrington	Test Technician	Testing and report
4	Chase Jacobson	Test Technician	Testing and report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 7 of 96

Report Number: R20181219-20-13 Rev В

Prepared for:

Garmin

3.3 **TEST EQUIPMENT**

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Rohde & Schwarz Test Receiver	ES126	100037	30 Jan 2018	30 Jan 2020
Keysight EXA Signal Analyzer	N9010A	MY56070862	14 Dec 2018	14 Dec 2020
Rohde & Schwarz Test Receiver	ES17	100007	31 Jul 2017	31 Jul 2018
EMCO Biconilog Antenna	3142B	1647	02 Aug 2017	02 Aug 2019
EMCO Horn Antenna	3115	6416	26 Jan 2018	26 Jan 2020
EMCO Hom Antenna	3116	2576	31 Jan 2018	31 Jan 2020
Rohde & Schwarz Preamplifier	TS-PR18	3545700803	09 Mar 2018*	09 Mar 2020*
Trilithic High Pass Filter	6HC330	23042	09 Mar 2018*	09 Mar 2020*
Rohde & Schwarz LISN	ESH3-Z5	836679/010	26 Jul 2018	26 Jul 2019
Rohde & Schwarz Test Software	ES-K1	12575	NA	NA
RF Cable (preamplifier to antenna)	MFR-57500	01-07-002	09 Mar 2018*	09 Mar 2020*
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	09 Mar 2018*	09 Mar 2020*
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	09 Mar 2018*	09 Mar 2020*
RF Cable (Control room bulkhead to RF switch)	FSCM 64639	01E3871	09 Mar 2018*	09 Mar 2020*
RF Cable (RF switch to test receiver)	FSCM 64639	01F1206	09 Mar 2018*	09 Mar 2020*
RF switch – Rohde and Schwarz	TS-RSP	1113.5503.14	09 Mar 2018*	09 Mar 2020*
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	09 Mar 2018*	09 Mar 2020*
N connector bulkhead (control room)	PE9128	NCEEBH2	09 Mar 2018*	09 Mar 2020*

^{*}Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

4.0 DETAILED RESULTS

4.1 DUTY CYCLE

Test Method: NA

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 9 of 96

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

4.2 OUTPUT POWER

Test Method: ANSI C63.10:

1. Section(s) 11.9.1.2 "Integrated Band Power Method"

Limits of power measurements:

The maximum allowed peak output power is 30 dBm.

Test procedures:

The EUT was connected to a spectrum analyzer directly with a low-loss shielded coaxial cable with 100 MHz RBW and 300 MHz VBW. Power was determined using an integrated channel power measurement.

Deviations from test standard:

No deviation.

Test setup:

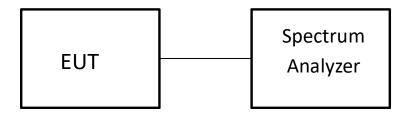


Figure 1 – Peak Output Power Measurements Test Setup

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

Page 10 of 96

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

Test results:

The uncertainty for conducted peak power measurements is ± 1.1 dB and average power is ± 1.37 dB

Peak Output Power

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	Method	RESULT	Transmitter
Low	2412	18.91	77.80	Conducted	PASS	b
Mid	2440	17.42	55.21	Conducted	PASS	b
High	2460	16.26	42.27	Conducted	PASS	b
Low	2412	20.88	122.46	Conducted	PASS	g
Mid	2440	19.87	97.05	Conducted	PASS	g
High	2460	19.38	86.70	Conducted	PASS	g
Low	2412	21.00	125.89	Conducted	PASS	n
Mid	2440	19.98	99.54	Conducted	PASS	n
High	2460	18.87	77.09	Conducted	PASS	n

Average Output Power

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	Method	RESULT	Transmitter
Low	2412	11.07	12.79	Conducted	PASS	b
Mid	2440	10.34	10.81	Conducted	PASS	b
High	2460	10.25	10.59	Conducted	PASS	b
Low	2412	12.35	17.18	Conducted	PASS	g
Mid	2440	11.51	14.16	Conducted	PASS	g
High	2460	10.25	10.59	Conducted	PASS	g
Low	2412	13.62	23.01	Conducted	PASS	n
Mid	2440	12.34	17.14	Conducted	PASS	n
High	2460	11.11	12.91	Conducted	PASS	n

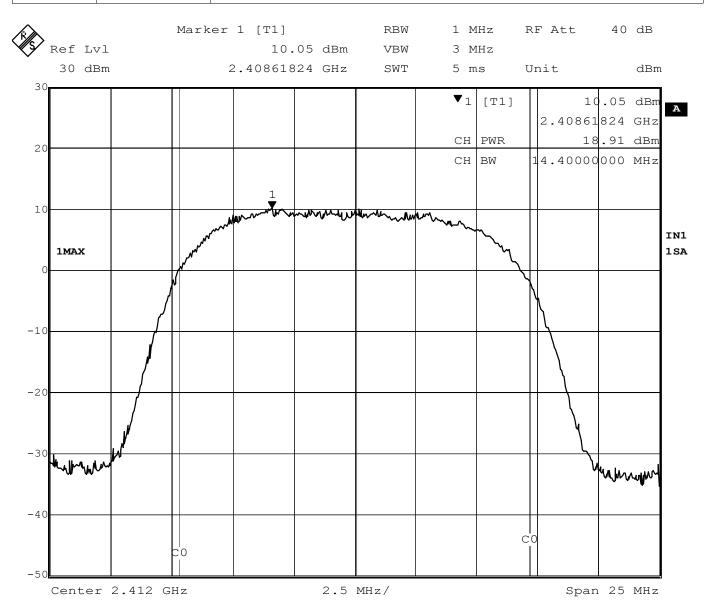


Figure 2 - Output Power Peak, Low Channel, 802.11b

Output power = 18.91 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 12 of 96

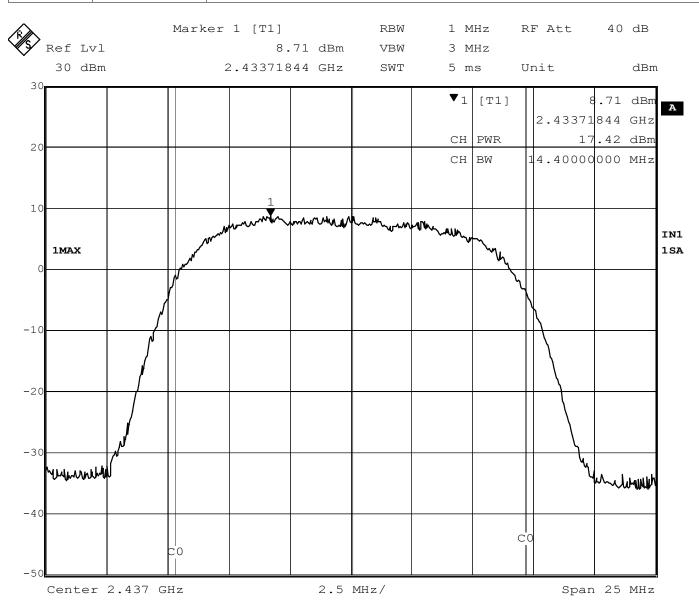


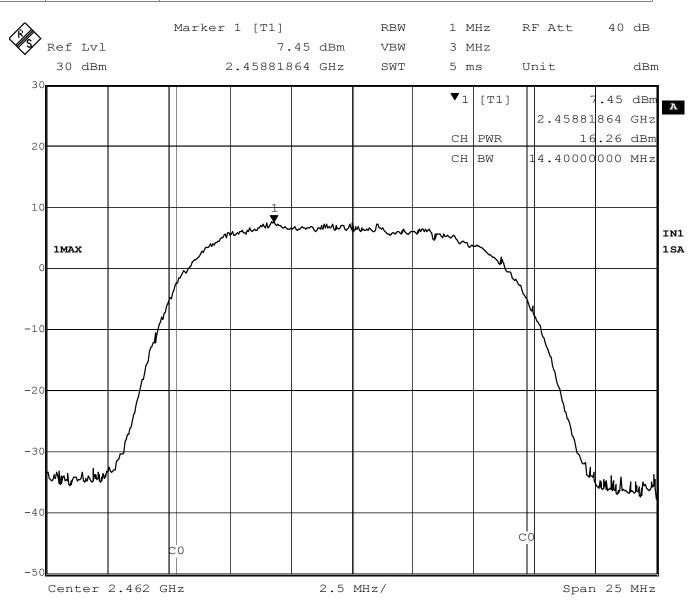
Figure 3 - Output Power Peak, Mid Channel, 802.11b

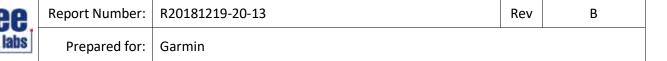
Output power = 17.42 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 13 of 96




Figure 4 - Output Power Peak, High Channel, 802.11b

Output power = 16.26 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 14 of 96

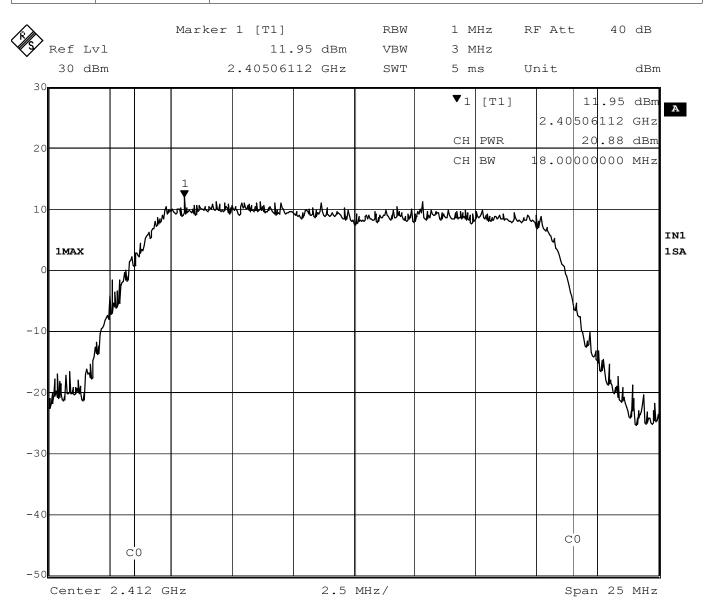


Figure 5 – Output Power Peak, Low Channel, 802.11g

Output power = 20.88 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 15 of 96

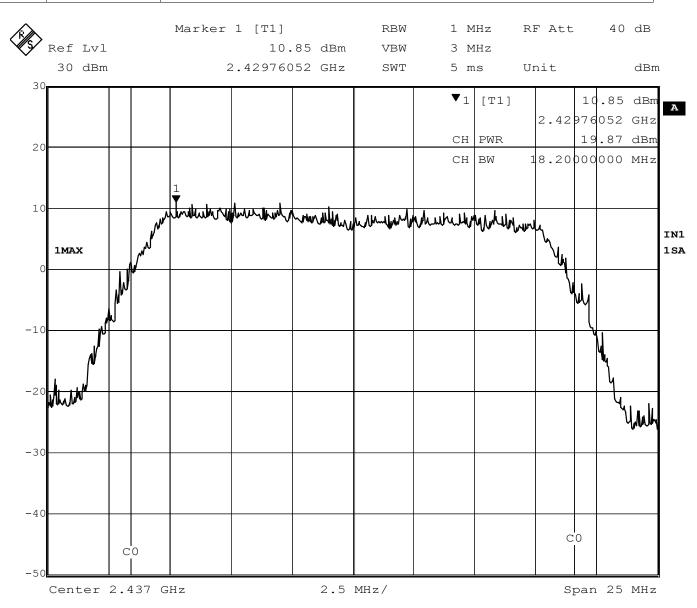


Figure 6 - Output Power Peak, Mid Channel, 802.11g

Output power = 19.87 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 96

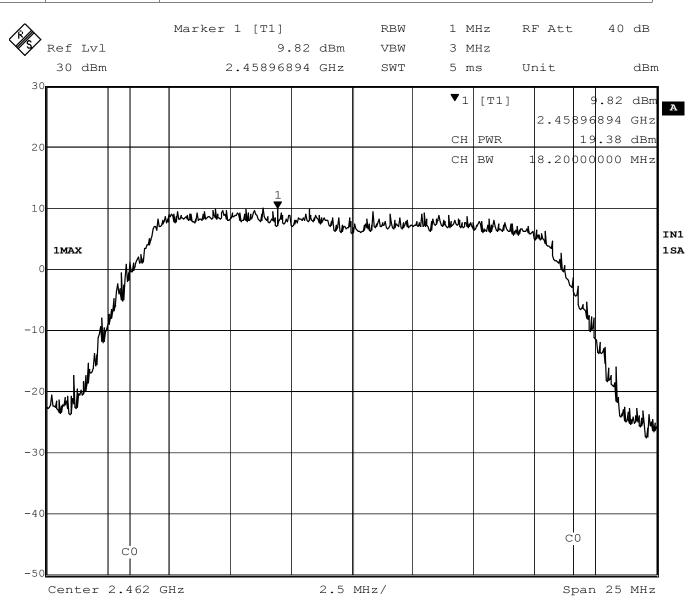


Figure 7 - Output Power Peak, High Channel, 802.11g

Output power = 19.38 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 17 of 96

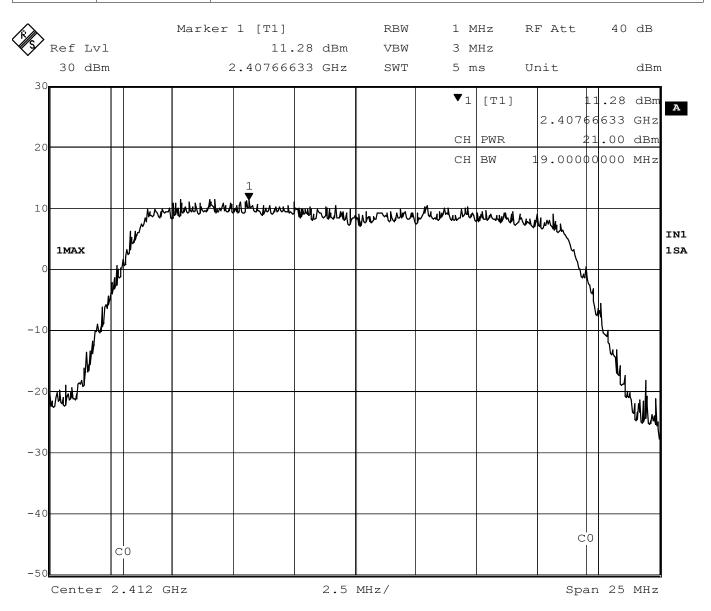


Figure 8 - Output Power Peak, Low Channel, 802.11n

Output power = 21.00 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 96

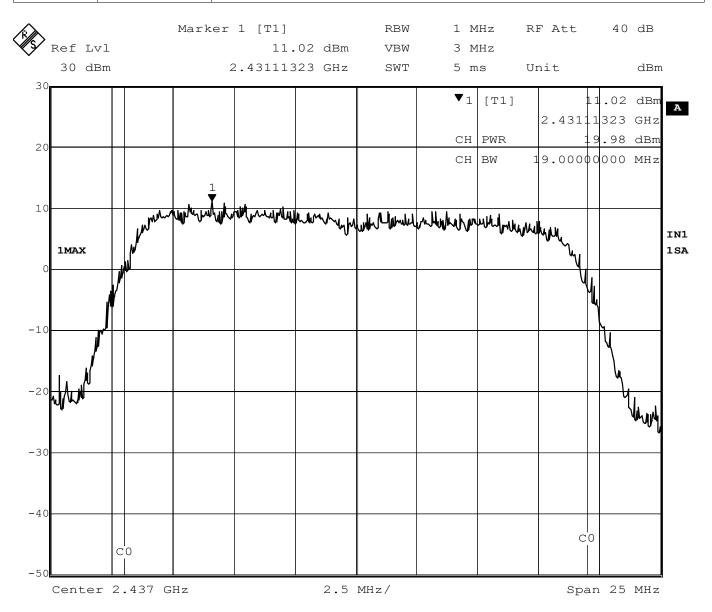


Figure 9 - Output Power Peak, Mid Channel, 802.11n

Output power = 19.98 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 19 of 96

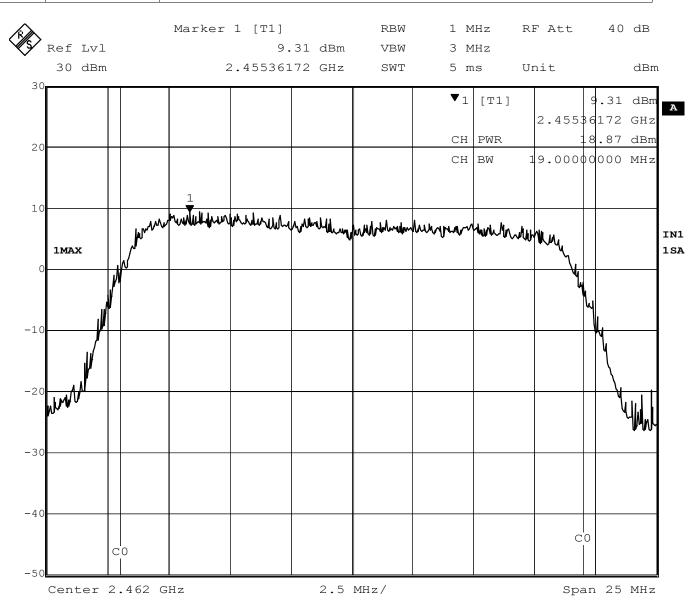


Figure 10 - Output Power Peak, High Channel, 802.11n

Output power = 18.87 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 20 of 96

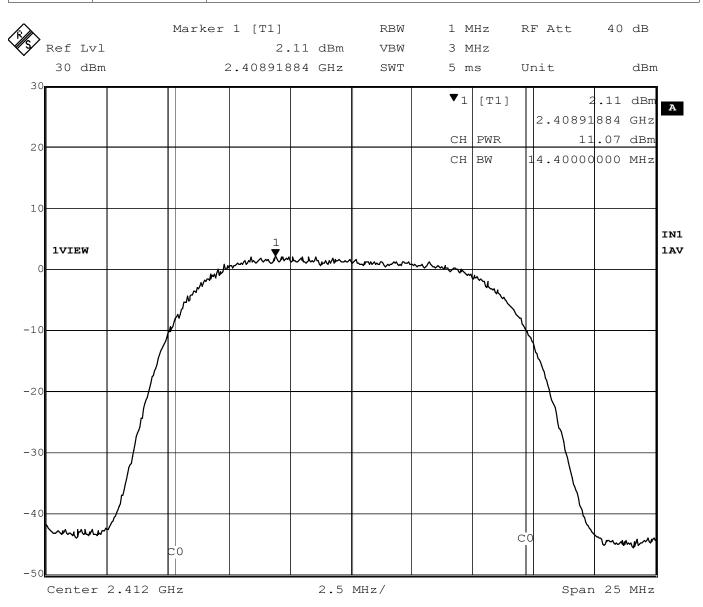


Figure 11 - Output Power Average, Low Channel, 802.11b

Output power 11.07 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 96

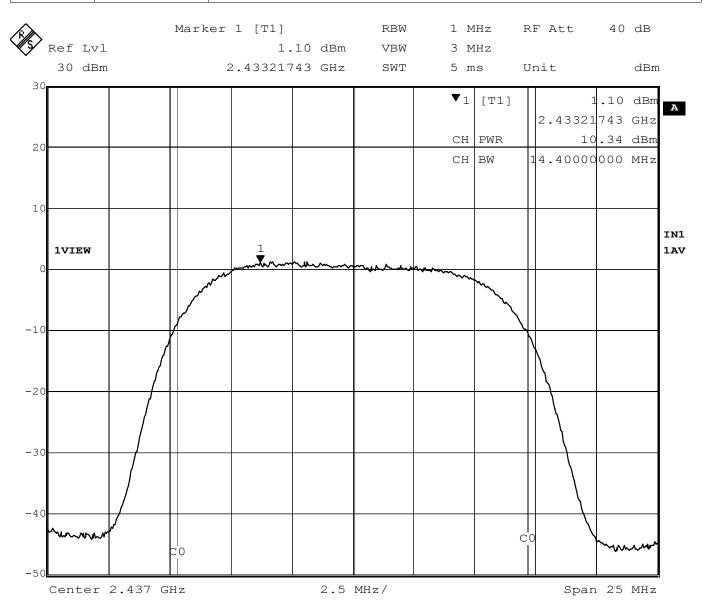


Figure 12 - Output Power Average, Mid Channel, 802.11b

Output power = 10.34 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 96

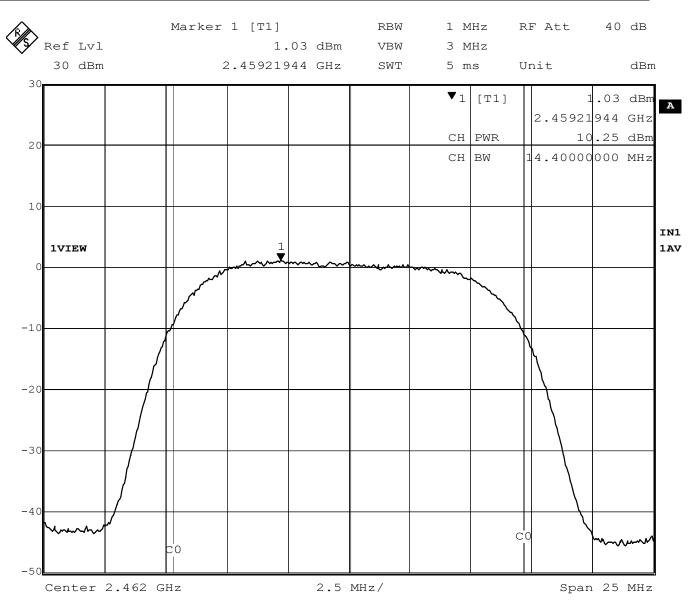


Figure 13 - Output Power Average, High Channel, 802.11b

Output power = 10.25 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 96

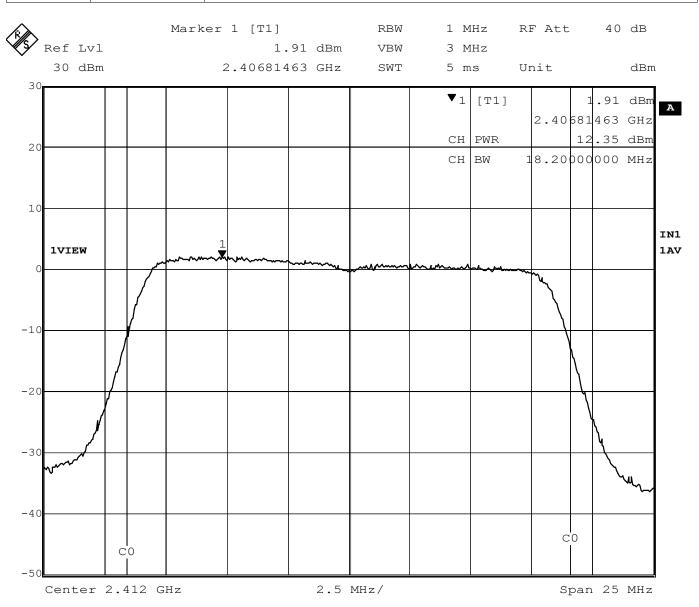


Figure 14 - Output Power Average, Low Channel, 802.11g

Output power 12.35 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 24 of 96

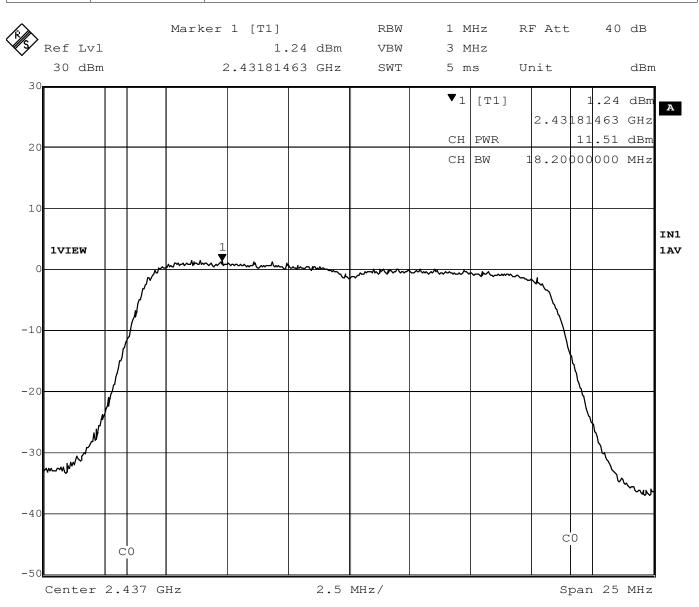


Figure 15 - Output Power Average, Mid Channel, 802.11g

Output power = 11.51 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 25 of 96

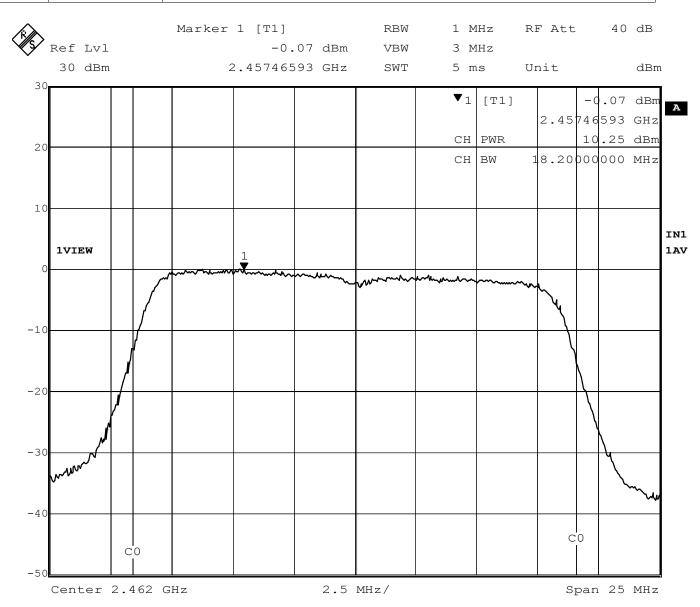


Figure 16 - Output Power Average, High Channel, 802.11g

Output power = 10.25 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 96

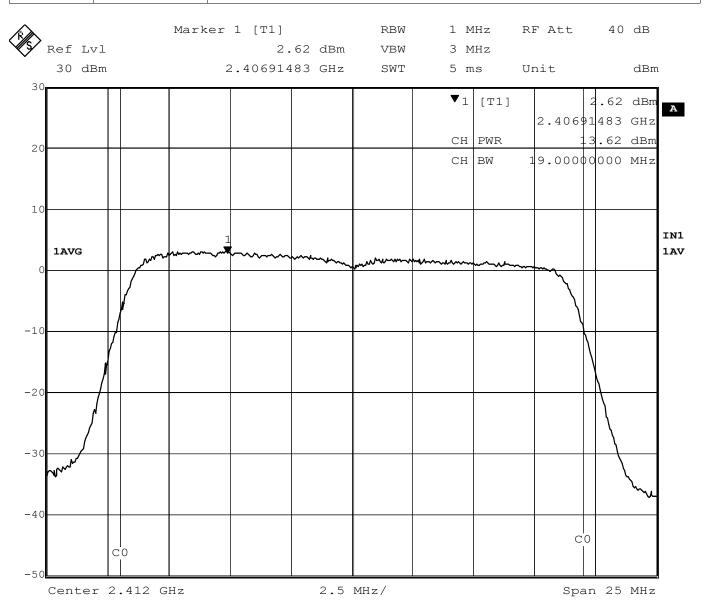


Figure 17 - Output Power Average, Low Channel, 802.11n

Output power 13.62 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 27 of 96

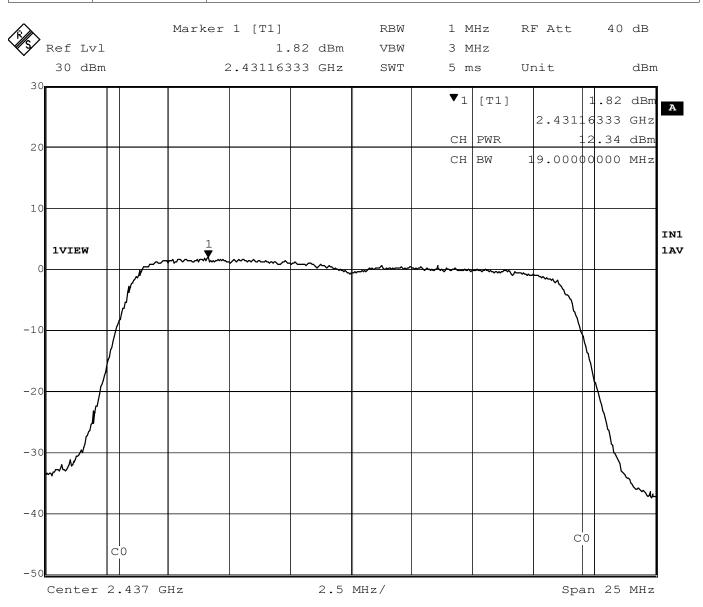


Figure 18 - Output Power Average, Mid Channel, 802.11n

Output power = 12.34 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 28 of 96

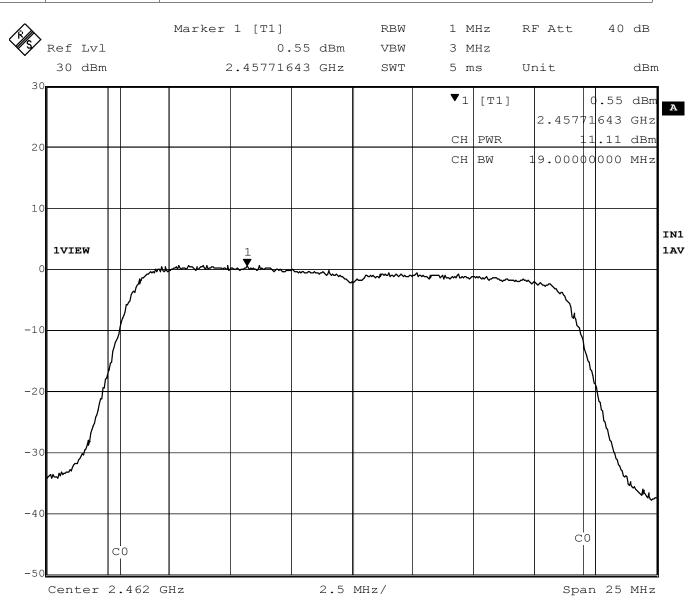


Figure 19 - Output Power Average, High Channel, 802.11n

Output power = 11.11 dBm

Cable loss was less than 0.1 dB and not included

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 29 of 96

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

4.3 BANDWIDTH

Test Method: ANSI C63.10,

1. Section(s) 11.8.1 "DTS Bandwidth, Option 1"

Limits of bandwidth measurements:

The 99% occupied bandwidth is displayed.

The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW.

The 99% occupied is defined as the bandwidth at which 99% of the signal power is found. This corresponds to 20dB down from the maximum power level. The maximum power was measured with the largest resolution bandwidth possible (10MHz) and this value was recorded. The signal was then captured with a 1 MHz resolution bandwidth and the frequencies where the measurements were 20dB below the maximum power were marked. The bandwidth between these frequencies was recorded as the 99% occupied bandwidth.

The 6 dB bandwidth is defined as the bandwidth of which is higher than peak power minus 6dB.

For peak output power measurements, the EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable with 3 MHz RBW and 10 MHz VBW.

Deviations from test standard:

No deviation

Test setup:

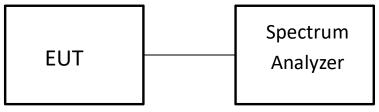


Figure 20 – Peak Output Power Measurements Test Setup

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln. NE 68521

Page 30 of 96

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

Test results:

Occupied Bandwidth

CHANNEL	Mode	CHANNEL FREQUENCY (MHz)	OBW (MHz)	RESULT
Low	802.11 b	2412	13.925	PASS
Mid	802.11 b	2440	13.937	PASS
High	802.11 b	2460	13.936	PASS
Low	802.11 g	2412	16.942	PASS
Mid	802.11 g	2440	16.993	PASS
High	802.11 g	2460	16.989	PASS
Low	802.11 n	2412	17.932	PASS
Mid	802.11 n	2440	17.996	PASS
High	802.11 n	2460	17.897	PASS

6dB Bandwidth

CHANNEL	Mode	CHANNEL FREQUENCY (MHz)	6dB BW (MHz)	RESULT
Low	802.11 b	2412	12.62	PASS
Mid	802.11 b	2440	12.63	PASS
High	802.11 b	2460	12.62	PASS
Low	802.11 g	2412	16.63	PASS
Mid	802.11 g	2440	16.63	PASS
High	802.11 g	2460	16.62	PASS
Low	802.11 n	2412	17.86	PASS
Mid	802.11 n	2440	17.87	PASS
High	802.11 n	2460	17.86	PASS

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

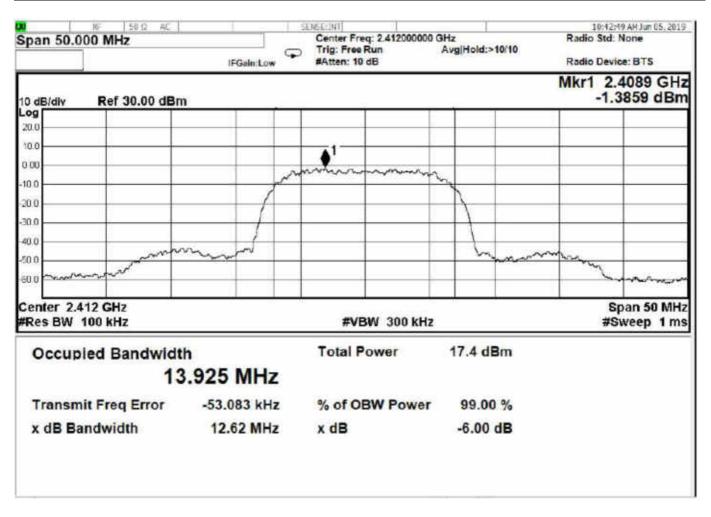
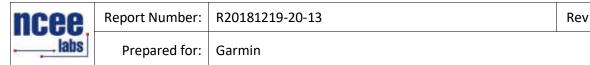


Figure 21 - Occupied Bandwidth and 6dB Bandwidth, Low Channel, 802.11b

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 96

Report Number: R20181219-20-13 Rev B


Prepared for: Garmin

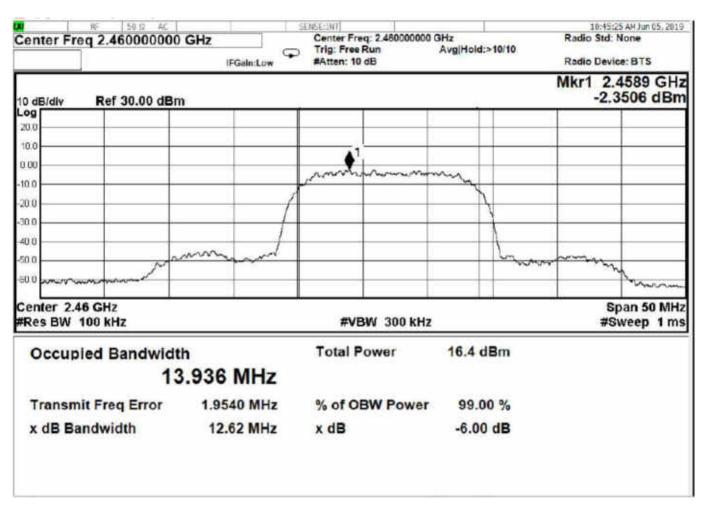

10:44:38 AM Jun 05, 2019 Center Freq: 2.440000000 GHz Radio Std: None Center Freq 2.440000000 GHz Avg|Hold:>10/10 Trig: Free Run FGein:Low #Atten: 10 dB Radio Device: BTS Mkr1 2.43325 GHz -2.0740 dBm 10 dB/div Ref 30.00 dBm Log 20.0 10.0 0.00 10.0 20.0 -30.0 40.0 -50.0 60.0 Center 2.44 GHz Span 50 MHz #Sweep 1 ms #Res BW 100 kHz **#VBW** 300 kHz **Total Power** 16.6 dBm Occupied Bandwidth 13.937 MHz Transmit Freq Error -3.0504 MHz % of OBW Power 99.00 % x dB Bandwidth 12.63 MHz x dB -6.00 dB

Figure 22 - Occupied Bandwidth and 6dB Bandwidth, Mid Channel, 802.11b

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 33 of 96

В

Figure 23 - Occupied Bandwidth and 6dB Bandwidth, High Channel, 802.11b

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 34 of 96

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

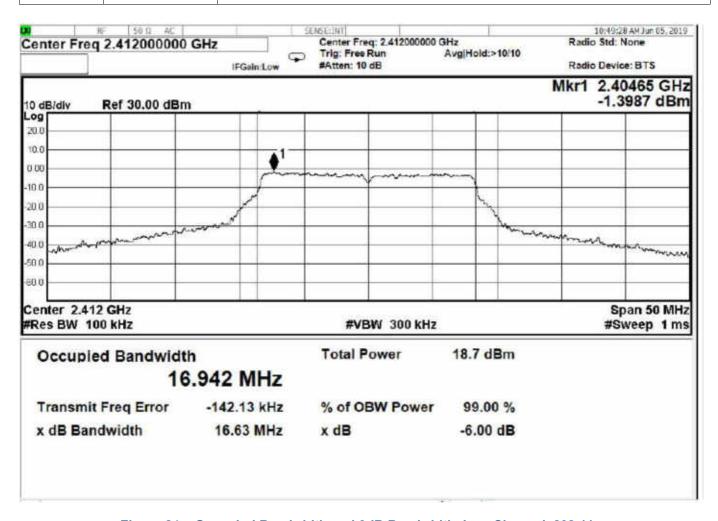


Figure 24 - Occupied Bandwidth and 6dB Bandwidth, Low Channel, 802.11g

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 96

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

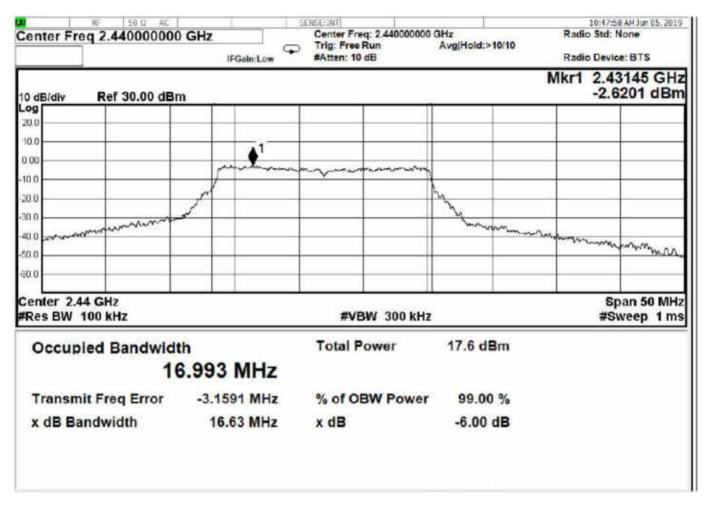


Figure 25 - Occupied Bandwidth and 6dB Bandwidth, Mid Channel, 802.11g

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 36 of 96

10:45:47 AM Jun 05, 2019 Center Freq: 2.460000000 GHz Radio Std: None Center Freq 2.460000000 GHz Avg|Hold:>10/10 Trig: Free Run FGain:Low #Atten: 10 dB Radio Device: BTS Mkr1 2.45475 GHz -2.2727 dBm 10 dB/dly Ref 30.00 dBm 20.0 10.0 0.00 10.0 20.0 30:0 40.0 -50.0 60.0 Center 2.46 GHz Span 50 MHz #Res BW 100 kHz **#VBW** 300 kHz #Sweep 1 ms **Total Power** 17.7 dBm Occupied Bandwidth 16.989 MHz Transmit Freq Error % of OBW Power 1.8339 MHz 99.00 % x dB Bandwidth -6.00 dB 16.62 MHz x dB

Figure 26 - Occupied Bandwidth and 6dB Bandwidth, High Channel, 802.11g

Page 37 of 96

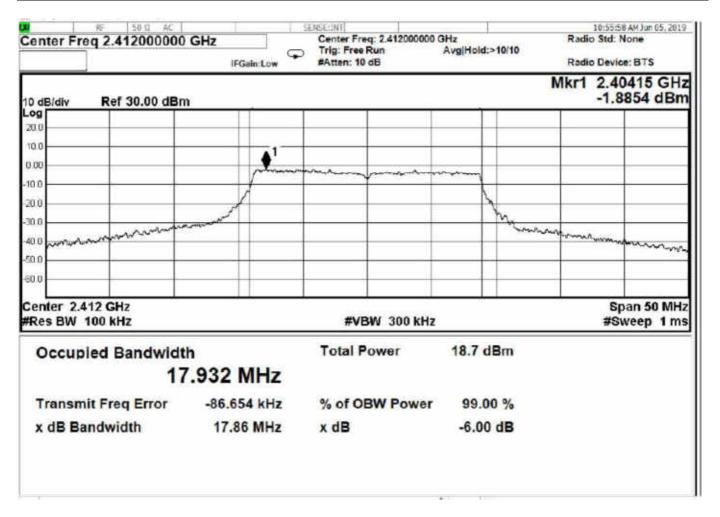


Figure 27 - Occupied Bandwidth and 6dB Bandwidth, Low Channel, 802.11n

Page 38 of 96

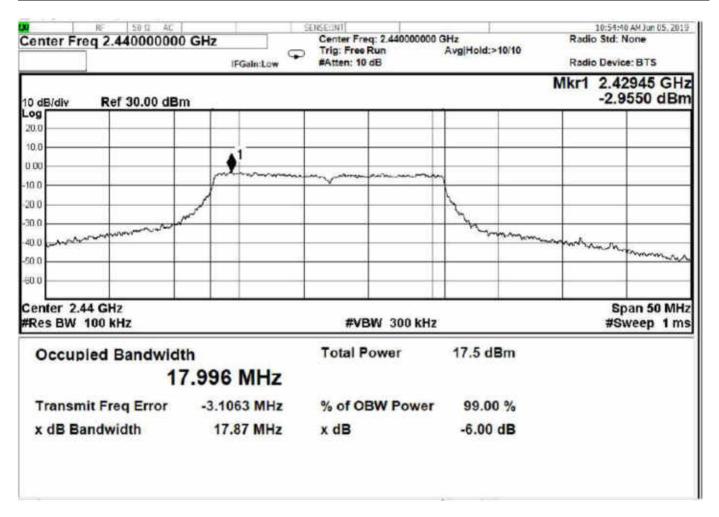


Figure 28 - Occupied Bandwidth and 6dB Bandwidth, Mid Channel, 802.11n

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 39 of 96

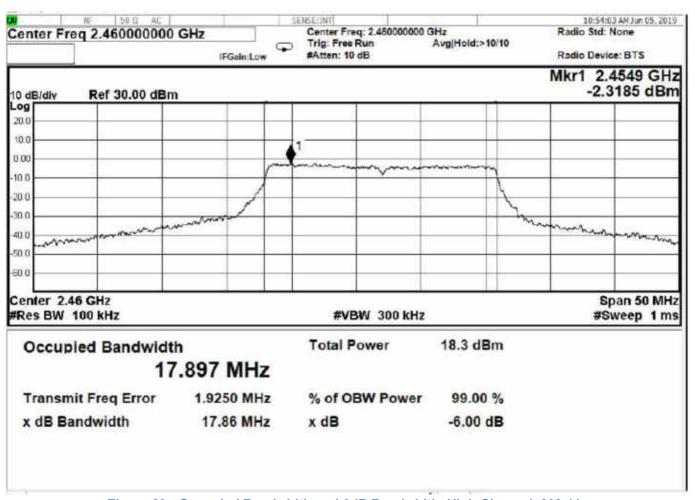


Figure 29 - Occupied Bandwidth and 6dB Bandwidth, High Channel, 802.11n

Page 40 of 96

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: | Garmin

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10:2013:

- 1. Section 6.5, "Radiated emissions from unlicensed wireless devices in the frequency range of 30 MHz to 1000 MHz"
- 2. Section 6.6, "Radiated emissions from unlicensed wireless devices above 1 GHz"
- 3. Section 11.11, "Measurement in nonrestricted frequency bands"
- 4. Section 11.12, "Emissions in restricted bands"

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note about requirement from FCC Part 15.247(d) and RSS-247, Section 5.5:

In addition to the limits shown above, all emissions were also required to be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. All measurements were performed with a 1 MHz bandwidth, but the bandwidth conversion from 1 MHz to 100 kHz would be equally applied to the highest emission and the spurious emissions, so it would not effect the delta measurement.

Since the fundamental emissions was at least 20 dB over the spurious emissions limits from 15.209 and all spurious emissions were below the 15.209 limit, this requirement was met.

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 41 of 96

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. All 802.11 modes were examined (b, g, n, HT20) and it was found the 802.11n mode produced the highest emissions. All final measurements were performed with the EUT transmitting continuously in this mode.
- h. Intermodulation products were investigated by measuring spurious emissions with each of the two 2.4 GHz radios running in parallel with the NFC radio. No intermodulation products were found above the labs system sensitivity.

Report Number:	R20181219-20-13	Rev	В
Prepared for:	Garmin		

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

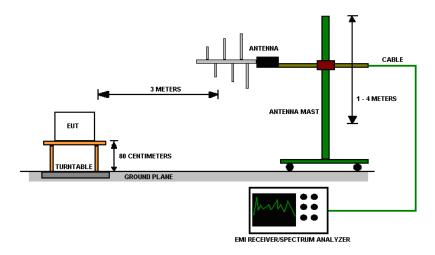


Figure 30 - Radiated Emissions Test Setup

EUT operating conditions

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 43 of 96

Prepared for: Garmin

Test results:

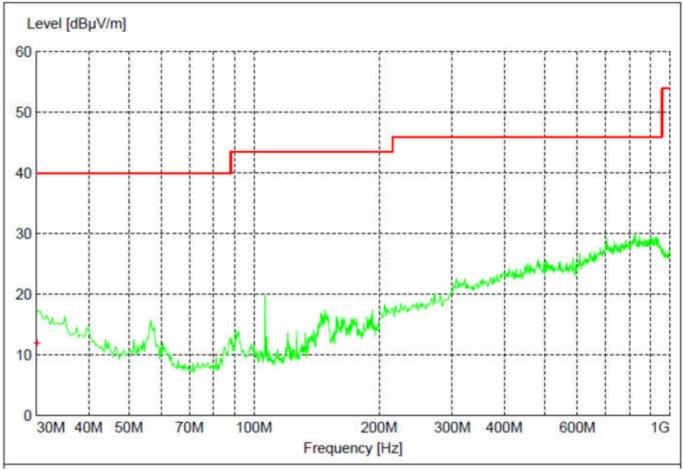


Figure 31 - Radiated Emissions Plot, Receive

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Table 1 - Radiated Emissions Quasi-peak Measurements, Receive

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
30.060000	11.82	40.00	28.18	246.00	4.00	VERT

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 44 of 96

Prepared for: Garmin

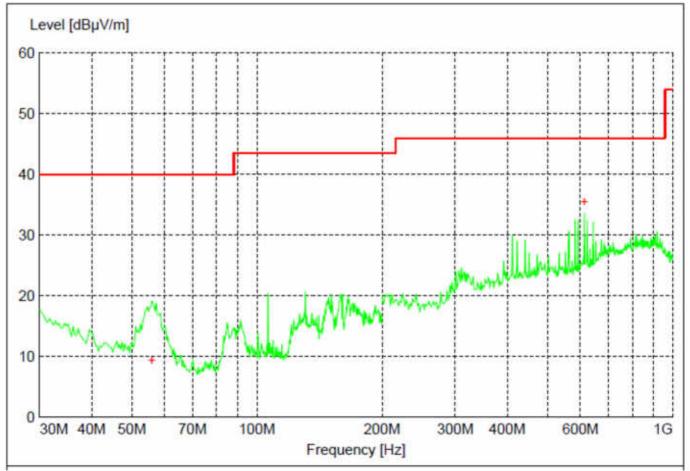


Figure 32 - Radiated Emissions Plot, 802.11b

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Table 2 - Radiated Emissions Quasi-peak Measurements, 802.11b

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
55.860000	9.30	40.00	30.70	399	360	VERT
613.020000	35.52	46.00	10.48	173	182	HORI

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 45 of 96

Prepared for: Garmin

Table 3 - Radiated Emissions Average Measurements, 802.11b

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBμV/m	dB	cm.	deg.		
2402.000000	89.34	NA	NA	197.00	10	VERT	Low
2440.000000	87.26	NA	NA	197.00	10	VERT	Mid
2480.000000	85.71	NA	NA	197.00	10	VERT	High
9648.000000*	57.71	69.34*	11.63	100.00	170	VERT	Low
9748.000000*	58.35	67.26*	8.91	100.00	165	VERT	Mid
9848.000000*	57.33	65.71*	8.38	100.00	168	VERT	High

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. *Unrestricted Band

Table 4 - Radiated Emissions Peak Measurements, 802.11b

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
2412.000000	97.45	NA	NA	197	10	VERT	Low
2437.000000	95.50	NA	NA	197	10	VERT	Mid
2462.000000	93.98	NA	NA	197	10	VERT	High
9648.000000*	60.20	77.45*	17.25	100	170	VERT	Low
9748.000000*	60.66	75.50*	14.84	100	165	VERT	Mid
9848.000000*	59.81	73.98*	14.17	100	168	VERT	High

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

Page 46 of 96

^{*}Unrestricted Band

Level [dBµV/m] 50 40 30 20 10 70M 30M 40M 50M 100M 200M 300M 400M 600M 1G Frequency [Hz]

Figure 33 - Radiated Emissions Plot, 802.11g

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Table 5 - Radiated Emissions Quasi-peak Measurements, 802.11g

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
30.000000	11.16	40.00	28.84	400	244	VERT

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 47 of 96

Prepared for: Garmin

Table 6 - Radiated Emissions Average Measurements, 802.11g

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
2402.000000	84.68	NA	NA	197	10	VERT	Low
2440.000000	84.90	NA	NA	197	10	VERT	Mid
2480.000000	83.70	NA	NA	197	10	VERT	High
9648.000000*	56.50	64.68*	8.18	98	166	VERT	Low
9748.000000*	57.40	64.90*	7.50	98	163	VERT	Mid
9848.000000*	58.10	63.70*	5.60	100	164	VERT	High

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. *Unrestricted Band

Table 7 - Radiated Emissions Peak Measurements, 802.11g

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
2412.000000	103.37	NA	NA	197	10	VERT	Low
2437.000000	98.76	NA	NA	197	10	VERT	Mid
2462.000000	96.57	NA	NA	197	10	VERT	High
9648.000000*	59.68	83.37*	23.69	98	166	VERT	Low
9748.000000*	60.28	78.76*	18.48	98	163	VERT	Mid
9848.000000*	60.81	76.57*	15.76	100	164	VERT	High

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

Page 48 of 96

^{*}Unrestricted Band

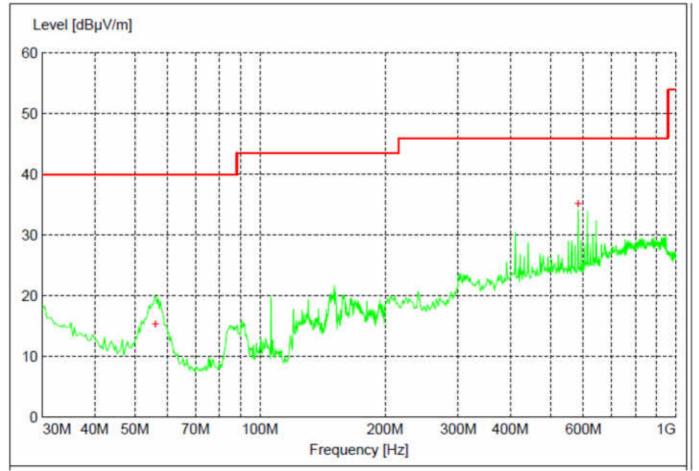


Figure 34 - Radiated Emissions Plot, 802.11n

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Page 49 of 96

Report Number:	R20181219-20-13	Rev	В
Prepared for:	Garmin		

Table 8 - Radiated Emissions Quasi-peak Measurements, 802.11n

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
56.100000	15.32	40.00	24.68	100.00	38.00	VERT
582.900000	35.15	46.00	10.85	169.00	226.00	HORI

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

Table 9 - Radiated Emissions Average Measurements, 802.11n

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBμV/m	dB	cm.	deg.		
2402.000000	86.07	NA	NA	197	10	VERT	Low
2440.000000	85.13	NA	NA	197	10	VERT	Mid
2480.000000	83.30	NA	NA	197	10	VERT	High
9648.000000*	57.19	66.07*	8.88	100	166	VERT	Low
9748.000000*	58.20	65.13*	6.93	98	165	VERT	Mid
9848.000000*	58.10	63.30*	5.20	101	163	VERT	High

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. *Unrestricted Band

Table 10 - Radiated Emissions Peak Measurements, 802.11n

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
2412.000000	99.46	NA	NA	197	10	VERT	Low
2437.000000	98.49	NA	NA	197	10	VERT	Mid
2462.000000	96.20	NA	NA	197	10	VERT	High
9648.000000*	60.07	79.46*	19.39	100	166	VERT	Low
9748.000000*	60.77	78.49*	17.72	98	165	VERT	Mid
9848.000000*	60.47	76.20*	15.73	101	163	VERT	High

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 50 of 96

^{*}Unrestricted Band

4.5 POWER SPECTRAL DENSITY

Test Method: ANSI C63.10,

1. Section 11.10.2 "Method PKPSD (peak PSD)"

Limits of power measurements:

The maximum PSD allowed is 8 dBm.

Test procedures:

- 1. The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable.
- 2. The resolution bandwidth was set to 3 kHz and the video bandwidth was set to 10 kHz to capture the signal. The analyzer used a peak detector in max hold mode.

Test setup:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable on a bench top.

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

Test results:


Prepared for: Garmin

Power Spectral Density

CHANNEL	MODE	CHANNEL FREQUENCY (MHz)	PEAK PSD (dBm)	Method	Limit (dBm)	RESULT
Low	2412	802.11 b	-11.265	Conducted	8.00	PASS
Mid	2440	802.11 b	-12.690	Conducted	8.00	PASS
High	2460	802.11 b	-12.327	Conducted	8.00	PASS
Low	2412	802.11 g	-11.442	Conducted	8.00	PASS
Mid	2440	802.11 g	-11.832	Conducted	8.00	PASS
High	2460	802.11 g	-11.967	Conducted	8.00	PASS
Low	2412	802.11 n	-11.702	Conducted	8.00	PASS
Mid	2440	802.11 n	-12.737	Conducted	8.00	PASS
High	2460	802.11 n	-12.407	Conducted	8.00	PASS

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 52 of 96

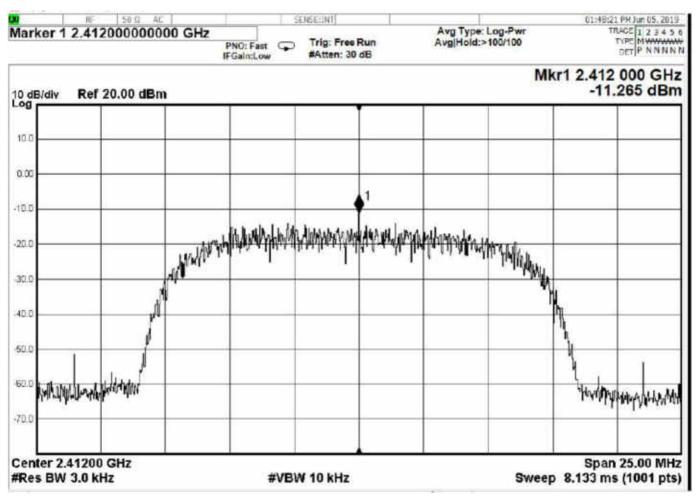


Figure 35 - Power Spectral Density, Low Channel, 802.11b

R20181219-20-13

Rev

В

Prepared for: Garmin

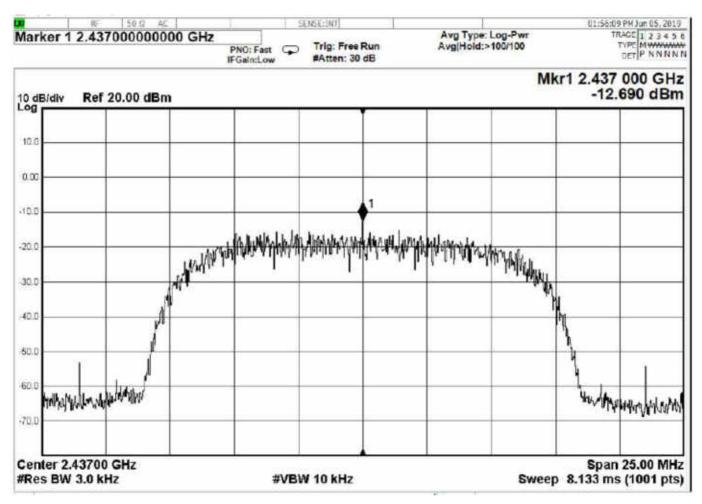


Figure 36 - Power Spectral Density, Mid Channel, 802.11b

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 54 of 96

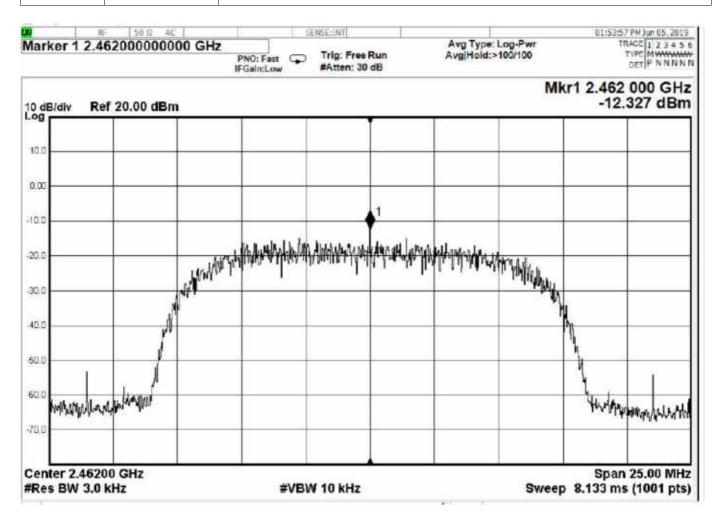


Figure 37 - Power Spectral Density, High Channel, 802.11b

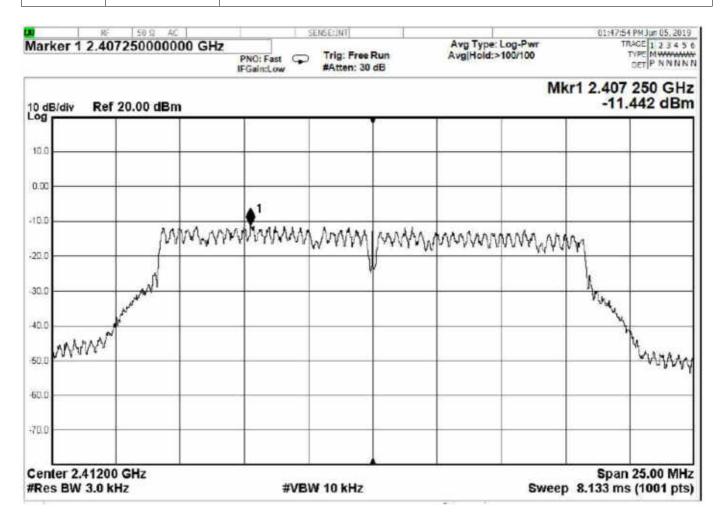
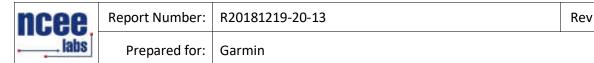
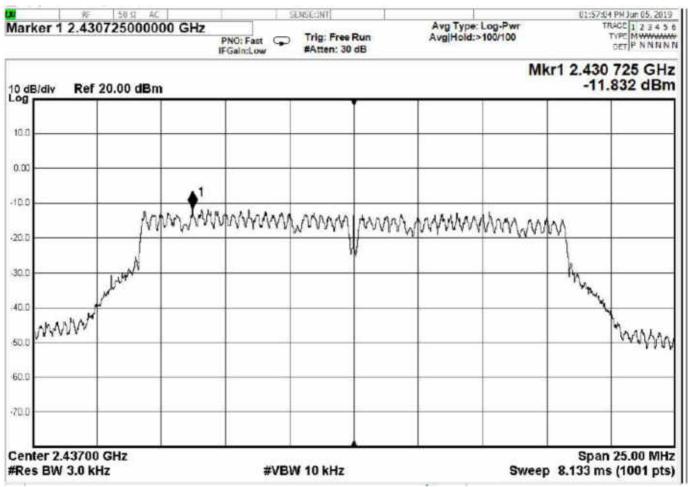




Figure 38 - Power Spectral Density, Low Channel, 802.11g

В

Figure 39 - Power Spectral Density, Mid Channel, 802.11g

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

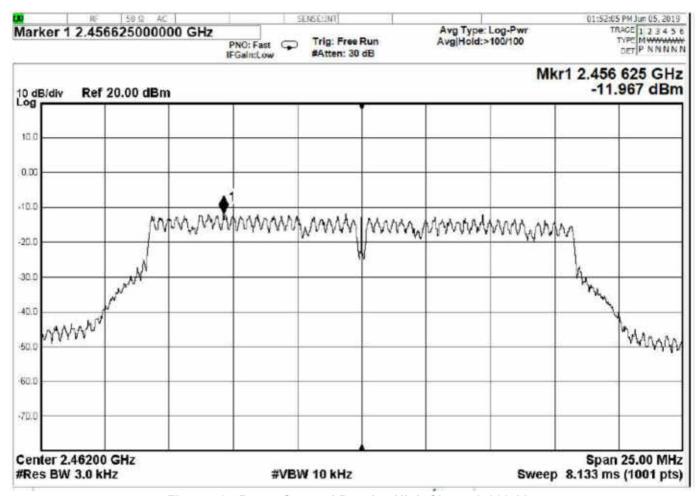


Figure 40 - Power Spectral Density, High Channel, 802.11g

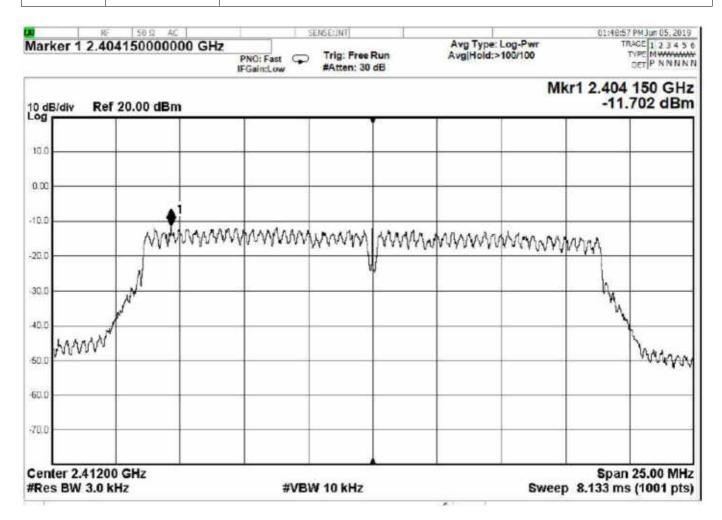


Figure 41 - Power Spectral Density, Low Channel, 802.11n

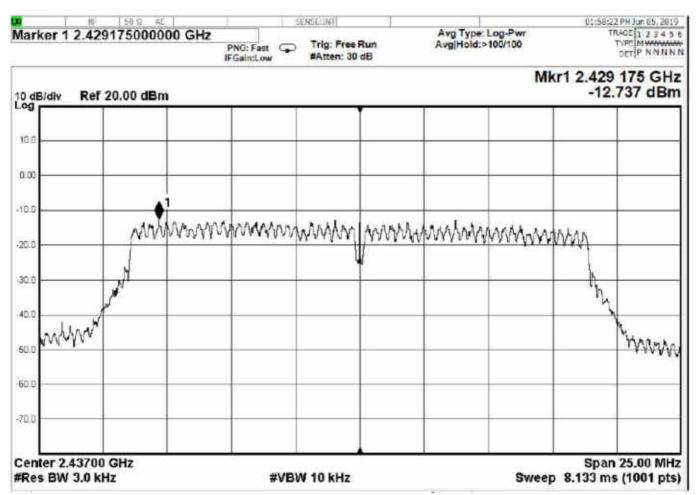


Figure 42 - Power Spectral Density, Mid Channel, 802.11n

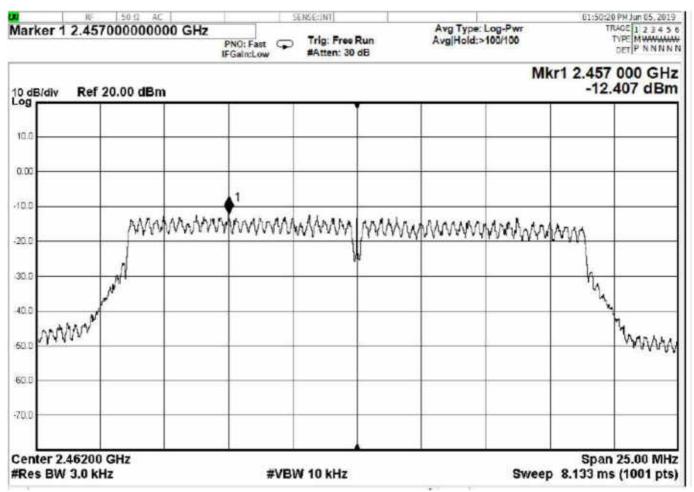


Figure 43 - Power Spectral Density, High Channel, 802.11n

4.6 BANDEDGES

Test Method: ANSI C63.10:

1. Section 6.10.5 (used for restricted bands)

2. Section 11.13.2 "Marker-delta method" (for unrestricted bands)

3. Section 11.11, "Measurement in unrestricted frequency bands"

Limits of bandedge measurements:

For emissions outside of the allowed band of operation (2400.0MHz – 2480.0MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

The EUT was tested in the same method as described in section *4.4 - Bandwidth*. The resolution bandwidth was set to 100kHz and video bandwidth to 300 kHz the EMI receiver was used to scan from the bandedge to the fundamental frequency with a quasi-peak detector. The highest emissions level beyond the bandedge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.

Deviations from test standard:

No deviation.

Test setup:

See Section 4.3

EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Page 62 of 96

Prepared for: Garmin

Test results:

Highest Out of Band Emissions, 802.11b

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level dBm	Fundamental Level (dBm)	Delta	Min (dBc)	Result
1	2390.0 (Unrestricted, Peak)	-41.61	0.24	41.85	20	PASS
1	2390.0 (Unrestricted, Average)	-53.72	-10.45	43.27	20	PASS
11	2483.5 (Unrestricted, Peak)	-48.26	-1.81	46.45	20	PASS
11	2483.5 (Unrestricted, Average)	-61.14	-11.95	49.19	20	PASS

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBm)	Corrected Emission Level (dBm)	Limit* (dBm)	Gain (dBi)	Margin	Result
1	2340.0 (Restricted, Peak)	-47.14	-47.14	-21.23	0	25.91	PASS
1	2340.0 (Restricted, Average)	-60.81	-60.81	-41.23	0	19.58	PASS
11	2483.5 (Restricted, Peak)	-46.85	-46.85	-21.23	0	25.62	PASS
11	2483.5 (Restricted, Average)	-62.02	-62.02	-41.23	0	20.79	PASS

Corrected Emission level= Highest out of band level +Gain

Margin= Limit-Corrected Emission Level

*Limits from Part 15.209 in dBm **Antenna gain declared by the manufacturer

Part 15.209 Peak Limit = 74.00 dBµV/m

Part 15.209 Average Limit = 54.00 dBµV/m

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS_{3m}(dB\mu V/m) - 95.23$

Peak Limit (delta) = $74.00 \text{ dB}\mu\text{V/m} - 95.23 = -21.23 \text{dBm}$

Average Limit (delta) = $54.00 \text{ dB}\mu\text{V/m} - 95.23 = -41.23 \text{dBm}$

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 63 of 96

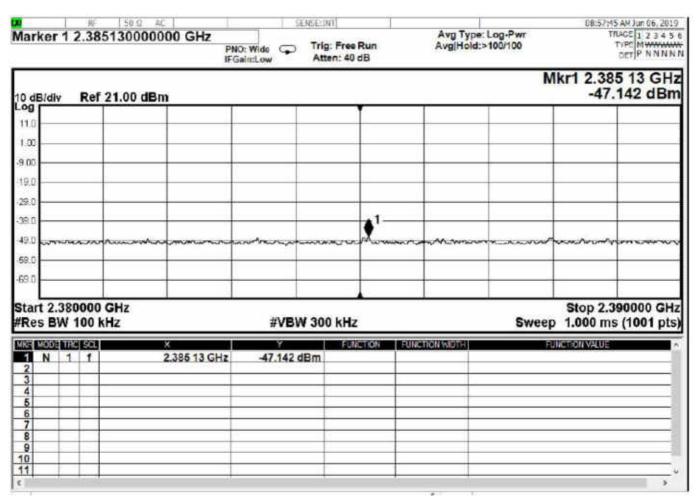
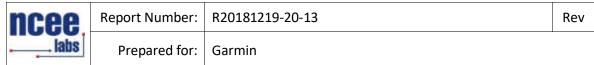



Figure 44 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak

В

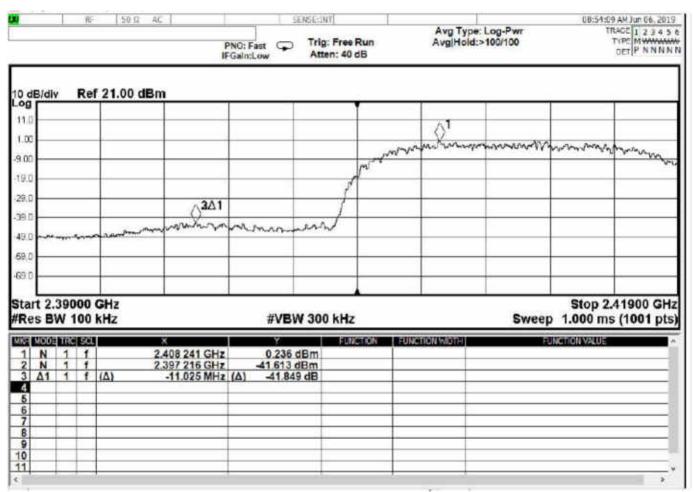


Figure 45 - Band-edge Measurement, Low Channel, Fundamental, Peak

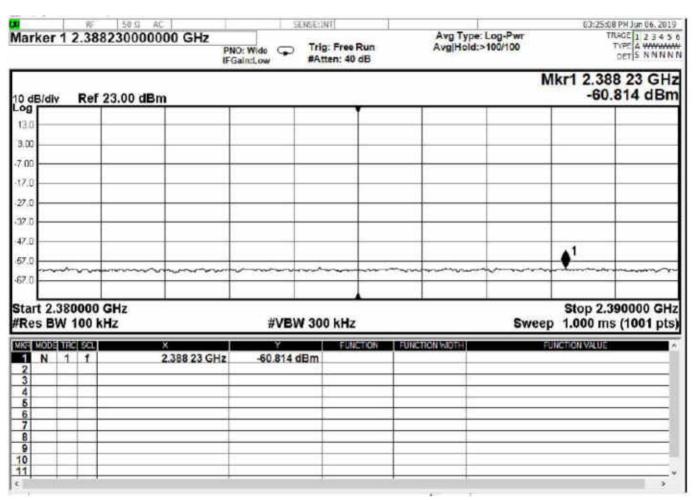


Figure 46 - Band-edge Measurement, Low Channel, Restricted Frequency, Average

Page 66 of 96

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

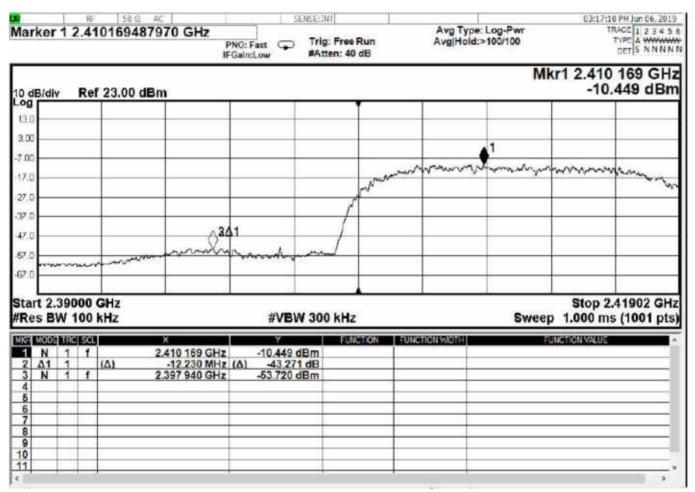
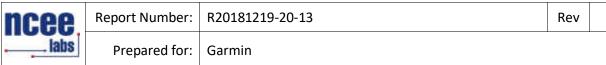



Figure 47 - Band-edge Measurement, Low Channel, Fundamental, Average

Page 67 of 96

В

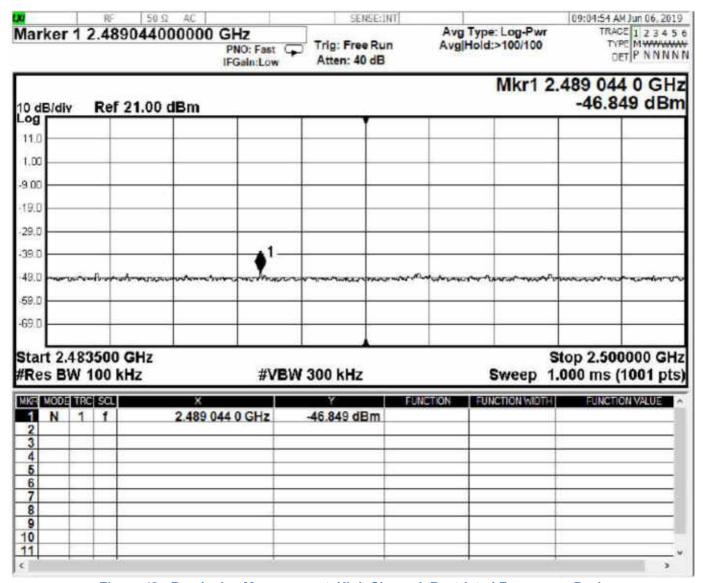


Figure 48 - Band-edge Measurement, High Channel, Restricted Frequency, Peak

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 68 of 96

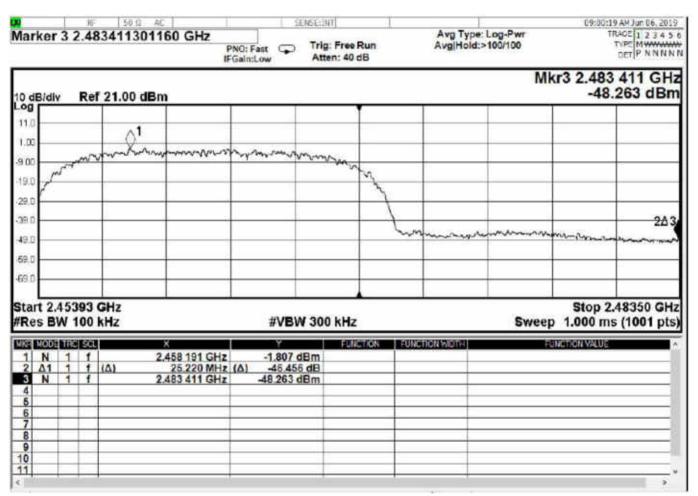


Figure 49 - Band-edge Measurement, High Channel, Fundamental, Peak

Page 69 of 96

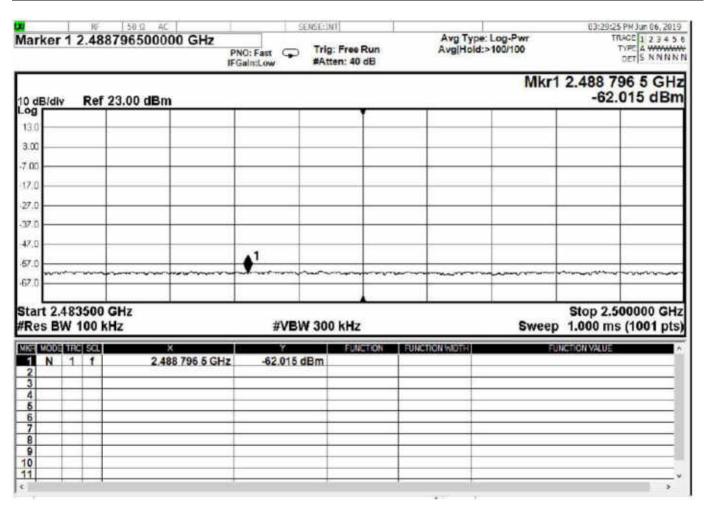


Figure 50 - Band-edge Measurement, High Channel, Restricted Frequency, Average

Page 70 of 96

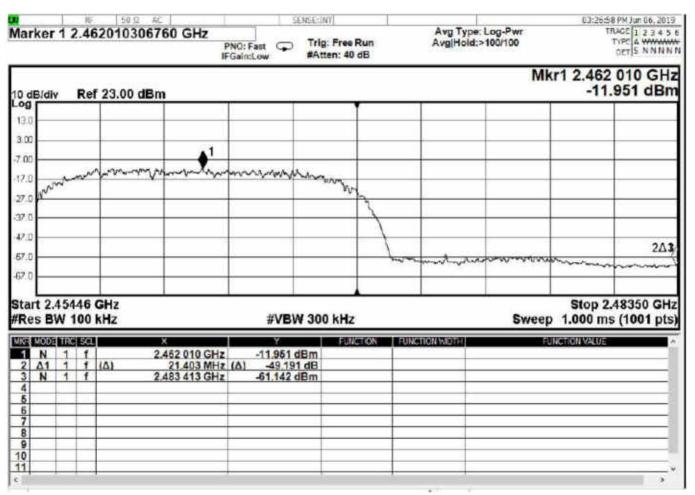


Figure 51 - Band-edge Measurement, High Channel, Fundamental, Average

Page 71 of 96

Report Number: R20181219-20-13

Rev

В

Prepared for:

Garmin

Highest Out of Band Emissions, 802.11g

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest	Fundamental			
		out of	Level (dBm)		Min (dBc)	Result
		band		Delta		
		level				
		dBm				
1	2390.0 (Unrestricted, Peak)	-31.35	0.55	31.90	20	PASS
1	2390.0 (Unrestricted, Average)	-48.53	-8.97	39.56	20	PASS
11	2483.5 (Unrestricted, Peak)	-44.70	-0.82	43.88	20	PASS
11	2483.5 (Unrestricted, Average)	-57.95	-10.11	47.84	20	PASS

	Band edge /Measurement Frequency (MHz)	Highest	Corrected	Limit*	Gain	Margin	
		out of	Emission	(dBm)	(dBi)		
CHANNEL		band	Level				Result
		level	(dBm)				
		(dBm)					
1	2340.0 (Restricted, Peak)	-39.50	-39.50	-21.23	0	18.265	PASS
1	2340.0 (Restricted, Average)	-54.66	-54.66	-41.23	0	13.43	PASS
11	2483.5 (Restricted, Peak)	-42.70	-42.70	-21.23	0	21.47	PASS
11	2483.5 (Restricted, Average)	-55.56	-55.56	-41.23	0	14.33	PASS

Corrected Emission level= Highest out of band level +Gain

Margin= Limit-Corrected Emission Level

*Limits from Part 15.209 in dBm **Antenna gain declared by the manufacturer

Part 15.209 Peak Limit = 74.00 dBµV/m

Part 15.209 Average Limit = 54.00 dBµV/m

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS_{3m}(dB\mu V/m) - 95.23$

Peak Limit (delta) = $74.00 \text{ dB}\mu\text{V/m} - 95.23 = -21.23 \text{dBm}$

Average Limit (delta) = $54.00 \text{ dB}\mu\text{V/m} - 95.23 = -41.23 \text{dBm}$

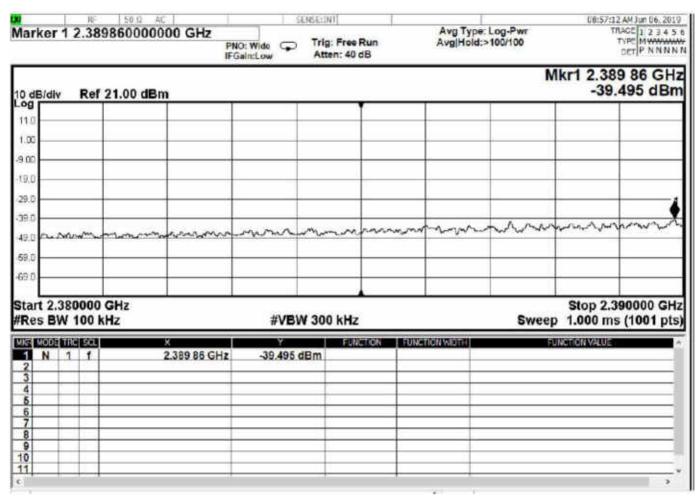


Figure 52 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak

Page 73 of 96

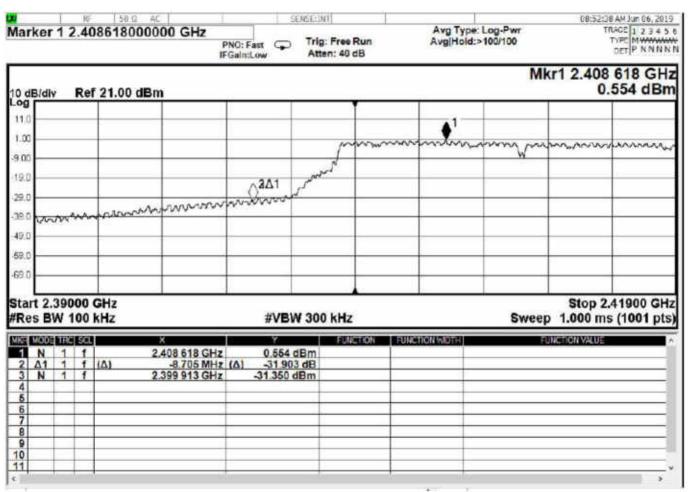


Figure 53 - Band-edge Measurement, Low Channel, Fundamental, Peak

Page 74 of 96

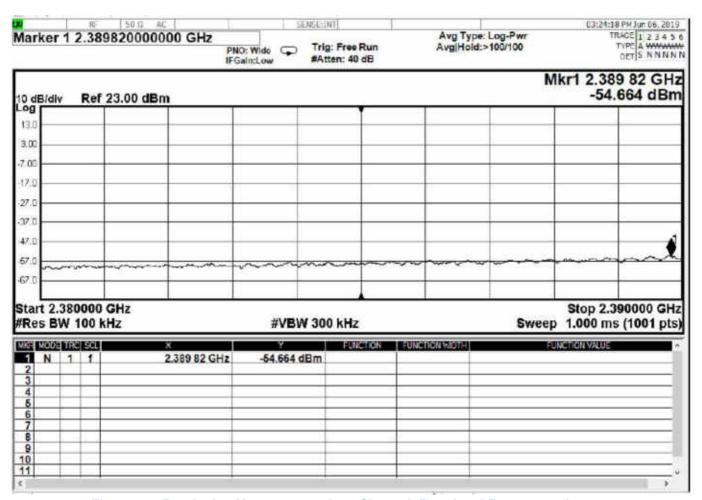


Figure 54 - Band-edge Measurement, Low Channel, Restricted Frequency, Average

Page 75 of 96

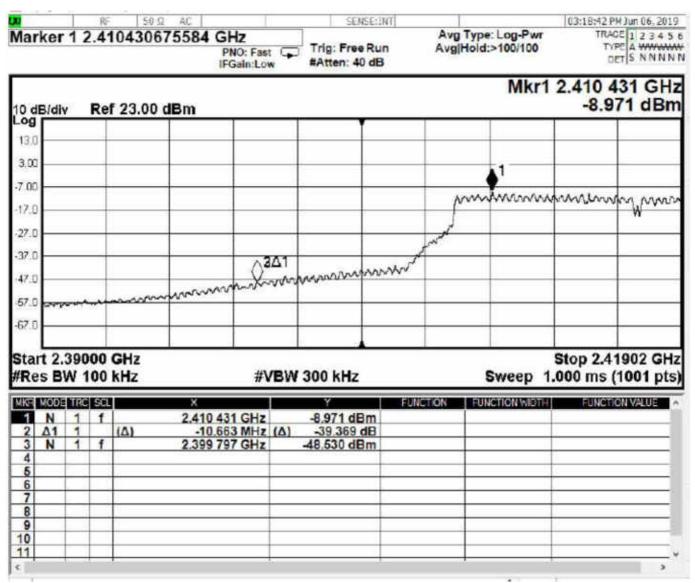


Figure 55 - Band-edge Measurement, Low Channel, Fundamental, Average

Page 76 of 96

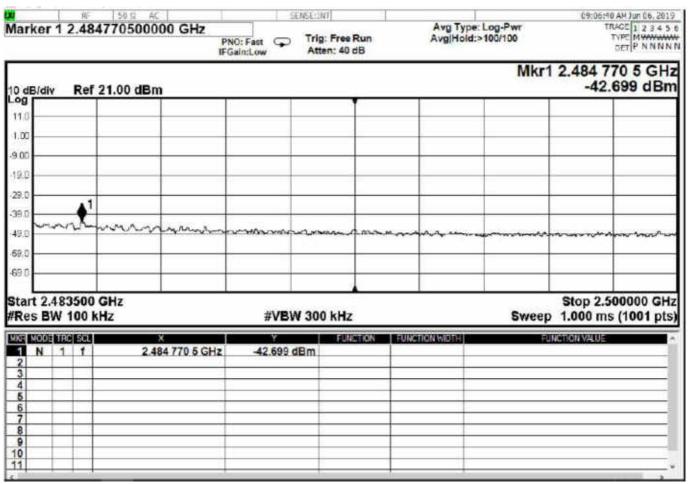


Figure 56 - Band-edge Measurement, High Channel, Restricted Frequency, Peak

Page 77 of 96

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

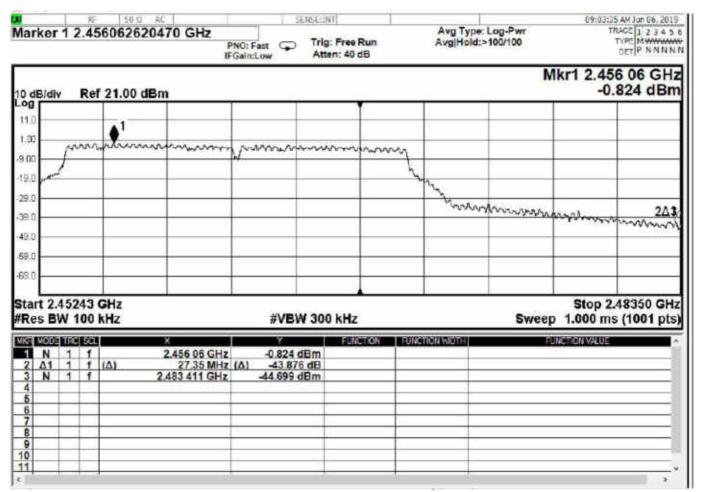


Figure 57 - Band-edge Measurement, High Channel, Fundamental, Peak

Page 78 of 96

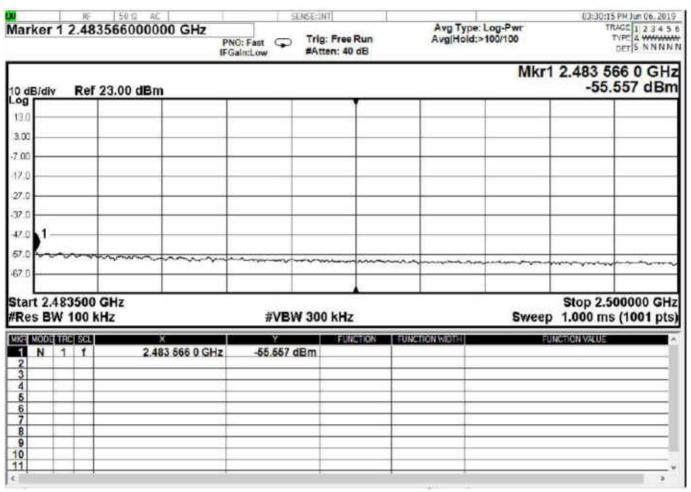


Figure 58 - Band-edge Measurement, High Channel, Restricted Frequency, Average

Page 79 of 96

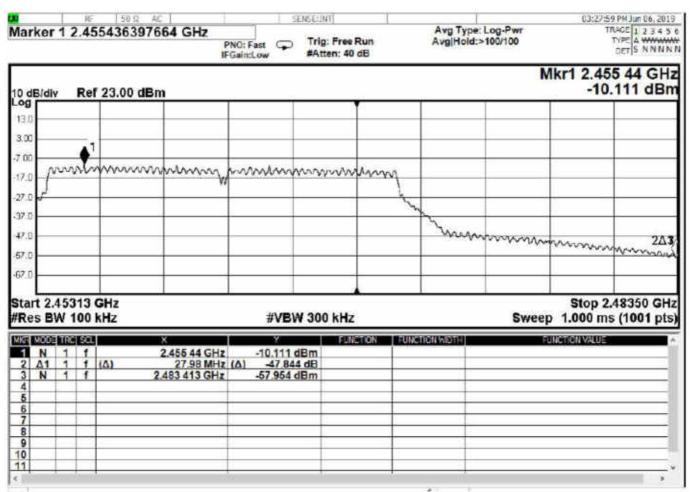


Figure 59 - Band-edge Measurement, High Channel, Fundamental, Average

Report Number: R20181219-20-13 В Rev

Prepared for:

Garmin

Highest Out of Band Emissions, 802.11n

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level dBm	Fundamental Level (dBm)	Delta	Min (dBc)	Result
1	2390.0 (Unrestricted, Peak)	-30.35	-0.15	30.2	20	PASS
1	2390.0 (Unrestricted, Average)	-42.66	-9.68	32.98	20	PASS
11	2483.5 (Unrestricted, Peak)	-43.46	-1.32	42.14	20	PASS
11	2483.5 (Unrestricted, Average)	-57.00	-10.28	46.72	20	PASS

CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBm)	Corrected Emission Level (dBm)	Limit* (dBm)	Gain** (dBi)	Margin	Result
1	2340.0 (Restricted, Peak)	-39.20	-39.20	-21.23	0	17.97	PASS
1	2340.0 (Restricted, Average)	-53.45	-53.45	-41.23	0	12.22	PASS
11	2483.5 (Restricted, Peak)	-42.32	-42.32	-21.23	0	21.09	PASS
11	2483.5 (Restricted, Average)	-55.40	-55.40	-41.23	0	14.17	PASS

Corrected Emission level= Highest out of band level +Gain

Margin= Limit-Corrected Emission Level

*Limits from Part 15.209 in dBm **Antenna gain declared by the manufacturer

Part 15.209 Peak Limit = 74.00 dBµV/m

Part 15.209 Average Limit = 54.00 dBµV/m

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS_{3m}(dB\mu V/m) - 95.23$

Peak Limit (delta) = $74.00 \text{ dB}\mu\text{V/m} - 95.23 = -21.23 \text{dBm}$

Average Limit (delta) = $54.00 \text{ dB}\mu\text{V/m} - 95.23 = -41.23 \text{dBm}$

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 81 of 96

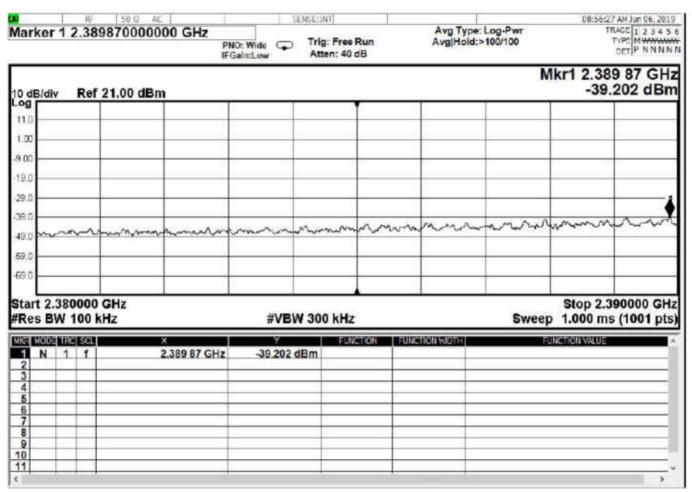
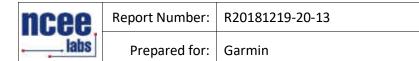
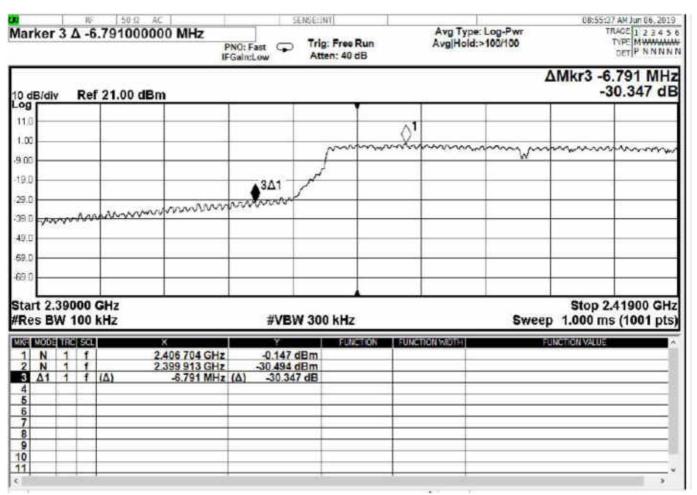




Figure 60 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak

Page 82 of 96

Rev

В

Figure 61 - Band-edge Measurement, Low Channel, Fundamental, Peak

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 83 of 96

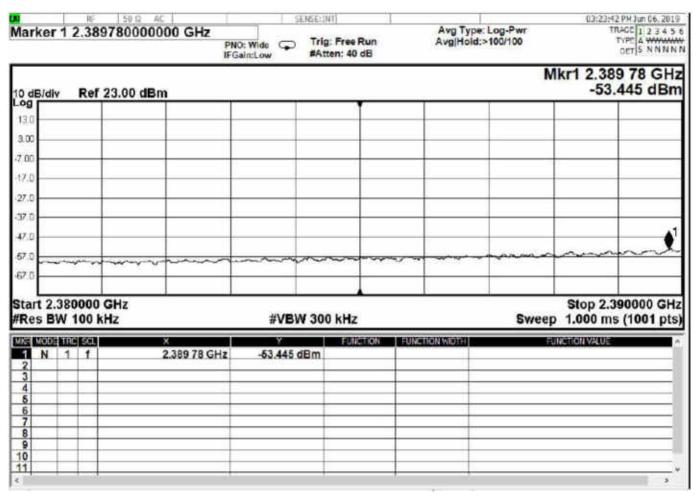


Figure 62 - Band-edge Measurement, Low Channel, Restricted Frequency, Average

Page 84 of 96

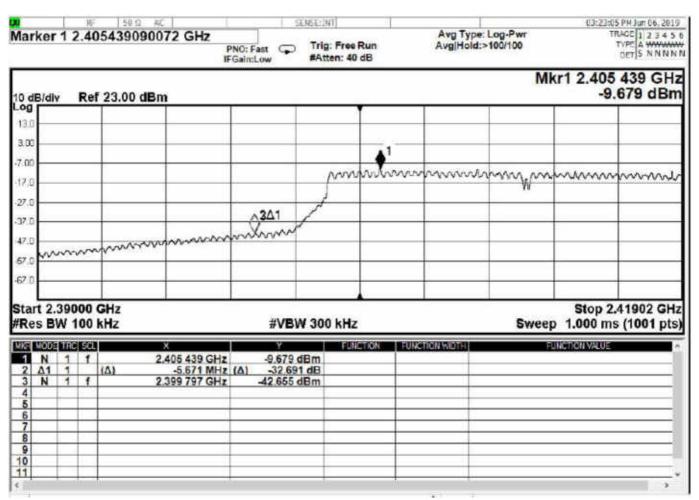


Figure 63 - Band-edge Measurement, Low Channel, Fundamental, Average

Page 85 of 96

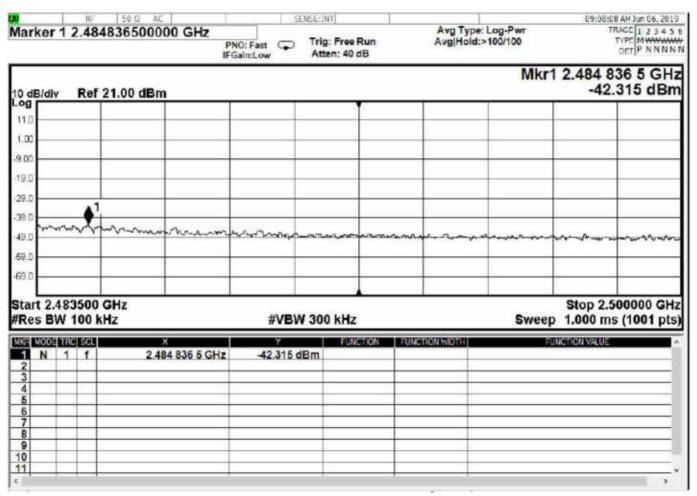


Figure 64 - Band-edge Measurement, High Channel, Restricted Frequency, Peak

Page 86 of 96

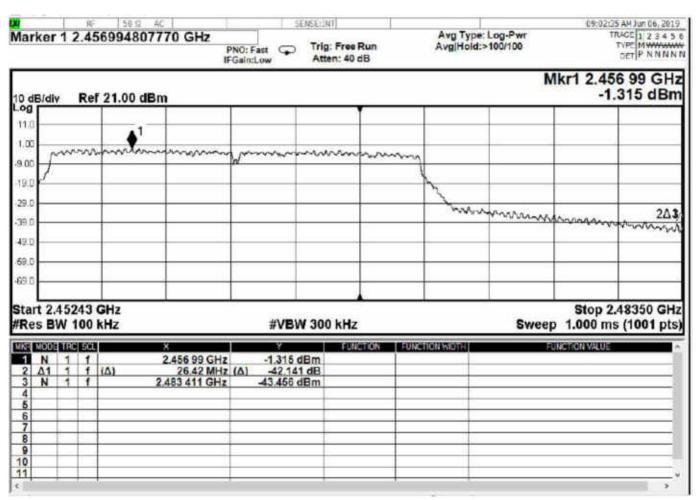


Figure 65 - Band-edge Measurement, High Channel, Fundamental, Peak

Page 87 of 96

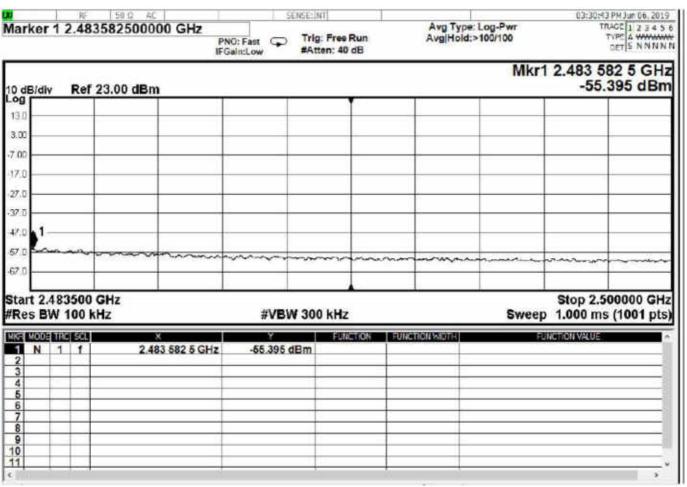


Figure 66 - Band-edge Measurement, High Channel, Restricted Frequency, Average

 Report Number:
 R20181219-20-13
 Rev
 B

Prepared for: Garmin

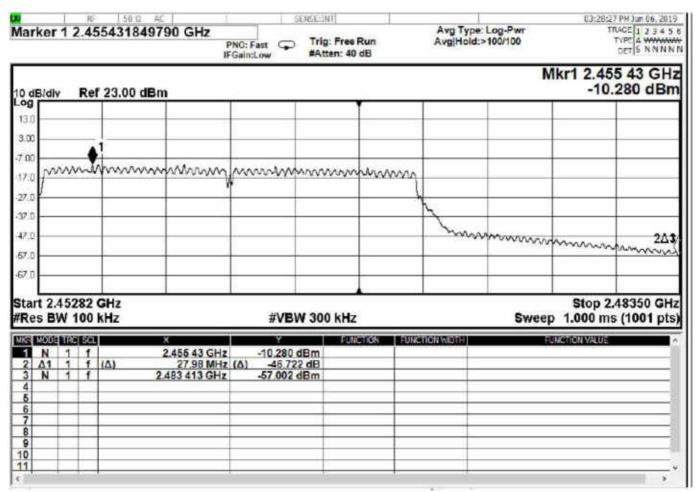


Figure 67 - Band-edge Measurement, High Channel, Fundamental, Average

Page 89 of 96

Report Number:	R20181219-20-13	Rev	В
5 16			

Prepared for: | Garmin

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the middle channel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Report Number:	R20181219-20-13	Rev	В
Prepared for:	Garmin		

Test Results:

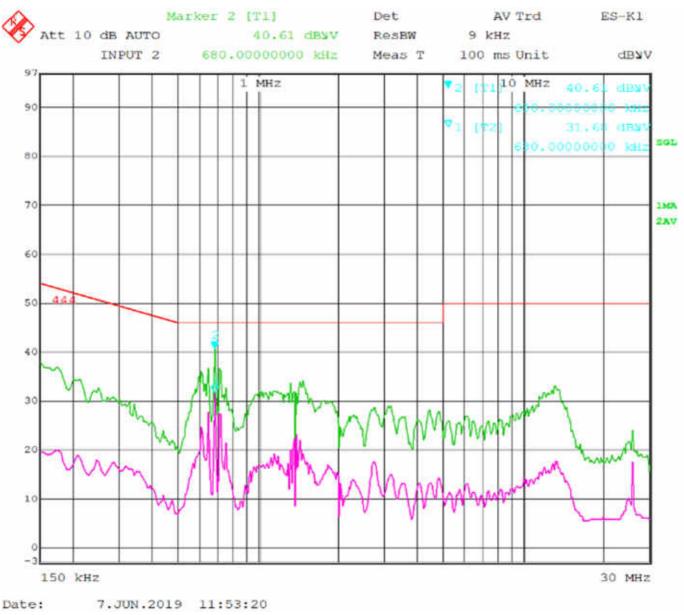


Figure 68 - Conducted Emissions Plot, Line

All Measurements were found to be at least 10 dB below the limits.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 91 of 96

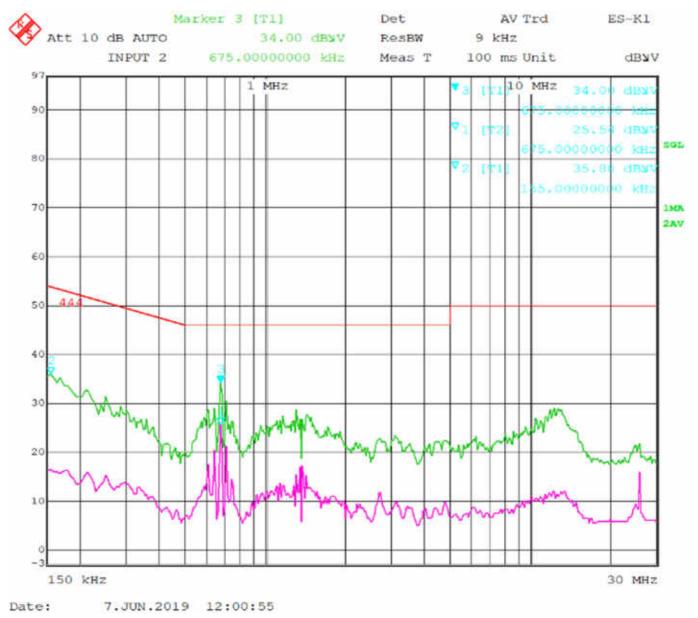


Figure 69 - Conducted Emissions Plot, Neutral

All Measurements were found to be at least 10 dB below the limits.

The plot shows the composite maximum value of both the line and neutral conductors. It shows the worse-case at each frequency.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 92 of 96

Report Number:	R20181219-20-13	Rev	В
----------------	-----------------	-----	---

Prepared for: Garmin

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \, dB\mu V/m$$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 93 of 96

Report Number: R20181219-20-13 Rev B

Prepared for: Garmin

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] 2 / 30

 $Power (watts) = 10^{Power (dBm)/10} / 1000$

Voltage ($dB\mu V$) = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{field} Strength (dB μ V/m) / 20] / 10^{6}

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

Page 94 of 96

Report Number:	R20181219-20-13	Rev	В
Prepared for:	Garmin		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)	
Radiated Emissions, 3m	30MHz - 1GHz	3.82	
Radiated Emissions, 3m	1GHz - 18GHz	4.44	
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB	

Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 95 of 96

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 96 of 96