

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

# **FCC/ISED** Test Report

Prepared for:

Garmin International Inc.

Address:

1200 E. 151<sup>st</sup> Street Olathe, Kansas, 66062, USA

Product:

A03645

**Test Report No:** 

Approved by:

R20181219-20-12C

Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

16 August 2019

Total Pages:

70

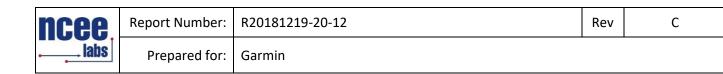
The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.



| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Garmin          |     |   |

## **REVISION PAGE**

| Rev. No. | Date           | Description                                                    |
|----------|----------------|----------------------------------------------------------------|
| 0        | 18 June 2019   | Original – NJohnson                                            |
|          |                | Prepared by KVepuri/CFarrington                                |
| A        | 15 July 2019   | Includes NCEE Labs report R20181219-20-12 and its amendment in |
|          |                | fullNJ                                                         |
| В        | 13 August 2019 | Includes NCEE Labs report R20181219-20-12A and its amendment   |
|          |                | in fullNJ                                                      |
| С        | 16 August 2019 | Includes NCEE Labs report R20181219-20-12B and its amendment   |
|          |                | in fullNJ                                                      |




Garmin

Prepared for:

## CONTENTS

| Rev | ision Pa | ge2                          |
|-----|----------|------------------------------|
| 1.0 | Sum      | nmary of test results4       |
| 2.0 | EUT      | Description5                 |
|     | 2.1      | Equipment under test         |
|     | 2.2      | Description of test modes    |
|     | 2.3      | Description of support units |
| 3.0 | Lab      | oratory description7         |
|     | 3.1      | Laboratory description7      |
|     | 3.2      | Test personnel7              |
|     | 3.3      | Test equipment8              |
| 4.0 | Deta     | ailed results9               |
|     | 4.1      | Duty Cycle9                  |
|     | 4.2      | Output Power10               |
|     | 4.3      | Bandwidth19                  |
|     | 4.4      | Radiated emissions           |
|     | 4.5      | Power spectral density       |
|     | 4.5      | Band edges                   |
|     | 4.7      | Conducted AC Mains Emissions |
| Арр | endix A  | : Sample Calculation67       |
| Арр | endix B  | – Measurement Uncertainty    |
| REF |          | ND70                         |



## 1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. The EUT has been tested according to the following specifications:

| APPLIED STANDARDS AND                                                                                                  | REGULATIONS                       |        |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|
| Standard Section                                                                                                       | Test Type                         | Result |
| FCC Part 15.35<br>RSS Gen, Issue 4, Section 6.10                                                                       | Duty Cycle                        | Pass   |
| FCC Part 15.247(a)(1)<br>RSS-247 Issue 2 Section 5.2                                                                   | Peak output power                 | Pass   |
| FCC Part 15.247(a)(1)<br>RSS-247 Issue 2 Section 5.2                                                                   | Bandwidth                         | Pass   |
| FCC Part 15.209<br>RSS-Gen Issue 4, Section 7.1                                                                        | Receiver Radiated Emissions       | Pass   |
| FCC Part 15.209 (restricted bands), 15.247 (unrestricted)<br>RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 4, Section 8.9 | Transmitter Radiated<br>Emissions | Pass   |
| FCC Part 15.247(a)(1)<br>RSS-247 Issue 2 Section 5.2                                                                   | Power Spectral Density            | Pass   |
| FCC Part 15.209, 15.247(d)<br>RSS-247 Issue 2 Section 11.13                                                            | Band Edge Measurement             | Pass   |
| FCC Part 15.207<br>RSS-Gen Issue 4, Section 7.1                                                                        | Conducted Emissions               | Pass   |

See Section 4 for details on the test methods used for each test.



## 2.0 EUT DESCRIPTION

## 2.1 EQUIPMENT UNDER TEST

## Summary

The Equipment Under Test (EUT) was a battery powered BT EDR 2MB, BT EDR 3MB and BT BR (GFSK) transceiver manufactured by GARMIN inc.

| EUT            | A03645                                                                                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| EUT Received   | 16 April 2019                                                                                                                       |
| EUT Tested     | 16 April 2019- 20 May 2019 (GMSK measurements)<br>10 June 2019 (GFSK measurements)<br>20 June 2019 (EIRP output power measurements) |
| Serial No.     | 3991631270 (radiated unit); 3991631460 (conducted unit)                                                                             |
| Operating Band | 2400 – 2483.5 MHz                                                                                                                   |
| Device Type    | BT BR, BT EDR 2MB, BT EDR 3MB                                                                                                       |
| Power Supply   | Internal Battery/ Charger: Garmin (Phi Hong) MN: PSAI10R-050Q<br>(Representative Power Supply)                                      |

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.



Prepared for: Garmin

## 2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

| Channel | Frequency |
|---------|-----------|
| Low     | 2402 MHz  |
| Mid     | 2440 MHz  |
| High    | 2480 MHz  |

С

Rev

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, middle and highest frequency channels.

The EUT was tested for spurious emissions while running off of battery power.

#### 2.3 DESCRIPTION OF SUPPORT UNITS

None



## 3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521 С

Rev

| A2LA Certificate Number:                   | 1953.01 |
|--------------------------------------------|---------|
| FCC Accredited Test Site Designation No:   | US1060  |
| Industry Canada Test Site Registration No: | 4294A-1 |
| NCC CAB Identification No:                 | US0177  |

Environmental conditions varied slightly throughout the tests:

Relative humidity of  $35 \pm 4\%$ Temperature of  $22 \pm 3^{\circ}$  Celsius



## 3.2 TEST PERSONNEL

| No. | PERSONNEL        | TITLE             | ROLE               |
|-----|------------------|-------------------|--------------------|
| 1   | Nic Johnson      | Technical Manager | Review/editing     |
| 2   | Karthik Vepuri   | Test Engineer     | Testing and report |
| 3   | Caleb Farrington | Test Technician   | Testing and report |

#### Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.



С

Prepared for: Garmin

## 3.3 TEST EQUIPMENT

| DESCRIPTION AND<br>MANUFACTURER                          | MODEL NO.  | SERIAL NO.   | LAST<br>CALIBRATION<br>DATE | CALIBRATION<br>DUE DATE |
|----------------------------------------------------------|------------|--------------|-----------------------------|-------------------------|
| Rohde & Schwarz Test Receiver                            | ES126      | 100037       | 30 Jan 2018                 | 30 Jan 2020             |
| Keysight EXA Signal Analyzer                             | N9010A     | MY56070862   | 14 Dec 2018                 | 14 Dec 2020             |
| Rohde & Schwarz Test Receiver                            | ES17       | 100007       | 31 Jul 2017                 | 31 Jul 2019             |
| EMCO Biconilog Antenna                                   | 3142B      | 1647         | 02 Aug 2017                 | 02 Aug 2019             |
| EMCO Horn Antenna                                        | 3115       | 6416         | 26 Jan 2018                 | 26 Jan 2020             |
| EMCO Horn Antenna                                        | 3116       | 2576         | 31 Jan 2018                 | 31 Jan 2020             |
| Rohde & Schwarz Preamplifier                             | TS-PR18    | 3545700803   | 09 Mar 2018*                | 09 Mar 2020*            |
| Trilithic High Pass Filter                               | 6HC330     | 23042        | 09 Mar 2018*                | 09 Mar 2020*            |
| Rohde & Schwarz LISN                                     | ESH3-Z5    | 836679/010   | 26 Jul 2018                 | 26 Jul 2019             |
| Rohde & Schwarz Test Software                            | ES-K1      | 12575        | NA                          | NA                      |
| RF Cable (preamplifier to antenna)                       | MFR-57500  | 01-07-002    | 09 Mar 2018*                | 09 Mar 2020*            |
| RF Cable (antenna to 10m chamber bulkhead)               | FSCM 64639 | 01E3872      | 09 Mar 2018*                | 09 Mar 2020*            |
| RF Cable (10m chamber bulkhead to control room bulkhead) | FSCM 64639 | 01E3874      | 09 Mar 2018*                | 09 Mar 2020*            |
| RF Cable (Control room bulkhead to RF switch)            | FSCM 64639 | 01E3871      | 09 Mar 2018*                | 09 Mar 2020*            |
| RF Cable (RF switch to test receiver)                    | FSCM 64639 | 01F1206      | 09 Mar 2018*                | 09 Mar 2020*            |
| RF switch – Rohde and Schwarz                            | TS-RSP     | 1113.5503.14 | 09 Mar 2018*                | 09 Mar 2020*            |
| N connector bulkhead (10m chamber)                       | PE9128     | NCEEBH1      | 09 Mar 2018*                | 09 Mar 2020*            |
| N connector bulkhead (control<br>room)                   | PE9128     | NCEEBH2      | 09 Mar 2018*                | 09 Mar 2020*            |

\*Internal Characterization

## Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

## 4.0 DETAILED RESULTS

#### 4.1 DUTY CYCLE

Test Method: NA



### 4.2 OUTPUT POWER

#### Test Method: ANSI C63.10:

1. Section(s) 11.9.1.1 "RBW ≥ DTS Bandwidth"

#### Limits of power measurements:

The maximum allowed peak output power is 30 dBm.

#### Test procedures:

Except for BTBR mode (which was performed as an antenna port conducted measurement using a spectrum analyzer) all measurements were taken at a distance of 3m from the EUT. The EUT was maximized in all 3 orthogonal positions.10 MHz RBW and 10 MHz VBW was used.

#### **Deviations from test standard:**

No deviation.

#### Test setup:

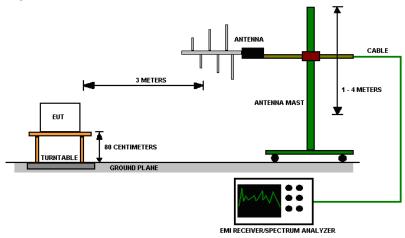



Figure 1 – Peak Output Power Measurements Test Setup

#### EUT operating conditions:

The EUT was set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Note: EIRP measurements were performed instead on conducted measurements because on uncertainties in the integrity of the conducted RF connector for this test.

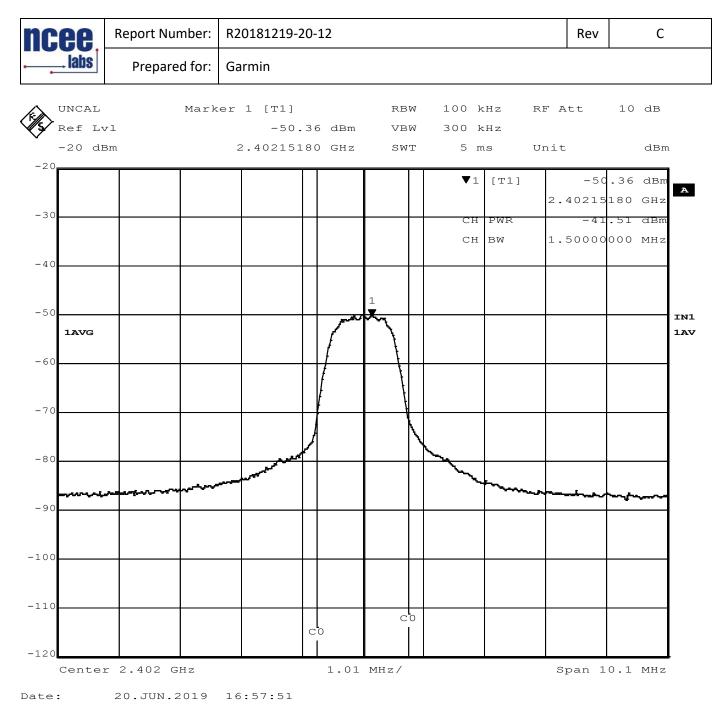
#### Test results:

The uncertainty for conducted peak power measurements is  $\pm 1.1$  dB and average power is  $\pm 1.37$  dB

Rev



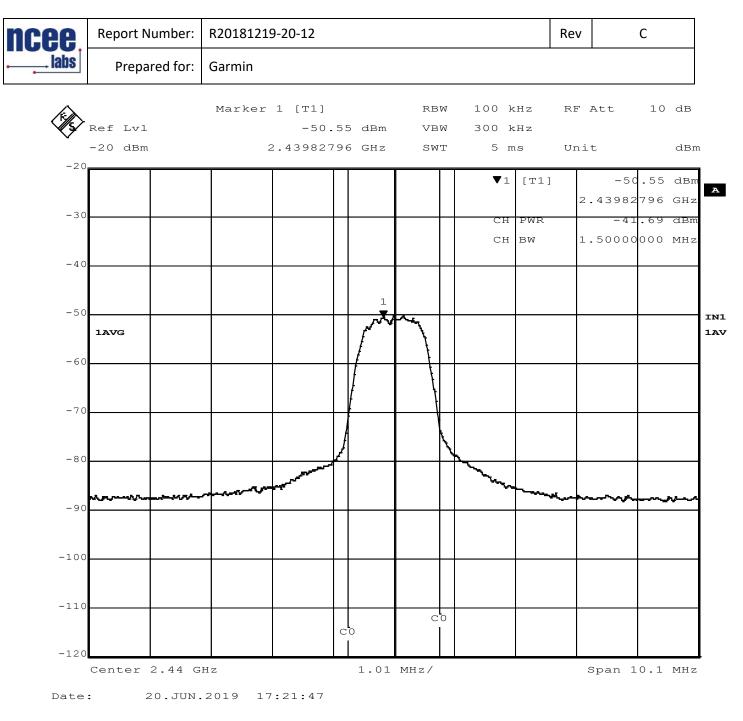
## Test results:


The uncertainty for conducted peak power measurements is  $\pm 1.1$  dB and average power is  $\pm 1.37$  dB

|         | Average Output Power          |                                     |                                    |           |        |              |  |
|---------|-------------------------------|-------------------------------------|------------------------------------|-----------|--------|--------------|--|
| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | AVERAGE<br>OUTPUT<br>POWER<br>(dBm) | AVERAGE<br>OUTPUT<br>POWER<br>(mW) | Method    | RESULT | Transmitter  |  |
| Low     | 2402                          | 13.42                               | 21.98                              | Conducted | PASS   | BT BR (GFSK) |  |
| Mid     | 2440                          | 13.09                               | 20.37                              | Conducted | PASS   | BT BR (GFSK) |  |
| High    | 2480                          | 13.08                               | 20.32                              | Conducted | PASS   | BT BR (GFSK) |  |
| Low     | 2402                          | 6.26                                | 4.2                                | Conducted | PASS   | BT EDR 2MB   |  |
| Mid     | 2440                          | 6.08                                | 4.1                                | Conducted | PASS   | BT EDR 2MB   |  |
| High    | 2480                          | 5.11                                | 3.2                                | Conducted | PASS   | BT EDR 2MB   |  |
| Low     | 2402                          | 6.45                                | 4.4                                | Conducted | PASS   | BT EDR 3MB   |  |
| Mid     | 2440                          | 6.04                                | 4.0                                | Conducted | PASS   | BT EDR 3MB   |  |
| High    | 2480                          | 5.04                                | 3.2                                | Conducted | PASS   | BT EDR 3MB   |  |

| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Garmin          |     |   |
|       |                |                 |     |   |

|           | R              |               |                   | SENSE:I    | NT                        |                      |                         | 02:52:14           | 4 PM Jun 06, 2          |
|-----------|----------------|---------------|-------------------|------------|---------------------------|----------------------|-------------------------|--------------------|-------------------------|
| arker     | 1 2.4          | 017800000     | PNC               |            | g: Free Run<br>ten: 40 dB | Avg Type<br>Avg Hold | e: Log-Pwr<br>:>100/100 | TI                 | TYPE A WWW<br>DET P N N |
| dB/div    | v Re           | ef 23.00 dBi  | n                 |            |                           |                      |                         | Mkr1 2.40<br>13.   | 1 78 G<br>419 dE        |
| g<br>1.0  |                |               |                   |            | 1                         |                      |                         |                    |                         |
| 00        |                |               |                   |            |                           |                      |                         |                    |                         |
| io        |                |               |                   |            |                           |                      |                         |                    |                         |
| 0         |                |               |                   |            |                           |                      |                         |                    |                         |
| 0         |                | 1             |                   |            |                           |                      |                         |                    | 1                       |
|           |                |               |                   |            | 5                         |                      |                         |                    |                         |
| o —       |                |               |                   |            |                           |                      |                         | -                  |                         |
| 0         |                |               |                   |            |                           |                      |                         |                    |                         |
|           | 2.402<br>W 8 M | 00 GHz<br>IHz |                   | #VBW 8.0   | MHz                       |                      | Swee                    | Span<br>p 1.000 ms | 20.00 N<br>6 (1001 p    |
| NODE<br>N | TRC SC         |               | X<br>2.401 78 GHz | 13.419 dBm | FUNCTION                  | FUNCTION WIDTH       |                         | FUNCTION VALUE     |                         |
| -         |                |               |                   |            |                           |                      |                         |                    |                         |
|           |                |               |                   |            |                           |                      |                         |                    |                         |
|           |                |               |                   |            |                           |                      |                         |                    |                         |
|           |                |               |                   |            |                           |                      |                         |                    |                         |
|           |                |               |                   |            |                           |                      |                         |                    |                         |
|           |                |               |                   |            |                           | I STATUS             |                         |                    |                         |

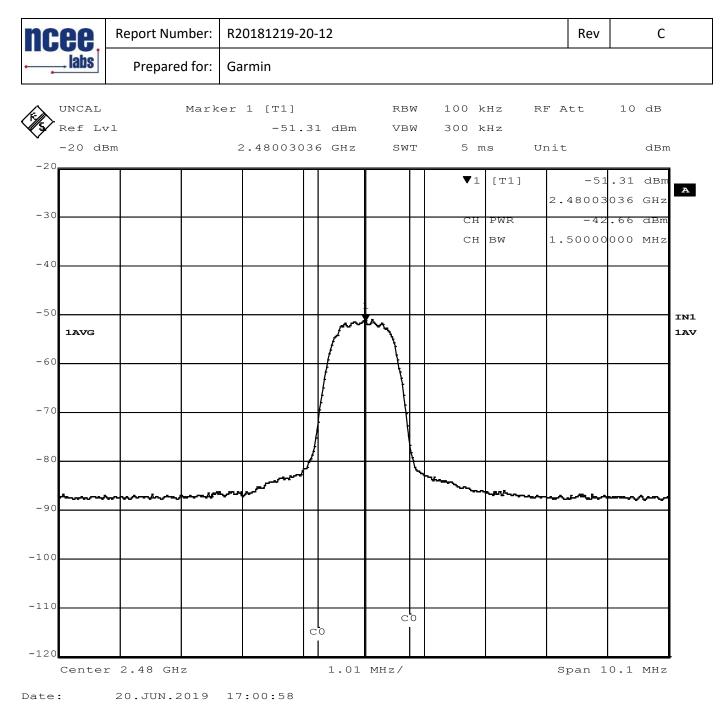

Figure 2 - Average Output Power, Low Channel, BT BR (highest power of 3 channels)



#### Figure 3 – Average Output Power, Low Channel, BT EDR 2MB

Maximum power = --41.51 + dBm + 107 + CL + AF - 95.23 = 6.26 dBm

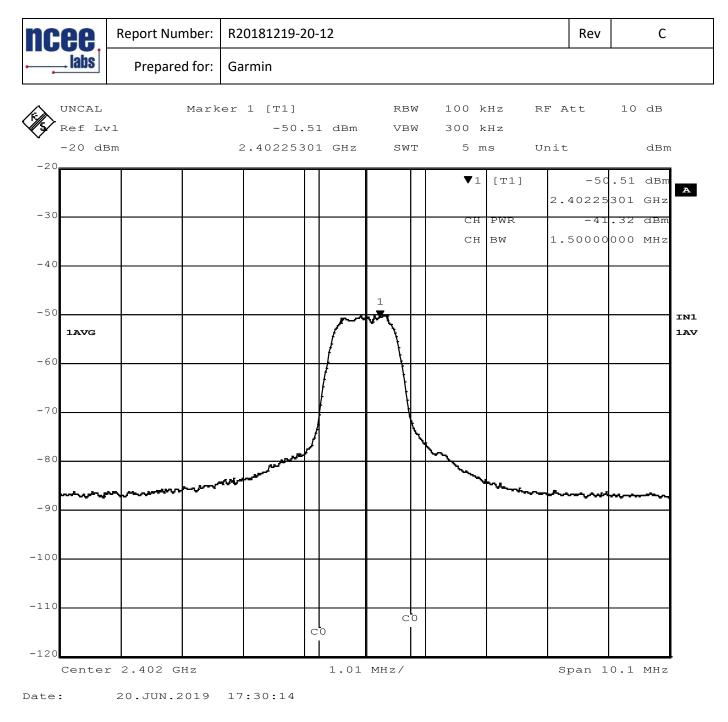
 $\begin{array}{l} \text{CL} = \text{cable loss} = 7.70 \text{ dB} \\ \text{AF} = \text{antenna factor} = 28.30 \text{ dB} \\ 107 = \text{conversion from dBm to dB} \text{\muV on a } 50\Omega \text{ measurement system} \\ \text{-95.23} = \text{Conversion from field strength (dB} \text{\muV/m) to EIRP (dBm) at a 3m measurement distance} \end{array}$ 




#### Figure 4 – Average Output Power, Mid Channel, BT EDR 2MB

Maximum power = --41.69 dBm + 107 + CL + AF - 95.23 = 6.08 dBm\*

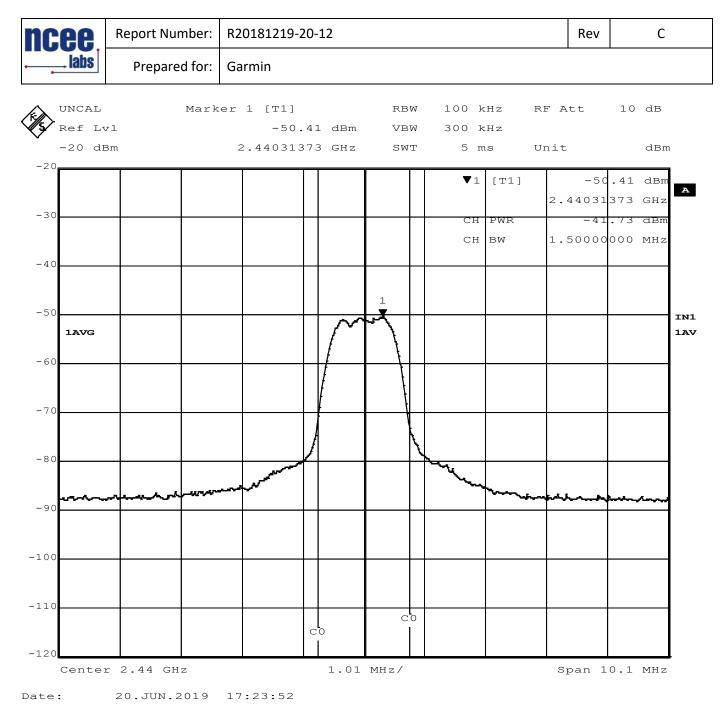
CL = cable loss = 7.70 dB AF = antenna factor = 28.30 dB  $107 = conversion from dBm to dB\muV on a 50\Omega$  measurement system  $-95.23 = Conversion from field strength (dB\muV/m) to EIRP (dBm) at a 3m measurement distance$ 


#### Figure 5 - Output Power, High Channel, BT EDR 2MB



#### Figure 6 - Average Output Power, High Channel, BT EDR 2MB

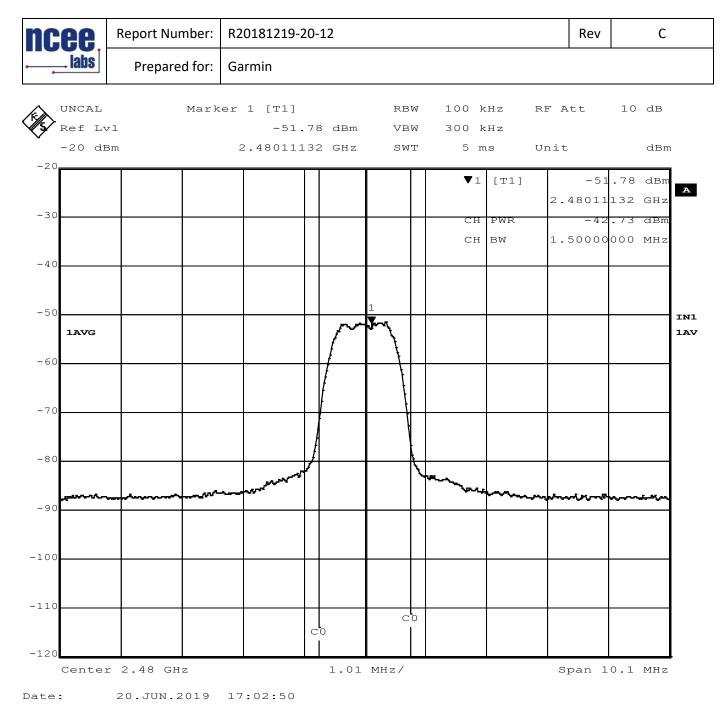
Maximum power = -42.66 dBm + 107 + CL + AF - 95.23 = 5.11 dBm\*


 $\begin{array}{l} \text{CL} = \text{cable loss} = 7.70 \text{ dB} \\ \text{AF} = \text{antenna factor} = 28.30 \text{ dB} \\ 107 = \text{conversion from dBm to dB}_{\mu}\text{V} \text{ on a } 50\Omega \text{ measurement system} \\ \text{-95.23} = \text{Conversion from field strength (dB}_{\mu}\text{V/m}) \text{ to EIRP (dBm) at a 3m measurement distance} \end{array}$ 



#### Figure 7 - Average Output Power, Low Channel, BT EDR 3MB

Maximum power = -41.32 dBm + 107 + CL + AF - 95.23 = 6.45 dBm


 $\begin{array}{l} \text{CL} = \text{cable loss} = 7.70 \text{ dB} \\ \text{AF} = \text{antenna factor} = 28.30 \text{ dB} \\ 107 = \text{conversion from dBm to dB}_{\mu}\text{V} \text{ on a } 50\Omega \text{ measurement system} \\ \text{-95.23} = \text{Conversion from field strength (dB}_{\mu}\text{V/m}) \text{ to EIRP (dBm) at a 3m measurement distance} \end{array}$ 



#### Figure 8 - Average Output Power, Mid Channel, BT EDR 3MB

Maximum power = -41.73 dBm + 107 + CL + AF - 95.23 = 6.04 dBm

CL = cable loss = 7.70 dB AF = antenna factor = 28.30 dB 107 = conversion from dBm to dB $\mu$ V on a 50 $\Omega$  measurement system -95.23 = Conversion from field strength (dB $\mu$ V/m) to EIRP (dBm) at a 3m measurement distance



#### Figure 9 - Average Output Power, High Channel, BT EDR 3MB

Maximum power = -42.73 dBm + 107 + CL + AF - 95.23 = 5.04 dBm

 $\begin{array}{l} CL = cable \mbox{ loss} = 7.70 \mbox{ dB} \\ AF = antenna \mbox{ factor} = 28.30 \mbox{ dB} \\ 107 = conversion \mbox{ from dBm to } dB\mu V \mbox{ on a } 50\Omega \mbox{ measurement system} \\ -95.23 = Conversion \mbox{ from field strength } (dB\mu V/m) \mbox{ to } EIRP \mbox{ (dBm) at a 3m measurement distance} \end{array}$ 



#### Test Method: ANSI C63.10,

1. Section(s) 11.8.1 "DTS Bandwidth, Option 1"

#### Limits of bandwidth measurements:

The 99% occupied bandwidth is displayed.

The 6dB bandwidth of the signal must be greater than 500 kHz.

#### **Test procedures:**

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW.

The 99% occupied is defined as the bandwidth at which 99% of the signal power is found. This corresponds to 20dB down from the maximum power level. The maximum power was measured with the largest resolution bandwidth possible (10MHz) and this value was recorded. The signal was then captured with a 1 MHz resolution bandwidth and the frequencies where the measurements were 20dB below the maximum power were marked. The bandwidth between these frequencies was recorded as the 99% occupied bandwidth.

The 6 dB bandwidth is defined as the bandwidth of which is higher than peak power minus 6dB.

For peak output power measurements, the EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable with 3 MHz RBW and 10 MHz VBW.

#### Deviations from test standard:

No deviation

Test setup:

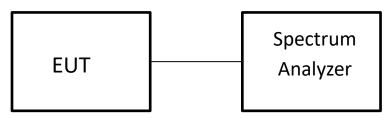



Figure 10 – Peak Output Power Measurements Test Setup

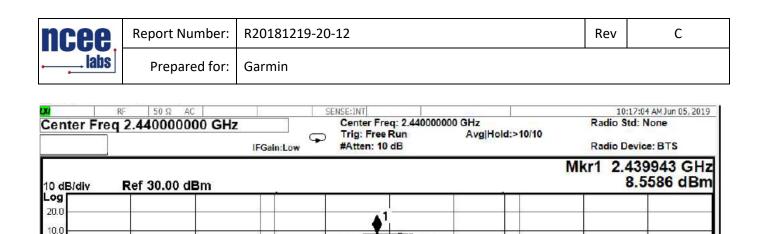
## EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

Rev

### **Test results:**

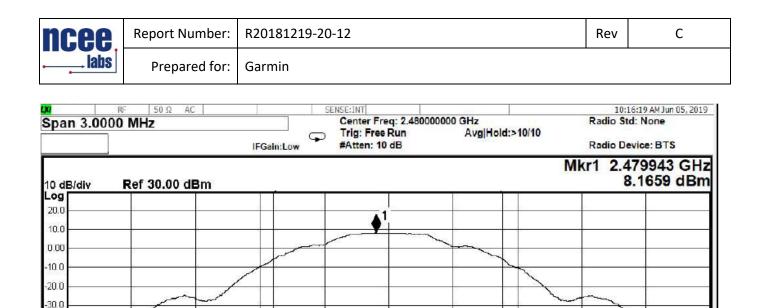
| Occupied Bandwidth |                 |                               |           |        |  |  |  |
|--------------------|-----------------|-------------------------------|-----------|--------|--|--|--|
| CHANNEL            | Mode            | CHANNEL<br>FREQUENCY<br>(MHz) | OBW (KHz) | RESULT |  |  |  |
| Low                | BT BR<br>(GFSK) | 2402                          | 1095.0    | PASS   |  |  |  |
| Mid                | BT BR<br>(GFSK) | 2440                          | 1068.0    | PASS   |  |  |  |
| High               | BT BR<br>(GFSK) | 2480                          | 1070.4    | PASS   |  |  |  |
| Low                | BT EDR 2MB      | 2402                          | 1309.1    | PASS   |  |  |  |
| Mid                | BT EDR 2MB      | 2440                          | 1278.7    | PASS   |  |  |  |
| High               | BT EDR 2MB      | 2480                          | 1263.6    | PASS   |  |  |  |
| Low                | BT EDR 3MB      | 2402                          | 1306.4    | PASS   |  |  |  |
| Mid                | BT EDR 3MB      | 2440                          | 1282.7    | PASS   |  |  |  |
| High               | BT EDR 3MB      | 2480                          | 1279.5    | PASS   |  |  |  |


## 6dB Bandwidth

| CHANNEL | Mode            | CHANNEL<br>FREQUENCY<br>(MHz) | 6dB (KHz) | RESULT |
|---------|-----------------|-------------------------------|-----------|--------|
| Low     | BT BR<br>(GFSK) | 2402                          | 649.8     | PASS   |
| Mid     | BT BR<br>(GFSK) | 2440                          | 565.0     | PASS   |
| High    | BT BR<br>(GFSK) | 2480                          | 573.6     | PASS   |
| Low     | BT EDR 2MB      | 2402                          | 1083      | PASS   |
| Mid     | BT EDR 2MB      | 2440                          | 1077      | PASS   |
| High    | BT EDR 2MB      | 2480                          | 1080      | PASS   |
| Low     | BT EDR 3MB      | 2402                          | 1092      | PASS   |
| Mid     | BT EDR 3MB      | 2440                          | 1091      | PASS   |
| High    | BT EDR 3MB      | 2480                          | 1105      | PASS   |

| ncee.       | Report Number: | R20181219-20 | )-12                                                      |                           | Rev                 | С                      |
|-------------|----------------|--------------|-----------------------------------------------------------|---------------------------|---------------------|------------------------|
|             | Prepared for:  | Garmin       |                                                           |                           |                     |                        |
| RI RI       | 50 Ω AC        | 9            | ENSE:INT                                                  |                           |                     | 12:11 AM Jun 05, 2019  |
| Span 3.0000 | MHz            | IFGain:Low   | Center Freq: 2.4020000<br>Trig: Free Run<br>#Atten: 10 dB | 00 GHz<br>Avg Hold:>10/10 | Radio St<br>Radio D | td: None<br>evice: BTS |

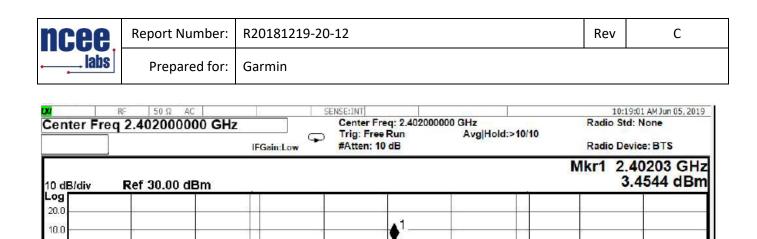
| ransmit Freq Error<br>dB Bandwidth           | 699 Hz<br>649.8 kHz | % of OBW Power<br>x dB | 99.00 %<br>-6.00 dB |                        |
|----------------------------------------------|---------------------|------------------------|---------------------|------------------------|
|                                              | 0950 MHz            |                        |                     |                        |
| Occupied Bandwidt                            | b                   | Total Power            | 15.0 dBm            |                        |
| nter 2.402 GHz<br>es BW 100 kHz              |                     | #VBW 300 kHz           |                     | Span 3 M<br>#Sweep 1 r |
| é é é                                        |                     |                        |                     |                        |
|                                              |                     |                        |                     |                        |
| - man -                                      |                     |                        |                     |                        |
|                                              |                     |                        |                     |                        |
|                                              |                     |                        |                     |                        |
|                                              |                     |                        |                     |                        |
| <u>.                                    </u> |                     | 1                      | 0.48                | <u>.</u>               |


Figure 11 – Bandwidth, Low Channel, BT BR (GFSK)



| Center 2.44 GHz<br>#Res BW 100 kHz |            | #VBW 300 kHz       |          | Span 3 MHz<br>#Sweep 1 ms |
|------------------------------------|------------|--------------------|----------|---------------------------|
| Occupied Bandwidth<br>1.0680 MHz   |            | Total Power 15.4 c |          |                           |
|                                    |            |                    |          |                           |
| Transmit Freq Error                | -1.090 kHz | % of OBW Power     | 99.00 %  |                           |
| x dB Bandwidth                     | 565.0 kHz  | x dB               | -6.00 dB |                           |

Figure 12 - Bandwidth, Mid Channel, BT BR (GFSK)


0.00 -10.0 -20.0 -30.0 -40.0



| -50.0                              |            |                |          |                           |
|------------------------------------|------------|----------------|----------|---------------------------|
| Center 2.48 GHz<br>#Res BW 100 kHz |            |                |          | Span 3 MHz<br>#Sweep 1 ms |
| Occupied Bandwidth                 |            | Total Power    | 15.1 dBm |                           |
| 1.0                                | 0704 MHz   |                |          |                           |
| Transmit Freq Error                | -4.166 kHz | % of OBW Power | 99.00 %  |                           |
| x dB Bandwidth                     | 573.6 kHz  | x dB           | -6.00 dB |                           |

Figure 13 - Bandwidth, High Channel, BT BR (GFSK)

40.0



| Center 2.402 GHz<br>#Res BW 100 kHz |                             | # <b>VBW</b> 300 kHz |          | Span 3 MHz<br>#Sweep 1 ms |
|-------------------------------------|-----------------------------|----------------------|----------|---------------------------|
| Occupied Bandwidt                   | h<br>3 <mark>091 MHz</mark> | Total Power          | 11.8 dBm |                           |
| Transmit Freq Error                 | 8.032 kHz                   | % of OBW Power       | 99.00 %  |                           |
| x dB Bandwidth                      | 1.083 MHz                   | x dB                 | -6.00 dB |                           |

Figure 14 – Bandwidth, Low Channel, BT EDR 2MB

0.00 -10.0 -20.0 -30.0 -40.0

| Report Number: |               | R20181219-20-12 | Rev | С                      |
|----------------|---------------|-----------------|-----|------------------------|
| labs           | Prepared for: | Garmin          |     |                        |
| LXI R          | RF 50 Ω AC    | SENSE:INT       | 10  | :17:48 AM Jun 05, 2019 |

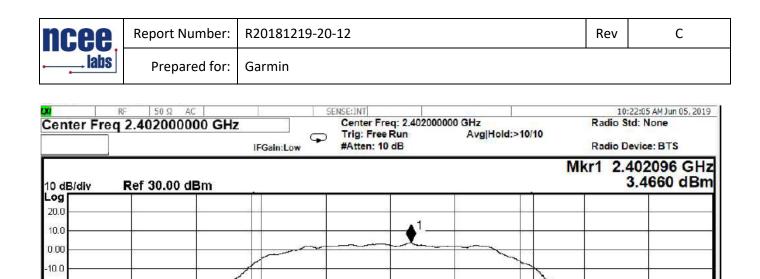
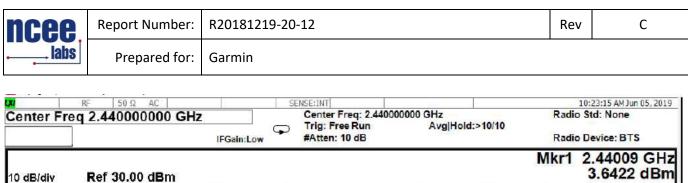

|                                  | IFGain:Low | Trig: Free Run<br>#Atten: 10 dB | Avg Hold:>10/10 | Radio Device: BTS              |
|----------------------------------|------------|---------------------------------|-----------------|--------------------------------|
| dB/div Ref 30.00 dBm             |            |                                 |                 | Mkr1 2.440027 GH<br>3.8783 dBr |
| 9                                |            |                                 |                 |                                |
| .0                               |            | 1                               |                 | _                              |
|                                  |            |                                 |                 |                                |
| 0                                |            |                                 | $\rightarrow$   | -                              |
| 0                                |            | 2 2                             |                 | and the second second          |
| 0                                |            |                                 |                 |                                |
| 0                                |            |                                 | - 23            |                                |
| 0                                |            |                                 |                 |                                |
| enter 2.44 GHz<br>Res BW 100 kHz |            | #VBW 300 kHz                    |                 | Span 3 Mł<br>#Sweep 1 n        |
| Occupied Bandwidth               |            | Total Power                     | 12.2 dBm        |                                |
|                                  | 2787 MHz   |                                 |                 |                                |
| Transmit Freq Error              | -2.543 kHz | % of OBW Power                  | 99.00 %         |                                |
| x dB Bandwidth                   | 1.077 MHz  | x dB                            | -6.00 dB        |                                |
|                                  |            |                                 |                 |                                |

Figure 15 - Bandwidth, Mid Channel, BT EDR 2MB

| ncee        | Report Number: | R20181219-20-1 | 2                                        |                           | Rev | С                      |
|-------------|----------------|----------------|------------------------------------------|---------------------------|-----|------------------------|
|             | Prepared for:  | Garmin         |                                          |                           |     |                        |
|             | K= 50 Ω AC     | SENS           | E:INT                                    |                           | 10  | :19:44 AM Jun 05, 2019 |
| Center Freq | 2.48000000 GHz |                | Center Freq: 2.4800000<br>Trig: Free Run | 00 GHz<br>Avg Hold:>10/10 |     | itd: None              |

|                        | IFGain:Low | #Atten: 10 dB  |          | Ra                    | dio Device: BTS           |
|------------------------|------------|----------------|----------|-----------------------|---------------------------|
| ) dB/div Ref 30.00 dBm | ŕ          |                |          | Mkr1                  | 2.480024 GH<br>3.2512 dBr |
| <b>) g</b>             |            |                |          |                       |                           |
| .0                     |            | <b>▲</b> 1.    |          |                       |                           |
| 0                      |            |                |          |                       |                           |
| 0                      |            |                |          |                       |                           |
| 0                      |            |                |          | -                     |                           |
| a                      | St.        |                |          | And the second second | man annon                 |
| 0                      |            |                |          |                       |                           |
| 0                      |            |                |          | -                     |                           |
| 0                      |            |                |          |                       |                           |
| enter 2.48 GHz         |            |                |          |                       | Span 3 MH                 |
| tes BW 100 kHz         |            | #VBW 300 kHz   |          |                       | #Sweep 1 m                |
| Occupied Bandwidth     | 1          | Total Power    | 11.6 dBm |                       |                           |
| 1.2                    | 2636 MHz   |                |          |                       |                           |
| Transmit Freq Error    | -7.378 kHz | % of OBW Power | 99.00 %  |                       |                           |
| x dB Bandwidth         | 1.080 MHz  | x dB           | -6.00 dB |                       |                           |
|                        |            |                |          |                       |                           |
|                        |            |                |          |                       |                           |
|                        |            |                |          |                       |                           |


Figure 16 - Bandwidth, High Channel, BT EDR 2MB



| -50.0                               |               |                |          |                           |
|-------------------------------------|---------------|----------------|----------|---------------------------|
| Center 2.402 GHz<br>#Res BW 100 kHz |               |                |          | Span 3 MHz<br>#Sweep 1 ms |
| Occupied Bandwidth<br>1.3           | n<br>3064 MHz | Total Power    | 12.0 dBm |                           |
| Transmit Freq Error                 | 9.355 kHz     | % of OBW Power | 99.00 %  |                           |
| x dB Bandwidth                      | 1.092 MHz     | x dB           | -6.00 dB |                           |
|                                     |               |                |          |                           |

Figure 17 – Bandwidth, Low Channel, BT EDR 3MB

-20.0 -30.0



| 9                                                   |               |                |        | 25.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |    |
|-----------------------------------------------------|---------------|----------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|----|
| 0                                                   | ~~            |                |        | ~~                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      |                                         |    |
| D                                                   |               |                | 2      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷                                      |                                         |    |
|                                                     | /             |                | 2      |                     | - Contraction of the second se | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~ |
| 1                                                   |               | 2              |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |    |
|                                                     | 0.9           | 8              |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      | -                                       |    |
| D                                                   |               | ×              |        | - 5 - 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷                                      |                                         |    |
| nter 2.44 GHz                                       |               | #VBW 30        | 00 kHz |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                                      | Span 3<br>#Sweep                        |    |
| nter 2.44 GHz<br>es BW 100 kHz                      | h             | #VBW 30        |        | 12.2 dBm            | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #                                      |                                         |    |
| nter 2.44 GHz<br>es BW 100 kHz<br>Occupied Bandwidt | h<br>2827 MHz | 10000-0010-234 |        | 12.2 dBn            | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #                                      |                                         |    |
| nter 2.44 GHz<br>es BW 100 kHz<br>Occupied Bandwidt |               | 10000-0010-234 |        | 12.2 dBn<br>99.00 % |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                                      |                                         |    |

Figure 18 - Bandwidth, Mid Channel, BT EDR 3MB

| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Garmin          |     |   |

| AC 85 50 Ω AC Center Freq 2.480000000 G                            | Trig: I   | SENSE:INT<br>r Freq: 2.480000000 GH<br>Free Run Avg H<br>n: 10 dB | lz<br>lold:>10/10 | 10:20:52 AM Jun<br>Radio Std: Nor<br>Radio Device:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne                    |
|--------------------------------------------------------------------|-----------|-------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 10 dB/div Ref 30.00 dBm                                            |           |                                                                   | Mkr1              | 2.480084<br>3.4525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| 20.0                                                               |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 10.0                                                               |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 0.00                                                               |           |                                                                   | $\sim$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 10.0                                                               |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 20.0                                                               | 20        |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                    |
| 30.0 processor from all and all all all all all all all all all al |           | 2 2                                                               |                   | and the second s | and the second second |
| 40.0                                                               |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 60.0                                                               |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Center 2.48 GHz<br>#Res BW 100 kHz                                 | #         | VBW 300 kHz                                                       |                   | Span<br>#Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| Occupied Bandwidth                                                 |           | Total Power                                                       | 12.1              | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| 1.2                                                                | 795 MHz   |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Transmit Freq Error                                                | 1.698 kHz | % of OBW Po                                                       | ower 99           | .00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| x dB Bandwidth                                                     | 1.105 MHz | x dB                                                              | -6.               | 00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
|                                                                    |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                    |           |                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

Figure 19 - Bandwidth, High Channel, BT EDR 3MB



## 4.4 RADIATED EMISSIONS

#### Test Method: ANSI C63.10:2013:

- 1. Section 6.5, "Radiated emissions from unlicensed wireless devices in the frequency range of 30 MHz to 1000 MHz"
- Section 6.6, "Radiated emissions from unlicensed wireless devices above 1 GHz"
- 3. Section 11.11, "Measurement in nonrestricted frequency bands"
- 4. Section 11.12, "Emissions in restricted bands"

#### Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

| FREQUENCIES<br>(MHz) | FIELD<br>STRENGTH<br>(μV/m) | MEASUREMENT<br>DISTANCE (m) |
|----------------------|-----------------------------|-----------------------------|
| 0.009-0.490          | 2400/F(kHz)                 | 300                         |
| 0.490-1.705          | 24000/F(kHz)                | 30                          |
| 1.705-30.0           | 30                          | 3                           |
| 30-88                | 100                         | 3                           |
| 88-216               | 150                         | 3                           |
| 216-960              | 200                         | 3                           |
| Above 960            | 500                         | 3                           |

#### Note about requirement from FCC Part 15.247(d) and RSS-247, Section 5.5:

In addition to the limits shown above, all emissions were also required to be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. All measurements were performed with a 1 MHz bandwidth, but the bandwidth conversion from 1 MHz to 100 kHz would be equally applied to the highest emission and the spurious emissions, so it would not effect the delta measurement.

Since the fundamental emissions was at least 20 dB over the spurious emissions limits from 15.209 and all spurious emissions were below the 15.209 limit, this requirement was met.

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 \* log \* Emission level ( $\mu$ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.



С

Rev

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

h. Intermodulation products were investigated by measuring spurious emissions with each of the two 2.4 GHz radios running in parallel with the NFC radio. No intermodulation products were found above the labs system sensitivity.



Rev

#### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

#### Deviations from test standard:

No deviation.

#### Test setup:

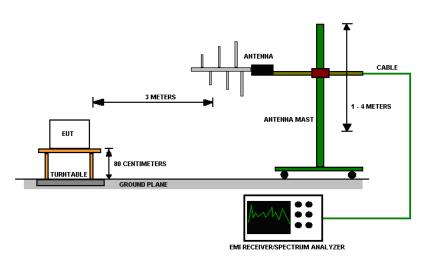



Figure 20 - Radiated Emissions Test Setup

#### EUT operating conditions

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

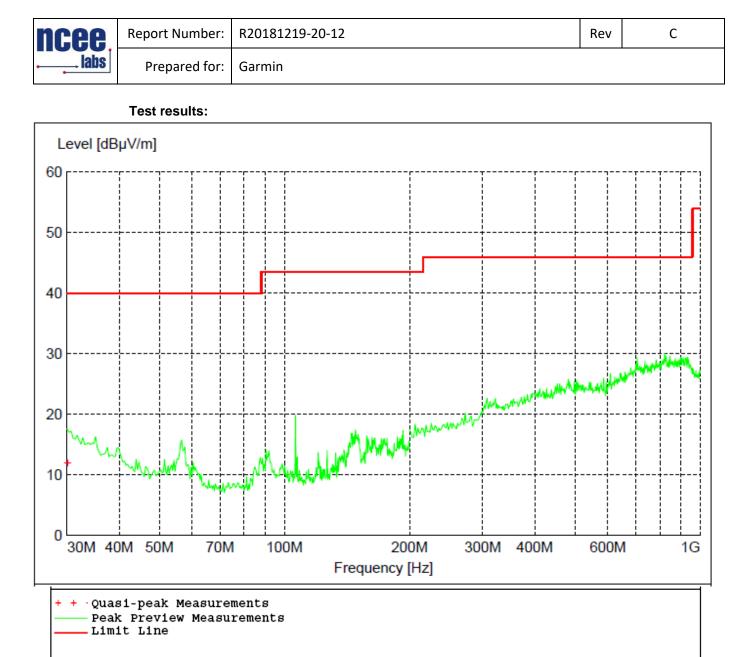



Figure 21 - Radiated Emissions Plot, Receive

#### REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

| Table 1 - Radiated Emissions Quasi- | peak Measurements, Receive |
|-------------------------------------|----------------------------|
|-------------------------------------|----------------------------|

| Frequency | Level  | Limit  | Margin | Height | Angle | Pol  |
|-----------|--------|--------|--------|--------|-------|------|
| MHz       | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |
| 30.060000 | 11.82  | 40.00  | 28.18  | 246.00 | 4.00  | VERT |



Prepared for:

Garmin

С

Level [dBµV/m] 60 50 40 30 marther WWW WWW WWWWW 20 10 0 70M 200M 30M 40M 50M 100M 300M 400M 600M 1G Frequency [Hz] Quasi-peak Measurements . Peak Preview Measurements Limit Line

#### Figure 22 - Radiated Emissions Plot

#### REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

| Frequency  | Level  | Limit  | Margin | Height | Angle  | Pol  |
|------------|--------|--------|--------|--------|--------|------|
| MHz        | dBµV/m | dBµV/m | dB     | cm.    | deg.   |      |
| 39.720000  | 10.13  | 40.00  | 29.87  | 400.00 | 80.00  | VERT |
| 57.300000  | 10.79  | 40.00  | 29.21  | 100.00 | 123.00 | VERT |
| 106.260000 | 18.35  | 43.50  | 25.15  | 128.00 | 111.00 | VERT |

| The Nebraska Center for Excellence in Electronics |               |
|---------------------------------------------------|---------------|
| 4740 Discovery Drive                              |               |
| Lincoln, NE 68521                                 | Page 34 of 70 |

2480.000000

104.55

NA

High

С

Rev

| Table 3 - Radiated Emissions Average Measurements, BT BR (GFSK) |        |        |        |        |       |      |         |  |
|-----------------------------------------------------------------|--------|--------|--------|--------|-------|------|---------|--|
| Frequency                                                       | Level  | Limit  | Margin | Height | Angle | Pol  | Channel |  |
| MHz                                                             | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |         |  |
| 2402.000000                                                     | 107.65 | NA     | NA     | 197.00 | 10.00 | VERT | Low     |  |
| 2440.000000                                                     | 106.58 | NA     | NA     | 197.00 | 10.00 | VERT | Mid     |  |

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

197.00

10.00

VERT

NA

#### Table 4 - Radiated Emissions Peak Measurements, BT BR (GFSK)

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Channel |
|-------------|--------|--------|--------|--------|-------|------|---------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |         |
| 2402.000000 | 108.41 | NA     | NA     | 197.00 | 10.00 | VERT | Low     |
| 2440.000000 | 107.29 | NA     | NA     | 197.00 | 10.00 | VERT | Mid     |
| 2480.000000 | 105.29 | NA     | NA     | 197.00 | 10.00 | VERT | High    |

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

#### Table 5 - Radiated Emissions Average Measurements, BT EDR 2MB

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Channel |
|-------------|--------|--------|--------|--------|-------|------|---------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |         |
| 2402.000000 | 100.22 | NA     | NA     | 197.00 | 10.00 | VERT | Low     |
| 2440.000000 | 100.33 | NA     | NA     | 197.00 | 10.00 | VERT | Mid     |
| 2480.000000 | 99.15  | NA     | NA     | 197.00 | 10.00 | VERT | High    |

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

#### Table 6 - Radiated Emissions Peak Measurements, BT EDR 2MB

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Channel |
|-------------|--------|--------|--------|--------|-------|------|---------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |         |
| 2402.000000 | 103.89 | NA     | NA     | 197.00 | 10.00 | VERT | Low     |
| 2440.000000 | 103.77 | NA     | NA     | 197.00 | 10.00 | VERT | Mid     |
| 2480.000000 | 102.85 | NA     | NA     | 197.00 | 10.00 | VERT | High    |

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

#### Table 7 - Radiated Emissions Average Measurements, BT EDR 3MB

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Channel |
|-------------|--------|--------|--------|--------|-------|------|---------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |         |
| 2402.000000 | 100.14 | NA     | NA     | 197.00 | 10.00 | VERT | Low     |
| 2440.000000 | 100.20 | NA     | NA     | 197.00 | 10.00 | VERT | Mid     |
| 2480.000000 | 99.31  | NA     | NA     | 197.00 | 10.00 | VERT | High    |
| 4804.200000 | 29.01  | 54.00  | 24.99  | 338.00 | 23.00 | VERT | Low     |

| The Nebraska Center for Excellence in Electronics |
|---------------------------------------------------|
| 4740 Discovery Drive                              |
| Lincoln, NE 68521                                 |



| Table 0 - Radiated Emissions Feak Measurements, DT EDR SMD |        |        |        |        |       |      |         |
|------------------------------------------------------------|--------|--------|--------|--------|-------|------|---------|
| Frequency                                                  | Level  | Limit  | Margin | Height | Angle | Pol  | Channel |
| MHz                                                        | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |         |
| 2402.000000                                                | 104.14 | NA     | NA     | 197.00 | 10.00 | VERT | Low     |
| 2440.000000                                                | 104.15 | NA     | NA     | 197.00 | 10.00 | VERT | Mid     |
| 2480.000000                                                | 103.1  | NA     | NA     | 197.00 | 10.00 | VERT | High    |
| 4804.200000                                                | 43.43  | 74.00  | 30.57  | 338.00 | 23.00 | VERT | Low     |

## Table 8 - Radiated Emissions Peak Measurements, BT EDR 3MB



С

Prepared for: Garmin

# 4.5 **POWER SPECTRAL DENSITY**

Test Method: ANSI C63.10,

1. Section 11.10.2 "Method PKPSD (peak PSD)"

### Limits of power measurements:

The maximum PSD allowed is 8 dBm.

### Test procedures:

1. The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable.

2. The resolution bandwidth was set to 3 kHz and the video bandwidth was set to 10 kHz to capture the signal. The analyzer used a peak detector in max hold mode.

### Test setup:

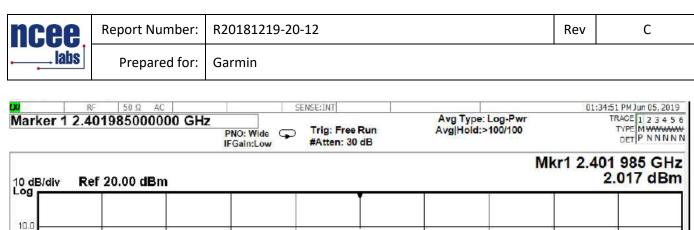
The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable on a bench top.

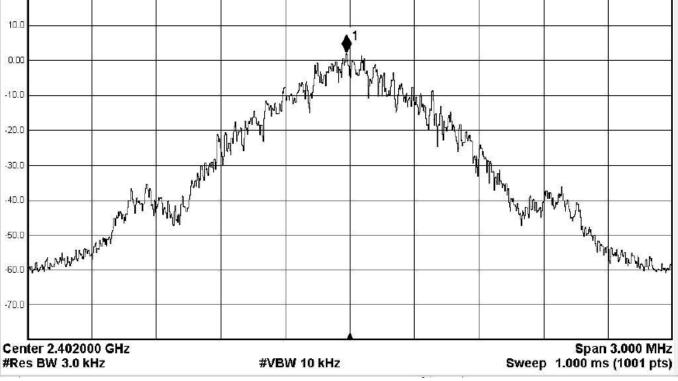
### EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.

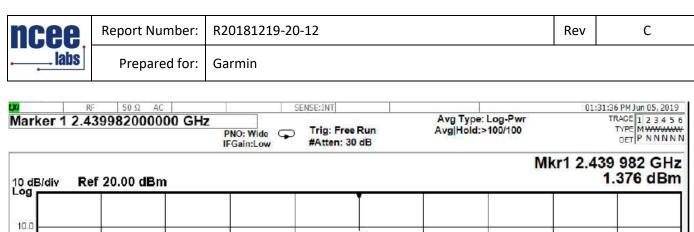
Conducted measurements were performed because the direct RF connector was verified to have a good impedance match with low loss for this test.

### Test results:





Prepared for: Garmin

|         |            | Fower 3                       | pectial Delisi   | LY        |                |        |
|---------|------------|-------------------------------|------------------|-----------|----------------|--------|
| CHANNEL | MODE       | CHANNEL<br>FREQUENCY<br>(MHz) | PEAK<br>PSD(dBm) | Method    | Limit<br>(dBm) | RESULT |
| Low     | BT BR      | 2402                          | 2.02             | Conducted | 8.00           | PASS   |
| Middle  | BT BR      | 2440                          | 1.38             | Conducted | 8.00           | PASS   |
| High    | BT BR      | 2480                          | 2.69             | Conducted | 8.00           | PASS   |
| Low     | BT EDR 2MB | 2402                          | -10.66           | Conducted | 8.00           | PASS   |
| Middle  | BT EDR 2MB | 2440                          | -10.54           | Conducted | 8.00           | PASS   |
| High    | BT EDR 2MB | 2480                          | -10.56           | Conducted | 8.00           | PASS   |
| Low     | BT EDR 3MB | 2402                          | -10.24           | Conducted | 8.00           | PASS   |
| Middle  | BT EDR 3MB | 2440                          | -10.30           | Conducted | 8.00           | PASS   |
| High    | BT EDR 3MB | 2480                          | -10.05           | Conducted | 8.00           | PASS   |


# **Power Spectral Density**

Rev









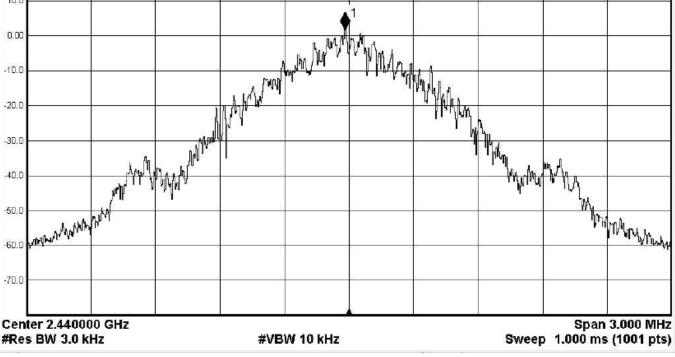
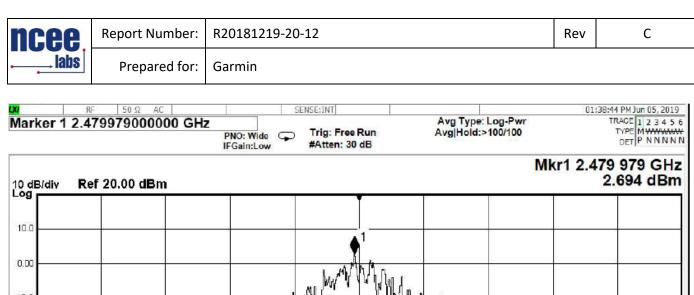




Figure 24 - Power Spectral Density, Mid Channel, BT BR (GFSK)



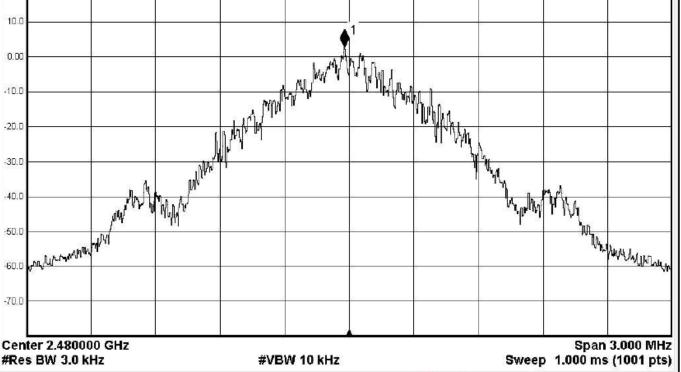
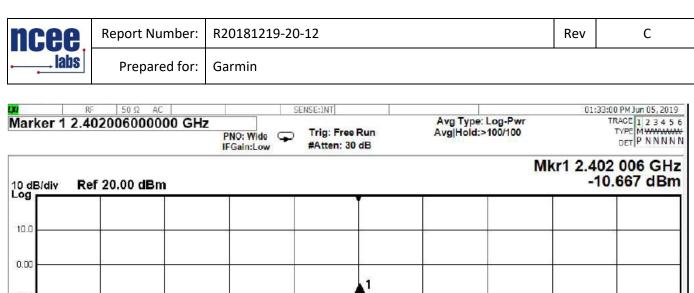




Figure 25 - Power Spectral Density, High Channel, BT BR (GFSK)



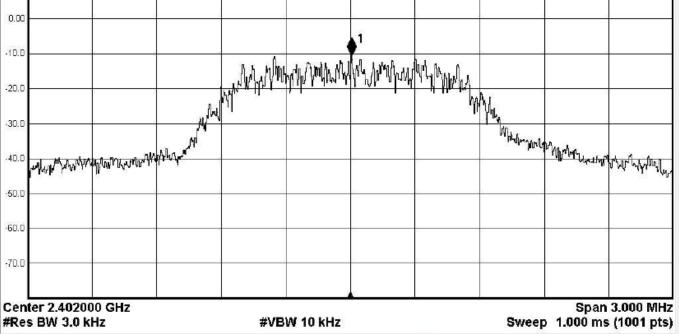
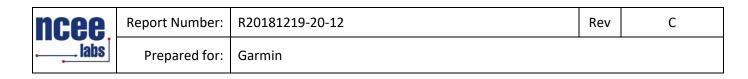




Figure 26 - Power Spectral Density, Low Channel, BT EDR 2MB



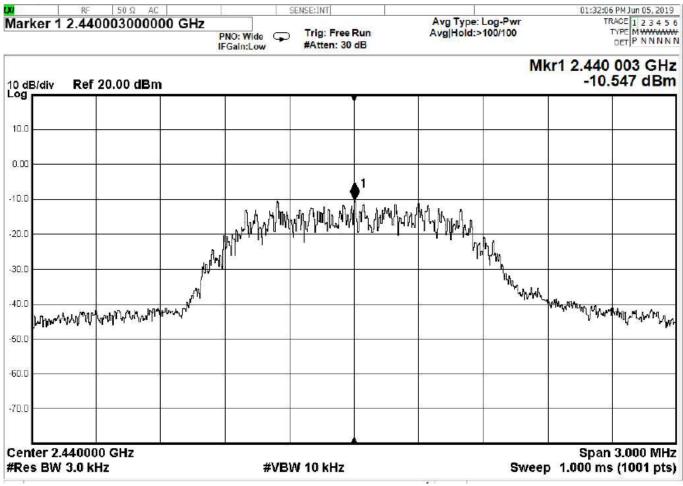
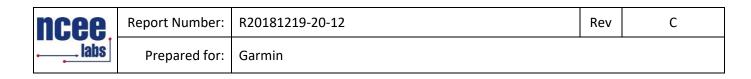




Figure 27 - Power Spectral Density, Mid Channel, BT EDR 2MB



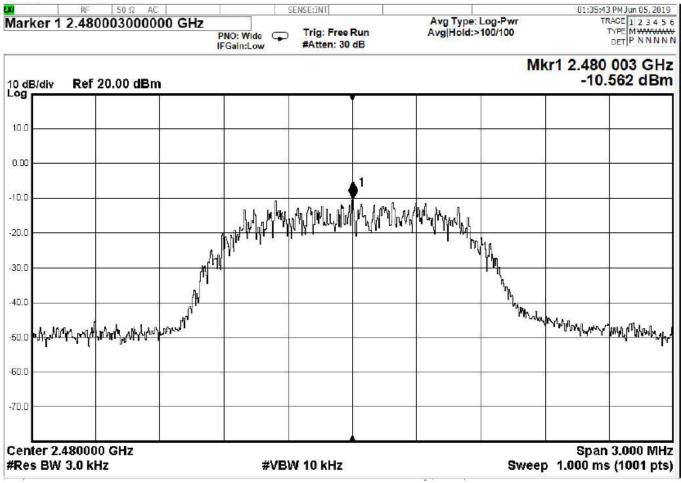
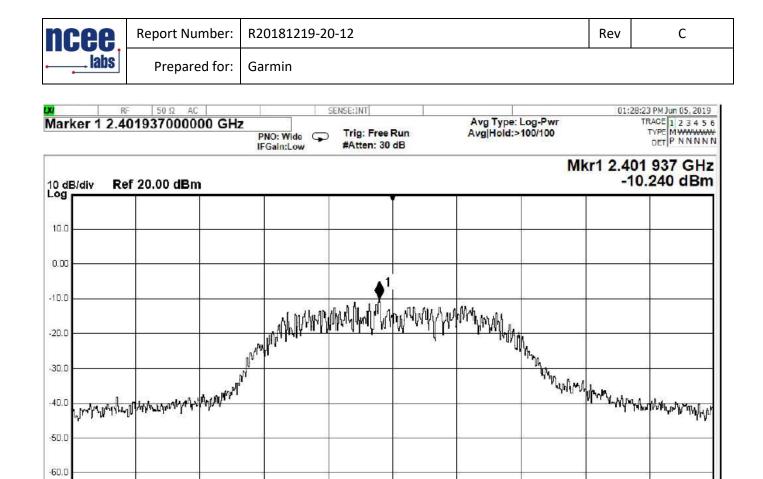




Figure 28 - Power Spectral Density, High Channel, BT EDR 2MB



Who want

Span 3.000 MHz

Sweep 1.000 ms (1001 pts)



-1D.D

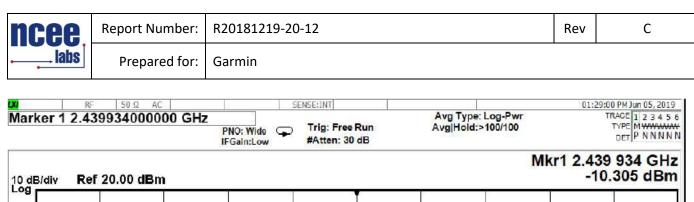
-20.0

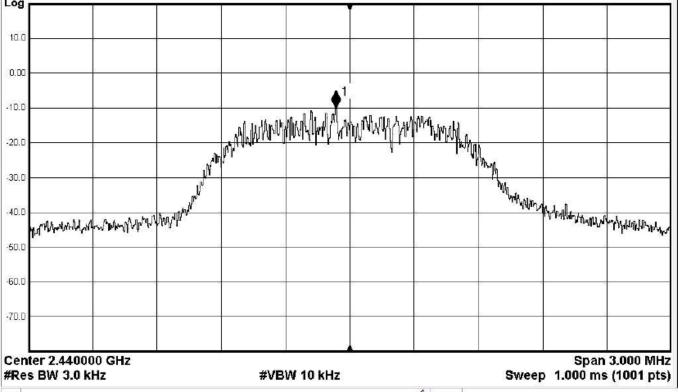
-30,D

-40.0

-50.0

-60.0


-70.0


Center 2.402000 GHz

#Res BW 3.0 kHz

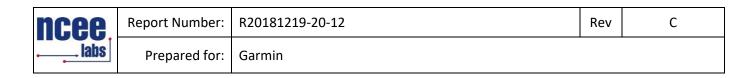

#VBW 10 kHz

Figure 29 - Power Spectral Density, Low Channel, BT EDR 3MB









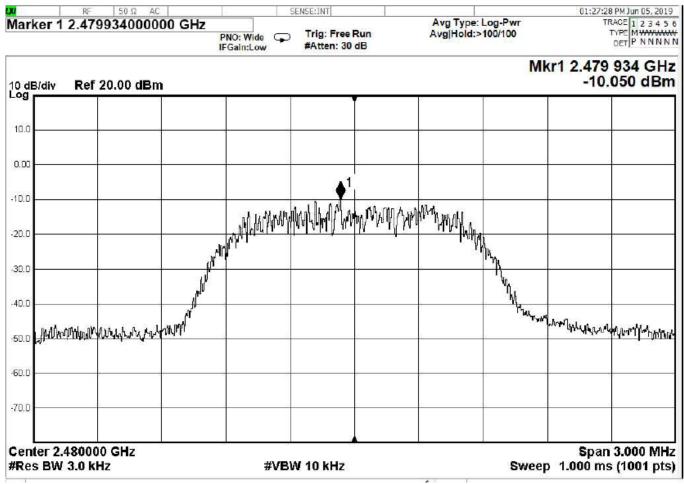



Figure 31 - Power Spectral Density, High Channel, BT EDR 3MB



Rev

С

### 4.5 BAND EDGES

Test Method: ANSI C63.10-2013, Section(s) 6.10.5

#### Limits of bandedge measurements:

For emissions outside of the allowed band of operation, the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

### Test procedures:

Measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The resolution bandwidth was set to 100kHz and the EMI receiver was used to scan from the bandedge to the fundamental frequency with a peak detector. The highest emissions level beyond the bandedge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.

To calculate the level at the bandedge frequencies, the difference between the peak and the band edge level was subtracted from the peak radiated value at the fundamental. This value was compared to the 15.209 radiated limits for compliance.

#### Deviations from test standard:

No deviation.

### Test setup:

The field strength was measured by connecting the EUT directly to the spectrum analyzer.

### EUT operating conditions:

The EUT was powered by internal battery power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range on each indicated modulation.



Prepared for: Garmin

| Tes                                | at results:     |                                                 |                                                 |                                |               |                      |        |
|------------------------------------|-----------------|-------------------------------------------------|-------------------------------------------------|--------------------------------|---------------|----------------------|--------|
| CHANNEL                            | Mode            | Band edge<br>/Measurement<br>Frequency<br>(MHz) | Relative<br>Highest out<br>of band<br>level dBm | Relative<br>Fundamental<br>dBm | Delta<br>(dB) | Min<br>Delta<br>(dB) | Result |
| Low, Continuous<br>(restricted)    | BT BR<br>(GFSK) | 2390                                            | -56.97                                          | 13.13                          | 70.10         | 54.41                | PASS   |
| High, Continuous<br>(restricted)   | BT BR<br>(GFSK) | 2483.5                                          | -51.74                                          | 12.85                          | 64.59         | 51.29                | PASS   |
| Low, Continuous<br>(unrestricted)  | BT BR<br>(GFSK) | 2400                                            | -43.88                                          | 13.13                          | 57.01         | 30.00                | PASS   |
| High, Continuous<br>(unrestricted) | BT BR<br>(GFSK) | 2483.5                                          | -52.52                                          | 12.85                          | 65.37         | 30.00                | PASS   |

\*Minimum delta = [highest fundamental peak field strength from Section 4.2] – [Part 15.209 radiated emissions limit.]

### From Section 4.2

Fundamental peak field strength at Low Channel BT BR (GFSK) = 108.41 dB $\mu$ V/m Fundamental peak field strength at High Channel BT BR (GFSK) = 105.29 dB $\mu$ V/m

Low Channel minimum delta BT BR (GFSK) =  $108.41 - 54.0 \text{ dB}\mu\text{V/m} = 54.41 \text{ dBc}$ High Channel minimum delta BT BR (GFSK) =  $105.29 - 54.0 \text{ dB}\mu\text{V/m} = 51.29 \text{ dBc}$  Rev

| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
|       | Prepared for:  | Garmin          |     |   |

| RF<br>Narker 1 2.38384                             |                   | SENSE:I          | nt<br>g: Periodic                        | Avg Typ<br>Avg Hold | e: Log-Pwr<br>:>100/100                                                                                         | 03:22:1<br>T                                 | 6 PM Jun 05, 2019<br>RACE 1 2 3 4 5<br>TYPE M WWWW<br>DET P N N N N |
|----------------------------------------------------|-------------------|------------------|------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|
| 0 dB/div Ref 20.0                                  | IFGa              | in:Low Att       | en: 30 dB                                |                     |                                                                                                                 | Mkr1 2.38<br>-56                             |                                                                     |
| og<br>10.0                                         |                   |                  | 82 6.<br>N                               | 6                   |                                                                                                                 |                                              | 20                                                                  |
| 0.0                                                |                   |                  |                                          |                     |                                                                                                                 |                                              |                                                                     |
| D.D<br>D.D                                         |                   |                  |                                          |                     |                                                                                                                 |                                              |                                                                     |
| 0.0                                                |                   | 1                |                                          |                     |                                                                                                                 |                                              |                                                                     |
| 0.0 <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> | and american      | man              | 4-000 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ne and the second   | An and the second se | <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u> | -1176-00-00                                                         |
| art 2.380000 GH:<br>Res BW 100 kHz                 | z                 | #VBW 30          | 0 kHz                                    |                     | Swe                                                                                                             | Stop 2.3<br>ep 1.000 m                       | 390000 GI<br>s (1001 pi                                             |
| R MODE TRC SCL<br>1 N 1 f<br>2<br>3                | x<br>2.383 84 GHz | Ƴ<br>-56.977 dBm | FUNCTION                                 | FUNCTION WIDTH      |                                                                                                                 | FUNCTION VALUE                               |                                                                     |
| 4<br>5<br>6<br>7                                   |                   |                  |                                          |                     |                                                                                                                 |                                              |                                                                     |
| 8<br>9<br>0<br>1                                   |                   |                  |                                          |                     |                                                                                                                 |                                              |                                                                     |

Figure 32 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak

| cee.       | Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number: R          | 20181219-20-1      | 2                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rev              | С                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| labs       | Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oared for: G       | armin              |                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |
|            | RF 50Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AC.                | SENS               | SE:INT                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03:24:           | 18 PM Jun 05, 2          |
| rker 1 2.4 | 0216475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50000 GHz          |                    | Trig: Periodic<br>Atten: 30 dB | Avg Type<br>Avg Hold                   | :: Log-Pwr<br>:>100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | TYPE MWWW<br>DET P N N N |
| dB/div R   | ef 20.00 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                                |                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lkr1 2.402<br>13 | 2 165 G                  |
|            | 01 20100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |
| ]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 5                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                  |                                | 5                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>          | 1/                       |
| )          | - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                 |                    |                                |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 1                        |
| )          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                 |                    |                                | ø                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | $\checkmark$             |
| 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                                | 5                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆3∆1 ∫           | -                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                                | 12                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X m              |                          |
| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Manana and marking | and the second and the second  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | and the second s |                  | 8                        |
|            | and a start of the |                    |                    | 208                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                        |
| j          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | * *                |                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                          |
| rt 2.3900  | 0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 5 (A)              | <b>^</b>                       | 2<br>2                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 2.          | 402350 G                 |
| es BW 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | #VBW :             | 300 kHz                        |                                        | Swee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ep 1.000 m       |                          |
| MODE TRC S | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×<br>2.402 165 GHz | 13.127 dB          | FUNCTION                       | FUNCTION WIDTH                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FUNCTION VALUE   |                          |
| Δ1 1 1     | (Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.165 MHz         | (Δ) -57.011 d      | B                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |
| N 1 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.400 000 GHz      | -43.884 dB         | m                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    | -                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |
| a a a      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |

Figure 33 - Band-edge Measurement, Low Channel, Fundamental, Peak

| cee         | Rep      | ort Number: F       | 20181219-20-12 |                                                      |                |                                         | Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                                          |
|-------------|----------|---------------------|----------------|------------------------------------------------------|----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| labs        | ] P      | Prepared for: 0     | Garmin         |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|             | RF       | 50 Ω AC             | SENSE:         | NT                                                   |                |                                         | 03:36:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 PM Jun 05, 2                            |
| rker 1 2.   | 48406    | 1000000 GHz         |                | g: Periodic<br>ten: 30 dB                            |                | be: Log-Pwr<br>d:>100/1 <mark>00</mark> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TYPE MWWW<br>DET P N N I                   |
| B/div I     | Ref 20.( | 00 dBm              |                |                                                      |                | Mkr1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 061 0 G                                    |
|             |          |                     |                |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| 0           |          |                     |                |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|             |          | 20                  |                |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| D.          | ÷.       |                     |                |                                                      | 2              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                          |
| 0           | 6        |                     |                |                                                      | Ø              | 34                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Se.                                        |
| )           |          |                     |                |                                                      | 10             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|             |          |                     |                | 7                                                    | 1              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                          |
| mon         | mar      | hand and all soon   |                |                                                      |                | 12 12<br>1911 - 1912                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94                                         |
| D.          | - 266-25 | Se astracty (       | marrian        | and and here and | men langer     | Re- morrow Manager Par                  | all all and the second s | aran ang ang ang ang ang ang ang ang ang a |
| 0           | -        |                     |                |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| rt 2.483    | 500 GH2  | 7                   | SI SI          |                                                      | 01             |                                         | Stop 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500000 G                                   |
| es BW 10    |          | -                   | #VBW 30        | 0 kHz                                                |                | Sweep                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is (1 <b>001</b> p                         |
| MODE TRC    | SCL      | ×<br>2.484 061 0 GH | z -51.742 dBm  | FUNCTION                                             | FUNCTION WIDTH | FU                                      | NCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |
|             |          | 2.464 001 0 Gr      | -01./42 UDIII  | -                                                    |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|             |          |                     |                | 2<br>2                                               |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|             |          |                     |                |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| 5<br>7<br>3 |          |                     | -              |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|             |          |                     |                |                                                      |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |

Figure 34 - Band-edge Measurement, High Channel, Restricted Frequency, Peak

10

| Cee,                     | Report Number | : R20181219-2             | 0-12                           |                       |                                         | Rev           | С                                         |
|--------------------------|---------------|---------------------------|--------------------------------|-----------------------|-----------------------------------------|---------------|-------------------------------------------|
| labs                     | Prepared for  | : Garmin                  |                                |                       |                                         |               |                                           |
| R                        | F 50 Ω AC     |                           | SENSE:INT                      |                       |                                         | 03:31         | 36 PM Jun 05, 201                         |
| arker 1 2.4              | 79992000000 G | Hz<br>PNO: Wide           | Trig: Periodic<br>Atten: 30 dB | Avg Type<br>Avg Hold  | : Log-Pwr<br>:>100/100                  |               | TRACE 1 2 3 4<br>TYPE MWWW<br>DET P N N N |
| dB/div R                 | ef 20.00 dBm  | 2010 Setu Called Localado |                                |                       | M                                       |               | 9 992 GH<br>.845 dB                       |
|                          | ~ <b>!</b>    |                           |                                | 0                     |                                         |               | 2                                         |
|                          |               |                           |                                | 5                     |                                         |               |                                           |
| 0                        |               | ~                         |                                |                       | 0                                       |               | -                                         |
| 0                        |               |                           |                                | 0                     |                                         | -             | - 24                                      |
| 0                        |               |                           |                                |                       |                                         | -             |                                           |
| 0                        |               |                           | John Marian                    | man mana              |                                         |               | 24                                        |
| 0                        |               |                           |                                | and the second second | - v- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | hann          | mm                                        |
| D                        |               |                           |                                |                       | 1                                       | 1             | - 61                                      |
| .0                       |               |                           |                                |                       |                                         |               |                                           |
| art 2.47950<br>es BW 100 |               | #VB                       | W 300 kHz                      |                       | Swee                                    |               | 483500 Gi<br>is (1 <b>001</b> pi          |
| MODE TRC SO              |               | Y                         | FUNCTION                       | FUNCTION WIDTH        | F                                       | UNCTION VALUE |                                           |
| N 1 f                    | (Δ) 3.50      | 8 MHz (Δ) -65.37          | 1 dB                           | S                     |                                         |               |                                           |
| N 1 f                    | 2.483 50      | 0 GHz -52.527             | dBm                            |                       |                                         |               |                                           |
|                          |               |                           |                                |                       |                                         |               |                                           |

Figure 35 - Band-edge Measurement, High Channel, Fundamental, Peak



Rev

Prepared for: Garmin

| CHANNEL                            | Mode          | Band edge<br>/Measurement<br>Frequency<br>(MHz) | Relative<br>Highest out<br>of band<br>level dBm | Relative<br>Fundamental<br>dBm | Delta<br>(dB) | Min<br>Delta<br>(dB) | Result |
|------------------------------------|---------------|-------------------------------------------------|-------------------------------------------------|--------------------------------|---------------|----------------------|--------|
| Low, Continuous<br>(restricted)    | BT EDR<br>2MB | 2390                                            | -57.43                                          | 3.31                           | 60.74         | 49.89                | PASS   |
| High, Continuous<br>(restricted)   | BT EDR<br>2MB | 2483.5                                          | -50.75                                          | 3.33                           | 54.08         | 48.85                | PASS   |
| Low, Continuous<br>(unrestricted)  | BT EDR<br>2MB | 2400                                            | -33.30                                          | 3.31                           | 36.61         | 30.00                | PASS   |
| High, Continuous<br>(unrestricted) | BT EDR<br>2MB | 2483.5                                          | -50.15                                          | 3.33                           | 53.48         | 30.00                | PASS   |

\*Minimum delta = [highest fundamental peak field strength from Section 4.2] – [Part 15.209 radiated emissions limit.]

### From Section 4.2

Fundamental peak field strength at Low Channel BT EDR 2MB = 103.89 dB $\mu$ V/m Fundamental peak field strength at High Channel BT EDR 2MB = 102.85 dB $\mu$ V/m

Low Channel minimum delta BT EDR 2MB =  $103.89 - 54.0 \text{ dB}\mu\text{V/m} = 49.89 \text{ dBc}$ High Channel minimum delta BT EDR 2MB =  $102.85 - 74.0 \text{ dB}\mu\text{V/m} = 48.85 \text{ dBc}$ 

| ncee.  | Report Number: | R20181219-20-12 | Rev | С |
|--------|----------------|-----------------|-----|---|
| . labs | Prepared for:  | Garmin          |     |   |

| XI RF                               | 50 Ω AC                                  | SENSE: INT                              |                                        | 03:09:04 PM Jun 05, 2019                             |
|-------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------------------|
| Marker 1 2.38013                    | 0000000 GHz<br>PNO: Wide (<br>IFGain:Low | Trig: Periodic<br>Atten: 30 dB          | Avg Type: Log-Pwr<br>Avg Hold:>100/100 | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW<br>DET P N N N N N |
| 10 dB/div Ref 20.0                  | 00 dBm                                   |                                         | Mkr                                    | 1 2.380 13 GHz<br>-57.439 dBm                        |
| 10.0                                |                                          |                                         |                                        |                                                      |
| 0.00                                |                                          |                                         |                                        | -                                                    |
| 10.0                                |                                          |                                         |                                        |                                                      |
| 20.0                                | _                                        |                                         |                                        |                                                      |
| 30.0                                | _                                        |                                         | - <u>-</u>                             |                                                      |
| 4D.D                                |                                          | -                                       |                                        | -                                                    |
| 50.0 1                              |                                          |                                         |                                        | -                                                    |
| 50.0 Arran tor                      | man marsh - 191 and marsh - Upthe        | and | iles and and a share and a share and a | - and many and many                                  |
| 70.0                                |                                          |                                         | ×                                      |                                                      |
| Start 2.380000 GH<br>Res BW 100 kHz |                                          | W 300 kHz                               |                                        | Stop 2.390000 GHz<br>.000 ms (1001 pts)              |
| MKR MODE TRC SCL                    | 2.380 13 GHz                             | -57.439 dBm                             | FUNCTION FUNCTION WIDTH                |                                                      |
| 2                                   |                                          |                                         |                                        |                                                      |
| 4<br>5<br>6                         |                                          |                                         |                                        |                                                      |
| 6                                   |                                          |                                         |                                        | · · ·                                                |

Figure 36 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak

| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Garmin          |     |   |
|       |                |                 |     |   |

|                  |                    |                               | 0Ω AC     |                          | ÷                                      | -                            | SENSE:1            | TI                   |                                        |             |                  |                       |                                         |              |                  | 17 PM Jun 0        |     |
|------------------|--------------------|-------------------------------|-----------|--------------------------|----------------------------------------|------------------------------|--------------------|----------------------|----------------------------------------|-------------|------------------|-----------------------|-----------------------------------------|--------------|------------------|--------------------|-----|
| rke <b>r</b> 2   | 2Δ                 | -2.024                        | 567444    | 1                        | PNO: F<br>FGain:l                      | ]<br>ast Ģ⊃<br>Low           |                    | : Period<br>en: 30 d |                                        |             | Avg T<br>Avg H   | ype: Log<br>old:>100/ | -Pwr<br>100                             |              |                  | TYPE MW<br>DET P N | MWW |
| B/div            | R                  | ef 20.0                       | 0 dBm     |                          |                                        |                              |                    |                      |                                        |             |                  |                       |                                         | ΔM           |                  | 2.025  <br>36.601  |     |
|                  |                    |                               | -         |                          |                                        |                              |                    |                      |                                        |             | <u></u>          |                       |                                         |              |                  | ^1                 |     |
|                  |                    |                               |           |                          | -                                      |                              |                    |                      |                                        |             |                  |                       |                                         | _            | -/               |                    |     |
|                  |                    | 35                            |           |                          |                                        |                              |                    |                      |                                        |             |                  |                       |                                         | 241          | 1                |                    |     |
|                  |                    |                               |           |                          |                                        |                              |                    |                      |                                        |             | 1 and the second |                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 3            |                  | -                  |     |
| ~                |                    |                               |           |                          |                                        |                              |                    |                      |                                        | · ·····     | 20               |                       |                                         |              |                  |                    |     |
| )<br>            | ^~~~               | ~~~~~                         | <u></u>   | Cm Alman                 | nn                                     | مسمامتهم                     |                    | m                    |                                        | - Andrewson |                  | 84                    |                                         |              |                  |                    |     |
|                  | ~~~~               |                               |           | ᡣᢍᠰᡗ᠆᠆ᠬ                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | marlana                      | and a construction |                      |                                        |             |                  |                       |                                         |              |                  | 5<br>              |     |
| rt 2.3           |                    | 00 GHz                        |           | <u>^~~</u> ~~            | <u></u>                                |                              | W 300              | ) kHz                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ~~~~        |                  |                       | Swee                                    | Si<br>ep 1.0 | top 2.4<br>000 m | 402814<br>s (1001  | GP  |
| rt 2.3<br>s BW   | V 10               | 00 GHz<br>0 kHz               | ×         |                          |                                        | #VB)                         |                    | ) kHz                | TION                                   | FUNCT       |                  |                       | 2000-2010/2007                          | ep 1.0       | top 2.4<br>000 m | 402814<br>s (1001  | Gp  |
| Int 2.3<br>es BW | V 10<br>TRC S      | 00 GHz<br>0 kHz<br>CL         | ×<br>2.40 | 02 019 GHz               |                                        | #VB)<br>3,309                | dBm                | Nessonar 1           | TION                                   | FUNCT       | ION WIDTH        |                       | 2000-2010/2007                          | ep 1.0       | 000 m            | 402814<br>s (1001  | G   |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz               | ×<br>2.40 | 02 019 GHz<br>-2.025 MHz | (Δ)                                    | #VB)<br>¥<br>3.309<br>-36.60 | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       | ION WIDTH        |                       | 2000-2010/2007                          | ep 1.0       | 000 m            | 402814<br>s (1001  | G   |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz<br>f<br>f (Δ) | ×<br>2.40 | 02 019 GHz               | (Δ)                                    | #VB)<br>3,309                | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       | ION WIDTI-       |                       | 2000-2010/2007                          | ep 1.0       | 000 m            | 402814<br>s (1001  | Gi  |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz<br>f<br>f (Δ) | ×<br>2.40 | 02 019 GHz<br>-2.025 MHz | (Δ)                                    | #VB)<br>¥<br>3.309<br>-36.60 | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       |                  |                       | 2000-2012/2017                          | ep 1.0       | 000 m            | 402814<br>s (1001  | GI  |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz<br>f<br>f (Δ) | ×<br>2.40 | 02 019 GHz<br>-2.025 MHz | (Δ)                                    | #VB)<br>¥<br>3.309<br>-36.60 | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       |                  |                       | 2000-2012/2017                          | ep 1.0       | 000 m            | 402814<br>s (1001  | GI  |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz<br>f<br>f (Δ) | ×<br>2.40 | 02 019 GHz<br>-2.025 MHz | (Δ)                                    | #VB)<br>¥<br>3.309<br>-36.60 | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       |                  |                       | 2000-2012/2017                          | ep 1.0       | 000 m            | 402814<br>s (1001  | G   |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz<br>f<br>f (Δ) | ×<br>2.40 | 02 019 GHz<br>-2.025 MHz | (Δ)                                    | #VB)<br>¥<br>3.309<br>-36.60 | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       | ION WIDT-        |                       | 2000-2012/2017                          | ep 1.0       | 000 m            | 402814<br>s (1001  | G   |
| rt 2.3<br>es BW  | V 10<br>TRG 9<br>1 | 00 GHz<br>0 kHz<br>f<br>f (Δ) | ×<br>2.40 | 02 019 GHz<br>-2.025 MHz | (Δ)                                    | #VB)<br>¥<br>3.309<br>-36.60 | dBm<br>1 dB        | Nessonar 1           | TION                                   | FUNCT       |                  |                       | 2000-2012/2017                          | ep 1.0       | 000 m            | 402814<br>s (1001  | G   |

Figure 37 - Band-edge Measurement, Low Channel, Fundamental, Peak

| cee.                  | Report Numbe | er: R2018121                   | 9-20-12                                  |                         |                                        | Rev                   | С                   |
|-----------------------|--------------|--------------------------------|------------------------------------------|-------------------------|----------------------------------------|-----------------------|---------------------|
| labs                  | Prepared fo  | or: Garmin                     |                                          |                         |                                        |                       |                     |
|                       | F 50 Ω AC    |                                | SENSE:INT                                |                         |                                        |                       | 39 PM Jun 05, 2     |
| ker 1 2.4             | 83566000000  | GHZ<br>PNO: Fast<br>IFGain:Low | Trig: Perio<br>Atten: 30                 | dic A                   | vg Type: Log-Pwr<br>/g Hold:>100/100   | 1                     | TYPE MWW<br>DET PNN |
| B/div R               | ef 20.00 dBm |                                |                                          |                         | Mki                                    | 1 2.483 5             | 566 0 G             |
|                       |              |                                |                                          |                         |                                        |                       | 1                   |
|                       | o.c. 8       |                                |                                          | -                       |                                        |                       |                     |
|                       |              |                                |                                          |                         |                                        |                       |                     |
|                       |              |                                |                                          | 0                       |                                        | -                     |                     |
|                       |              |                                |                                          |                         |                                        | -                     | -                   |
| 1                     |              |                                |                                          | 2                       |                                        | -                     | 0                   |
| mon                   |              |                                |                                          |                         |                                        | - 6                   | 94                  |
|                       |              | waare and a water              | an a | have bar and the second | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -                     | n when              |
|                       |              |                                |                                          |                         |                                        |                       |                     |
| t 2.48350<br>s BW 100 |              | #                              | VBW 300 kHz                              | ł                       | Swee                                   | Stop 2.3<br>p 1.000 m | 500000 0<br>s (1001 |
| MODE TRC SO           |              |                                |                                          | CTION FUNCTION V        | NIDTH                                  | FUNCTION VALUE        |                     |
| NII                   | 2.483 56     | 6 U GHZ -5U                    | .753 dBm                                 |                         |                                        |                       |                     |
|                       | 2            |                                |                                          |                         |                                        |                       |                     |
|                       |              |                                |                                          |                         |                                        |                       |                     |

Figure 38 - Band-edge Measurement, High Channel, Restricted Frequency, Peak

| Prepared for:         Garmin           Inter 3 2.483500000000 GHz         SENSE:INT         03:27:49 PM Jm 00           Inter 3 2.483500000000 GHz         Trig: Periodic Atten: 30 dB         Avg Type: Log-Pwr AvgIHoid:>100/100         Trie: Priodic Atten: 30 dB           Image: Sense: Introduct atten: 30 dB         Mkr3 2.483 500 0         October 100         Trie: Priodic Atten: 30 dB           Image: Sense: Introduct atten: 30 dB         Mkr3 2.483 500 0         October 100         Trie: Priodic Atten: 30 dB           Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         Mkr3 2.483 500 0         -50.150 c           Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         -50.150 c           Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         -50.150 c           Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         -50.150 c           Image: Sense: Introduct atten: 30 dB         -50.150 c           Image: Sense: Introduct atten: 30 dB         Image: Sense: Introduct atten: 30 dB         Image: Sense: Sense: Introduct atten: 30 dB         -50.150 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inbs         Prepared for:         Garmin           R         50 Ω         AC         SENSE:INT         03:27:19 PM Jun 05.           Ker 3 2.483500000000 GHz         Trig: Periodic         Avg Type: Log-Pwr<br>Avg Hold:>100/100         Trig: Periodic           B/div         Ref 20.00 dBm         Garmin         Mkr3 2.483 500 G           B/div         Ref 20.00 dBm         -50.150 dI           Image: Compared for:         1         Image: Compared for:         2           Image: Compared for:         1         Image: Compared for:         Compared for:         Compared for:           Image: Compared for:         Image: Compared for:         Image: Compared for:         Compared for:         Compared for:         Compared for:           Image: Compared for:         Image: Compared for:         Image: Compared for:         Image: Compared for:         Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cee,       | Report Numbe  | r: R20181219-20            | )-12                     |                         |                    | Rev                   | С                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------------------------|--------------------------|-------------------------|--------------------|-----------------------|-----------------------|
| International system         Avg Type: Log-Pwr<br>Avg Hold:>100/100         Trace 1   2<br>Type: Log-Pwr<br>Avg Hold:>100/100         Trace 1   2<br>Type: Log-Pwr<br>Avg Hold:>100/100         Trace 1   2<br>Type: Log-Pwr<br>Avg Hold:>100/100           dB/div         Ref 20.00 dBm         -50.150 c         -50.150 c           0         1         -50.150 c         -50.150 c           0         -1         -1         -1         -1           0         -1         -1         -1         -1           0         -1         -1         -1         -1         -1           0         -1         -1         -1         -1         -1           0         -1         -1         -1         -1         -1           0         -1         -1         -1 </td <td>ker 3 2.483500000000 GHz         PNO: Wide<br/>IFGain:Low         Trig: Periodic<br/>Atten: 30 dB         Avg Type: Log-Pwr<br/>Avg Hold:&gt;100/100         Trig: Operation<br/>Type: Log-Pwr<br/>Avg Hold:&gt;100/100           B/div         Ref 20.00 dBm        </td> <td></td> <td>Prepared fo</td> <td>r: Garmin</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ker 3 2.483500000000 GHz         PNO: Wide<br>IFGain:Low         Trig: Periodic<br>Atten: 30 dB         Avg Type: Log-Pwr<br>Avg Hold:>100/100         Trig: Operation<br>Type: Log-Pwr<br>Avg Hold:>100/100           B/div         Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Prepared fo   | r: Garmin                  |                          |                         |                    |                       |                       |
| PNO: Wide<br>IF Gain:Low         Trig: Periodic<br>Atten: 30 dB         Avg Hold:>100/100         Type[Mw<br>orr P: N           dB/div         Ref 20.00 dBm         -50.150 d         -50.150 d           0         1         -         -         -50.150 d           0         1         -         -         -         -           0         1         -         -         -         -         -           0         1         -         -         -         -         -         -           0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>PNO: Wide<br/>IF Gain:Low         Trig: Periodic<br/>Atten: 30 dB         Avg Hold:&gt;100/100         Trig: Pinn<br/>DEP NN           B/div         Ref 20.00 dBm         -50.150 dI         -50.150 dI           1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td> <td>1</td> <td>RF 50 Ω AC</td> <td></td> <td>ENSE:INT</td> <td></td> <td></td> <td>03:27:4</td> <td>9 PM Jun 05, 20</td>                                                                                                                                                                                                                                                                                                                                                                         | PNO: Wide<br>IF Gain:Low         Trig: Periodic<br>Atten: 30 dB         Avg Hold:>100/100         Trig: Pinn<br>DEP NN           B/div         Ref 20.00 dBm         -50.150 dI         -50.150 dI           1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1          | RF 50 Ω AC    |                            | ENSE:INT                 |                         |                    | 03:27:4               | 9 PM Jun 05, 20       |
| dB/div         Ref 20.00 dBm         -50.150 d           0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B/div Ref 20.00 dBm -50.150 dB<br>1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rker 3 2.4 | 83500000000 G | PNO: Wide                  |                          | Avg Type:<br>Avg Hold:> | Log-Pwr<br>100/100 | т                     | TYPE MWWW<br>DET PNNN |
| Number         Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Image: Non-Line         Image: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bidiv R    | ef 20.00 dBm  | 2000 12 40 40 40 40 10 200 | CONTRACTOR OF CONTRACTOR |                         | Mk                 |                       |                       |
| Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Image: Non-State         Control Non-State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                            | 1                        |                         |                    |                       |                       |
| Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Image: Non-State         Control Non-State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>04 02 | - Lana        |                            |                          |                         |                    |                       |                       |
| MODE         TRC         Science         Stop 2.483500           A1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Non-State         Control Non-State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3          |               |                            |                          |                         |                    |                       |                       |
| MODE         TCI SCI         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         1         2.480 020 GHz         3.332 dBm         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td>Image: Non-State         Control Non-State</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>с в.</td> <td></td> <td>8</td> | Image: Non-State         Control Non-State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                            |                          |                         | с в.               |                       | 8                     |
| Image: state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image: Non-State         Control Non-State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               | mana                       |                          | ¢                       |                    |                       |                       |
| MODE         TRC         Stop         2.483500           Λ         1         1         2.480 020 GHz         3.332 dBm           Λ         1         1         2.480 020 GHz         3.332 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: state | 22         |               |                            | X . 2000                 | man .                   |                    |                       | 121                   |
| Mode         X         Y         Function         Function         Width         Function         Function         Width         Function         Value         Function         Function         Value         Function         Function <t< td=""><td>S BW 100 kHz         #VBW 300 kHz         Sweep         1.000 ms (1001 ms)           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           Δ1         1         f         (Δ)         -53.481 dB         FUNCTION         FUNCTION</td><td></td><td></td><td>6 (C)</td><td>2</td><td>A COMPANY</td><td>monorman</td><td>and the second second</td><td>2.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S BW 100 kHz         #VBW 300 kHz         Sweep         1.000 ms (1001 ms)           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           Δ1         1         f         (Δ)         -53.481 dB         FUNCTION         FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |               | 6 (C)                      | 2                        | A COMPANY               | monorman           | and the second second | 2.                    |
| Mode         TRC Sci         X         Y         Function         Function         Function         Function         Function         Value           N         1         f         2.480 020 GHz         3.332 dBm         53.481 dB         54.480 mHz         55.480 mHz <td< td=""><td>S BW 100 kHz         #VBW 300 kHz         Sweep         1.000 ms (1001 ms)           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           Δ1         1         f         (Δ)         -53.481 dB         FUNCTION         FUNCTION</td><td></td><td>-</td><td>6 %</td><td></td><td>¢ .</td><td>i i</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S BW 100 kHz         #VBW 300 kHz         Sweep         1.000 ms (1001 ms)           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           Δ1         1         f         (Δ)         -53.481 dB         FUNCTION         FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | -             | 6 %                        |                          | ¢ .                     | i i                |                       |                       |
| Int 2.479500 GHz         Stop 2.483500           es BW 100 kHz         #VBW 300 kHz         Sweep 1.000 ms (1001           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         A480 MHz (Δ)         -53.481 dB         -53.481 dB         A480 MHz (Δ)         -53.481 dB         -53.481 dB         -53.481 dB         -53.481 dB         -53.481 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S BW 100 kHz         #VBW 300 kHz         Sweep         1.000 ms (1001 ms)           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           Δ1         1         f         (Δ)         -53.481 dB         FUNCTION         FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10         |               |                            |                          |                         |                    |                       | 1                     |
| es BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001<br>MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE<br>N 1 f 2.480 020 GHz 3.332 dBm<br>Δ1 1 f (Δ) 3.480 MHz (Δ) -53.481 dB<br>N 1 f 2.483 500 GHz -50.150 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S BW 100 kHz         #VBW 300 kHz         Sweep         1.000 ms (1001 ms)           MODE TRG SQL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480 020 GHz         3.332 dBm         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           Δ1         1         f         (Δ)         -53.481 dB         FUNCTION         FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D:         | -             |                            |                          |                         |                    |                       |                       |
| MODE         TRC         SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480         020         GHz         3.332         dBm         6           Δ1         1         f         (Δ)         3.480         MHz         (Δ)         -53.481         dB         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MODE         TRC         SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         2.480         020         GHz         3.332         dBm         6           Δ1         1         f         (Δ)         3.480         MHz         (Δ)         -53.481         dB         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |               |                            | •                        |                         | A                  | Stop 2.4              | 83500 G               |
| N         1         f         2.480 020 GHz         3.332 dBm           Δ1         1         f         (Δ)         3.480 MHz         (Δ)         -53.481 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N         1         f         2.480 020 GHz         3.332 dBm           Δ1         1         f         (Δ)         3.480 MHz         (Δ)         -53.481 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es BW 100  | ) kHz         | #VB\                       | V 300 kHz                |                         | Sweep              | 1 <b>.00</b> 0 m      | s (1 <b>001</b> p     |
| Δ1 1 f (Δ) 3.480 MHz (Δ) -53.481 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Δ1 1 f (Δ) 3.480 MHz (Δ) -53.481 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |               | Y 2220                     |                          | FUNCTION WIDTH          | FU                 | NCTION VALUE          |                       |
| N 1 f 2.483 500 GHz -50.150 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N 1 f 2.483 500 GHz -50.150 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               | 80 MHz (Δ) -53.48          | 1 dB                     | 9                       |                    |                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Δ1 1 f     |               | 00.011                     | Das                      | 2                       |                    |                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Δ1 1 f     | 2.483 5       | 00 GHZ -50.150             | mac                      | 9                       |                    |                       |                       |

Figure 39 - Band-edge Measurement, High Channel, Fundamental, Peak



Rev

Prepared for: Garmin

| CHANNEL                            | Mode          | Band edge<br>/Measurement<br>Frequency<br>(MHz) | Relative<br>Highest out<br>of band<br>level dBm | Relative<br>Fundamental<br>dBm | Delta<br>(dB) | Min<br>Delta<br>(dB) | Result |
|------------------------------------|---------------|-------------------------------------------------|-------------------------------------------------|--------------------------------|---------------|----------------------|--------|
| Low, Continuous<br>(restricted)    | BT EDR<br>3MB | 2390                                            | -57.30                                          | 3.40                           | 60.70         | 50.14                | PASS   |
| High, Continuous<br>(restricted)   | BT EDR<br>3MB | 2483.5                                          | -50.06                                          | 3.18                           | 53.24         | 49.10                | PASS   |
| Low, Continuous<br>(unrestricted)  | BT EDR<br>3MB | 2400                                            | -33.40                                          | 3.40                           | 36.80         | 30.00                | PASS   |
| High, Continuous<br>(unrestricted) | BT EDR<br>3MB | 2483.5                                          | -52.80                                          | 3.18                           | 55.98         | 30.00                | PASS   |

\*Minimum delta = [highest fundamental peak field strength from Section 4.2] – [Part 15.209 radiated emissions limit.]

### From Section 4.2

Fundamental peak field strength at Low Channel BT EDR 3MB = 104.14 dB $\mu$ V/m Fundamental peak field strength at High Channel BT EDR 3MB = 103.10 dB $\mu$ V/m

Low Channel minimum delta BT EDR 3MB =  $104.14 - 54.0 \text{ dB}\mu\text{V/m} = 50.14 \text{ dBc}$ High Channel minimum delta BT EDR 3MB =  $103.10 - 54.0 \text{ dB}\mu\text{V/m} = 49.10 \text{ dBc}$ 

| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
|       | Prepared for:  | Garmin          |     |   |

| KF 50                                 | 0 Ω AC                                 | SENSE: IN                      |                    |                              | 03:15:54 PM Jun 05, 2019              |
|---------------------------------------|----------------------------------------|--------------------------------|--------------------|------------------------------|---------------------------------------|
| Marker 1 2.389740                     | 0000000 GHz<br>PNO: Wide<br>IFGain:Low | Trig: Periodic<br>Atten: 30 dB |                    | ype: Log-Pwr<br>old:>100/100 | TRACE 1 2 3 4 5 0<br>TYPE M           |
| 10 dB/div Ref 20.0                    | 0 dBm                                  |                                |                    | Mkr                          | 1 2.389 74 GHz<br>-57.296 dBm         |
| Log                                   |                                        |                                |                    |                              |                                       |
| 10.0                                  |                                        |                                |                    |                              | 6.                                    |
| 0.00                                  |                                        |                                |                    |                              |                                       |
| -10.0                                 |                                        |                                | -                  |                              |                                       |
| -20.0                                 |                                        |                                |                    |                              |                                       |
| -30.D                                 |                                        | _                              |                    |                              |                                       |
| -40.0                                 |                                        |                                |                    |                              |                                       |
| -50.0                                 |                                        |                                |                    |                              | <b>_</b> 1                            |
| .60.0                                 |                                        |                                | manager            | ware mary and                |                                       |
| -70.0                                 |                                        |                                | - 25 - 15 - 16<br> | 1995 (2006) VIIIS            | 5 ki ki (1997)                        |
|                                       |                                        |                                |                    |                              |                                       |
| Start 2.380000 GHz<br>#Res BW 100 kHz |                                        | 3W 300 kHz                     |                    |                              | top 2.390000 GHz<br>000 ms (1001 pts) |
| MKR MODE TRC SCL                      | ×                                      | Y                              | FUNCTION           | FUNCTION WIDTH               | FUNCTION VALUE                        |
| 1 N 1 f                               | 2.389 74 GHz                           | -57.296 dBm                    |                    |                              |                                       |
| 2                                     |                                        |                                |                    |                              |                                       |
| 4                                     | 2 ×                                    | 2                              |                    |                              |                                       |
| 5                                     |                                        |                                |                    | -                            |                                       |
| 6<br>7<br>8<br>9<br>10                |                                        |                                |                    |                              |                                       |
| 8                                     |                                        |                                |                    |                              |                                       |
| 9                                     | 24                                     |                                |                    | 55                           |                                       |
| 10                                    |                                        |                                |                    |                              |                                       |
|                                       | d                                      |                                |                    | t                            |                                       |
|                                       |                                        |                                |                    |                              |                                       |

Figure 40 - Band-edge Measurement, Low Channel, Restricted Frequency, Peak

| ICEE                |     | Report Number: F              | 20181219-20-12   |                         |                   |                           | Rev                    | С                   |
|---------------------|-----|-------------------------------|------------------|-------------------------|-------------------|---------------------------|------------------------|---------------------|
| lab                 | S   | Prepared for: 0               | Garmin           |                         |                   |                           |                        |                     |
|                     | RF  | 50 Ω AC                       | SENSE:II         | UT                      |                   |                           | 02:15:                 | 17 PM Jun 05.       |
| arker 1             |     | 2083336074 GHz                | PNO: Fast C Trig | : Periodic<br>en: 30 dB | Avg Ty<br>Avg Hol | pe: Log-Pwr<br>d:>100/100 |                        | TYPE MWA            |
| dB/div              | Ref | 20.00 dBm                     |                  |                         |                   | M                         | lkr1 2.402<br>3        | 2 083 G<br>.398 d   |
| <b>og</b><br>0.0    |     |                               |                  | · · · ·                 |                   |                           |                        | <b>1</b>            |
| ).00                |     | c                             |                  |                         | 5                 |                           | 5.                     | ~                   |
| 0.0                 |     |                               |                  |                         |                   |                           |                        |                     |
| 0.0                 |     |                               |                  |                         |                   |                           |                        |                     |
| IO. D               |     |                               |                  |                         |                   | 0                         | 341mm                  | 2<br>()             |
| 0.0                 |     |                               |                  |                         |                   |                           | 1                      |                     |
| 50.0                |     |                               |                  |                         | m                 |                           |                        |                     |
| 0.0                 | m   | m                             | mon              |                         |                   |                           |                        | -                   |
| 70.0                |     |                               |                  |                         |                   |                           |                        |                     |
| 0.0                 |     |                               |                  |                         |                   |                           |                        |                     |
| tart 2.39<br>Res BW |     |                               | #VBW 30          | 0 kHz                   |                   | Swee                      | Stop 2.4<br>ep 1.000 m | 402814 (<br>s (1001 |
| KR MODE TR          |     | ×                             | Y                | FUNCTION                | FUNCTION WIDTH    |                           | FUNCTION VALUE         |                     |
| 1 N 1<br>2 Δ1 1     | f   | 2.402 083 GH<br>(Δ) -2.083 MH |                  |                         |                   |                           |                        |                     |
| 3 N 1               | f   | 2.400 000 GH                  |                  |                         |                   |                           |                        |                     |
| 5                   |     |                               |                  |                         |                   |                           |                        |                     |
| 6                   |     |                               |                  |                         |                   |                           |                        |                     |
| 8                   | 11  |                               |                  |                         |                   |                           |                        |                     |

Figure 41 - Band-edge Measurement, Low Channel, Fundamental, Peak

10

| cee.          | Report Num       | nber: R2  | 20181219-20 | )-12                 |                 |                                        |                    | Rev            | С                                         |
|---------------|------------------|-----------|-------------|----------------------|-----------------|----------------------------------------|--------------------|----------------|-------------------------------------------|
| labs          | Preparec         | for: G    | armin       |                      |                 |                                        |                    |                |                                           |
| 1             | RF 50Ω AC        |           |             | ENSE:INT             |                 |                                        |                    | 03:38          | 24 PM Jun 05, 20                          |
|               | 8350000000       |           | PNO: Fast   | Trig: Pe<br>Atten: 3 | riodic<br>30 dB | Avg Type<br>Avg Hold:                  | Log-Pwr<br>100/100 |                | TRACE 1 2 3 4<br>TYPE MWWW<br>DET P N N N |
| B/div R       | ef 20.00 dBm     |           |             |                      |                 |                                        | Mkr                | 1 2.483<br>-50 | 500 0 GI                                  |
|               |                  |           |             |                      |                 |                                        |                    |                |                                           |
| ]             |                  |           |             |                      |                 | 5                                      | 10                 |                |                                           |
|               |                  |           |             |                      |                 |                                        |                    |                |                                           |
| ):            |                  |           |             |                      |                 |                                        |                    |                |                                           |
|               |                  |           |             |                      |                 |                                        | 0.<br>             |                | -                                         |
| 1             |                  |           |             |                      |                 |                                        | 0                  | -              | -                                         |
| km.           | -                |           |             |                      | 2               |                                        | 14                 |                |                                           |
| ) how we want | Mary mary solars |           |             |                      | man man         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | · ·····            |                | -                                         |
| i <u> </u>    | -                |           | -           |                      | -               |                                        |                    | -              | -                                         |
| rt 2.48350    | 10 GHz           |           |             |                      |                 | 1                                      |                    | Stop 2         | 500000 GI                                 |
| es BW 100     |                  |           | #VB\        | V 300 ki             | łz              |                                        | Swee               | p 1.000 m      | is (1001 p                                |
| MODE TRC SO   |                  |           | Y           |                      |                 | FUNCTION WIDTH                         |                    | FUNCTION VALUE |                                           |
| N 1 f         | 2.483            | 500 0 GHz | -50.069     | Bm                   | 0               |                                        |                    |                |                                           |
| 0 0 0         | 54<br>5 *        |           | 54<br>55    |                      | 0               | 75<br>                                 |                    |                |                                           |
|               |                  |           | 5 A.        | -                    | 1               | -                                      |                    |                |                                           |
|               |                  |           |             | -                    | 8               |                                        |                    |                |                                           |
|               |                  |           |             |                      |                 |                                        |                    |                |                                           |

Figure 42 - Band-edge Measurement, High Channel, Restricted Frequency, Peak

| Report Number: | R20181219-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20-12                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepared for:  | Garmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46 PM Jun 05, 20:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30088000000 GH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TYPE MWWW<br>DET P N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f 20.00 dBm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1.000 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | Mk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 088 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | mark and a second secon |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | Nonnan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | www.w.               | homme -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and more way was not | wwwww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | man .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL NOW - ACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                    | 20<br>22 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | #V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BW 300 kH            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                    | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 483500 GI<br>is (1 <b>001</b> pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | NCTION FUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTION WIDTH          | FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 dBm<br>981 dB      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.483 500      | 0 GHz -52.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | Prepared for:<br>50 Ω AC<br>B0088000000 GF<br>f 20.00 dBm<br>f 20.00 dBm<br>0 GHz<br>kHz<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prepared for: Garmin | Prepared for: Garmin<br>SO Ω AC<br>SENSE:INT<br>B0088000000 GHz<br>PNO: Wide<br>FOR Atten: 30<br>F 20.00 dBm<br>f 20.00 | Prepared for: Garmin | Prepared for: Garmin<br>SO Ω AC<br>BOO88000000 GHz<br>PNO: Wide Trig: Periodic Avg Type: Avg Type: AvgHold::<br>F 20.00 dBm<br>f 20. | Prepared for: Garmin           S0.02         AC         SENSE:INT         Avg Type: Log-Pwr           B0088000000 GHz         PNO: Wide         Trig: Periodic         Avg Hold:>100/100           F6 20.00 dBm         Mile         Mile         Mile           f 20.00 dBm | Prepared for: Garmin<br>BOO88000000 GHZ<br>PNO: Wide<br>IFGain:Low<br>Trig: Periodic<br>Atten: 30 dB<br>Mkr1 2.484<br>520.00 dBm<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>Mkr1 2.484<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100<br>100/100 |

|    |     |   |     |   | - |
|----|-----|---|-----|---|---|
| 27 |     | • | e e | > |   |
|    | - 2 |   |     |   | 4 |
|    |     |   |     |   |   |
|    | -   |   |     |   |   |
|    |     |   |     |   |   |
|    |     |   |     |   |   |
|    |     |   |     |   |   |

Figure 43 - Band-edge Measurement, High Channel, Fundamental, Peak



# 4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

### Limits for conducted emissions measurements:

| FREQUENCY OF EMISSION<br>(MHz) |            |          |  |
|--------------------------------|------------|----------|--|
|                                | Quasi-peak | Average  |  |
| 0.15-0.5                       | 66 to 56   | 56 to 46 |  |
| 0.5-5                          | 56         | 46       |  |
| 5-30                           | 60         | 50       |  |

### Notes:

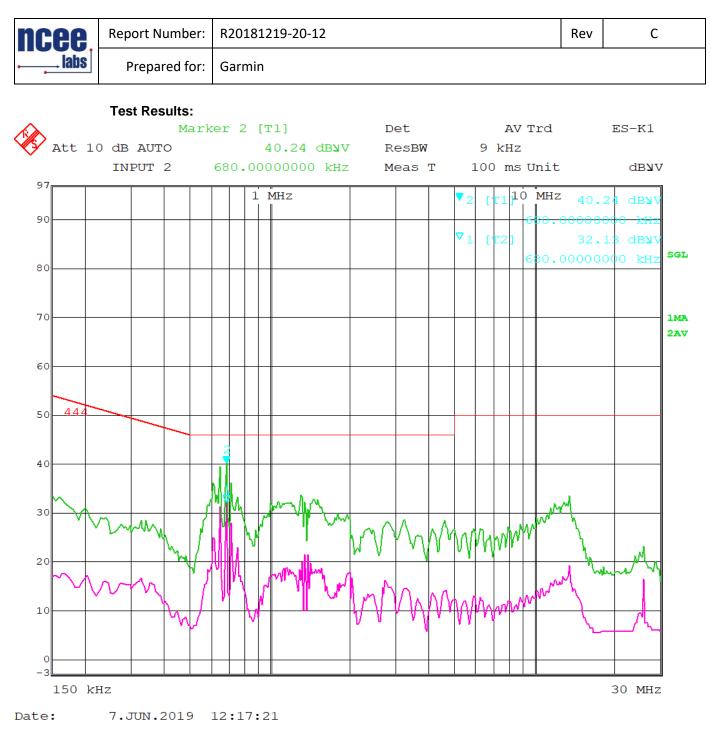
1. The lower limit shall apply at the transition frequencies.

The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
 All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

### Test Procedures:

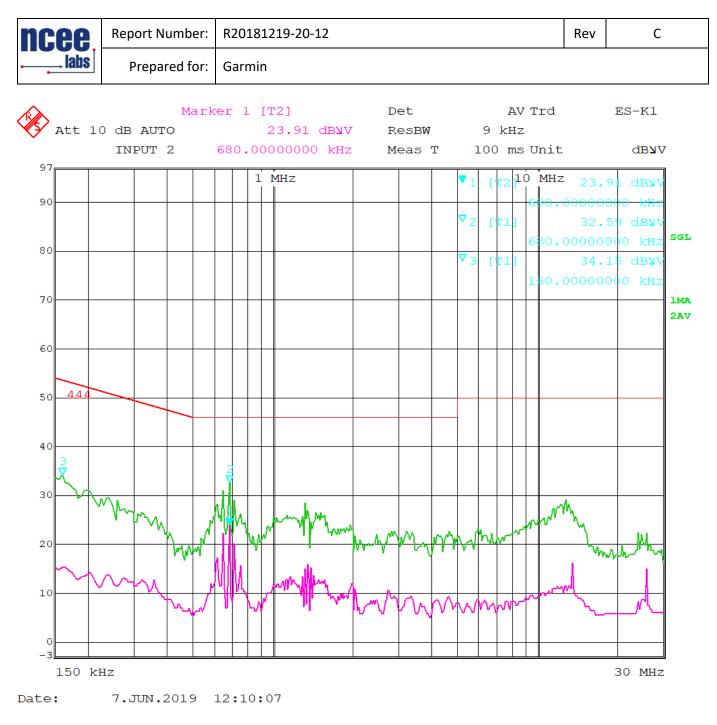
- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

#### **Deviation from the test standard:**


No deviation

### EUT operating conditions:

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the middle channel. To produce the highest possible emissions, the WiFi mode that produced the highest output power was set to transmit simultaneously as well as the NFC radio.


Rev

С





All Measurements were found to be at least 10 dB below the limits.



### Figure 45 - Conducted Emissions Plot, Neutral

All Measurements were found to be at least 10 dB below the limits.

The plot shows the composite maximum value of both the line and neutral conductors. It shows the worse-case at each frequency.



Rev

Prepared for: Garmin

### APPENDIX A: SAMPLE CALCULATION

### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude
AF = Antenna Factor
CF = Cable Attenuation Factor
AG = Amplifier Gain
AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB $\mu$ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB $\mu$ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$ 

The 48.1 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m.

Level in  $\mu$ V/m = Common Antilogarithm [(48.1 dB $\mu$ V/m)/20]= 254.1  $\mu$ V/m

AV is calculated by the taking the  $20^{100}(T_{on}/100)$  where  $T_{on}$  is the maximum transmission time in any 100ms window.

| ncee. | Report Number: | R20181219-20-12 | Rev | С |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Garmin          |     |   |

# **EIRP Calculations**

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]<sup>2</sup> / 30

Power (watts) =  $10^{Power} (dBm)/10] / 1000$ 

Voltage ( $dB\mu V$ ) = Power (dBm) + 107 (for 50 $\Omega$  measurement systems)

Field Strength (V/m) =  $10^{Field}$  Strength (dB $\mu$ V/m) / 20] /  $10^{6}$ 

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$  for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ 

10log( 10^9) is the conversion from micro to milli



# APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

| Test                        | Frequency Range | Uncertainty Value (dB) |
|-----------------------------|-----------------|------------------------|
| Radiated Emissions, 3m      | 30MHz - 1GHz    | 3.82                   |
| Radiated Emissions, 3m      | 1GHz - 18GHz    | 4.44                   |
| Emissions limits, conducted | 30MHz – 18GHz   | ±3.30 dB               |

Expanded uncertainty values are calculated to a confidence level of 95%.



REPORT END