

FCC Test Report

FCC ID	:	IPH-03468
Equipment	:	PANEL-STEREO
Model No.	:	PS-A302
Brand Name	:	FUSION
Applicant	:	Garmin International, Inc.
Address	:	1200 E. 151st Street Olathe, KS 66062 United States
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Dec. 05, 2017
Tested Date	:	Dec. 08 ~ Dec. 13, 2017

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Cher

Along Cherly/ Assistant Manager Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Unwanted Emissions into Restricted Frequency Bands	11
3.2	Unwanted Emissions into Non-Restricted Frequency Bands	
3.3	Conducted Output Power	
3.4	Number of Hopping Frequency	
3.5	20dB and Occupied Bandwidth	
3.6	Channel Separation	
3.7	Number of Dwell Time	41
4	TEST LABORATORY INFORMATION	44

Release Record

Report No.	Version	Description	Issued Date
FR7D0502AD	Rev. 01	Initial issue	Apr. 18, 2018

Summary	of Tes	t Results
---------	--------	-----------

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	Note ¹	N/A
15.247(d)	Dedicted Emissions	[dBuV/m at 3m]: 2483.50MHz	Dees
15.209	Radiated Emissions	45.09 (Margin -8.91dB) - AV	Pass
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: 6.96	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass
N/A means Not Applica Note ¹ : The EUT consur	ble. nes DC power, so the test is not r	equired.	

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate		
2400-2483.5	BR V4.1	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5 EDR V4.1 2402-2480 0-78 [79] 2 Mbps						
2400-2483.5 EDR V4.1 2402-2480 0-78 [79] 3 Mbps						
Note 1: RF output por	Note 1: RF output power specifies that Maximum Peak Conducted Output Power.					

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of π /4-DQPSK and 8DPSK.

1.1.2 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	Printed IFA	5.17	N/A	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc
-------------------	-------

1.1.4 Accessories

N/A

1.1.5 Channel List

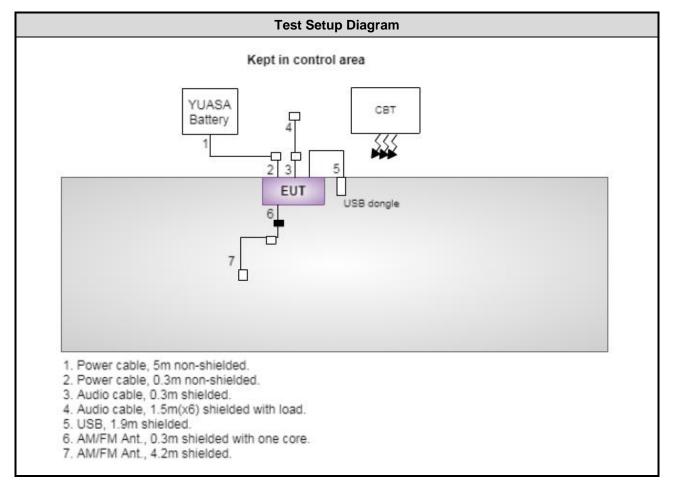
	Frequency	band (MHz)		2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.6 EUT mode and Duty Cycle

EUT mode Bluetooth Test mode

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)			
	2402	2441	2480	
GFSK/1Mbps	default	default	default	
л /4 DQPSK /2Mbps	default	default	default	
8DPSK/3Mbps	default	default	default	



1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)		
1	Battery	YUASA	36B20R(S)		Power cable, 5m non-shielded.		
2	USB dongle				USB, 1.9m shielded.		
3	AM/FM ANT				AM / FM Ant., 4.2m shielded		
4	Load (x6)				Audio, 1.5m(x6) shielded.		

Note: No.2 ~ No.4 were provided by applicant.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission							
Test Site	966 chamber1 / (03C⊢	101-WS)						
Tested Date	Dec. 08 ~ Dec. 11, 207	17						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101499	Dec. 16, 2016	Dec. 15, 2017			
Receiver	R&S	ESR3	101658	Nov. 20, 2017	Nov. 19, 2018			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 25, 2017	Jul. 24, 2018			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 21, 2016	Dec. 20, 2017			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 23, 2017	Nov. 22, 2018			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2017	Nov. 12, 2018			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 07, 2017	Dec. 06, 2018			
Preamplifier	EMC	EMC02325	980225	Jul. 28, 2017	Jul. 27, 2018			
Preamplifier	Agilent	83017A	MY39501308	Oct. 06, 2017	Oct. 05, 2018			
Preamplifier	EMC	EMC184045B	980192	Aug. 22, 2017	Aug. 21, 2018			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 07, 2017	Dec. 06, 2018			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 07, 2017	Dec. 06, 2018			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 07, 2017	Dec. 06, 2018			
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	16052	Dec. 07, 2017	Dec. 06, 2018			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 07, 2017	Dec. 06, 2018			
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 07, 2017	Dec. 06, 2018			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Bluetooth Tester	ROHDE&SCHWARZ	CBT	100959	Sep. 28, 2017	Sep. 27, 2018			

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Dec. 08, 2017				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Mar. 15, 2017	Mar. 14, 2018
Spectrum Analyzer	R& S	FSV40	101499	Dec. 16, 2016	Dec. 15, 2017
Power Meter	Anritsu	ML2495A	1241002	Oct. 16, 2017	Oct. 15, 2018
Power Sensor	Anritsu	MA2411B	1207366	Oct. 16, 2017	Oct. 15, 2018
DC POWER SOURCE	GW INSTEK	GPC-6030D	EM892433	Oct. 26, 2017	Oct. 25, 2018
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA
Bluetooth Tester	ROHDE&SCHWARZ	CBT	100959	Sep. 28, 2017	Sep. 27, 2018
Note: Calibration Inter	rval of instruments listed	above is one year.			

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.134 Hz				
Conducted power	±0.808 dB				
Power density	±0.463 dB				
Conducted emission	±2.670 dB				
Radiated emission ≤ 1GHz	±3.66 dB				
Radiated emission > 1GHz	±5.63 dB				

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH01-WS	21-23°C / 65-64%	Roger Lu Brad Wu
RF Conducted	TH01-WS	23°C / 65%	Aska Huang

➢ FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

➢ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Radiated Emissions ≤ 1GHz	8DPSK	2402	3Mbps	
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Conducted Output Power	GFSK л /4 DQPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	
Hopping Channel Separation 20dB and Occupied bandwidth	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Dwell Time	GFSK 8DPSK	2402 2402	1Mbps 3Mbps	
NOTE: The EUT was pretested wir and Z-plane. The X-plane results				easurement – X, Y,

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

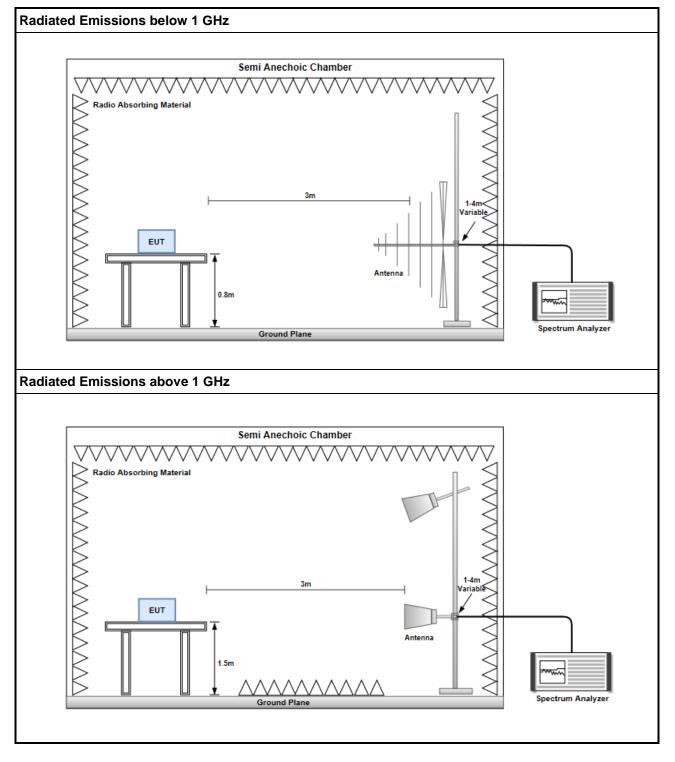
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.1.2 Test Procedures

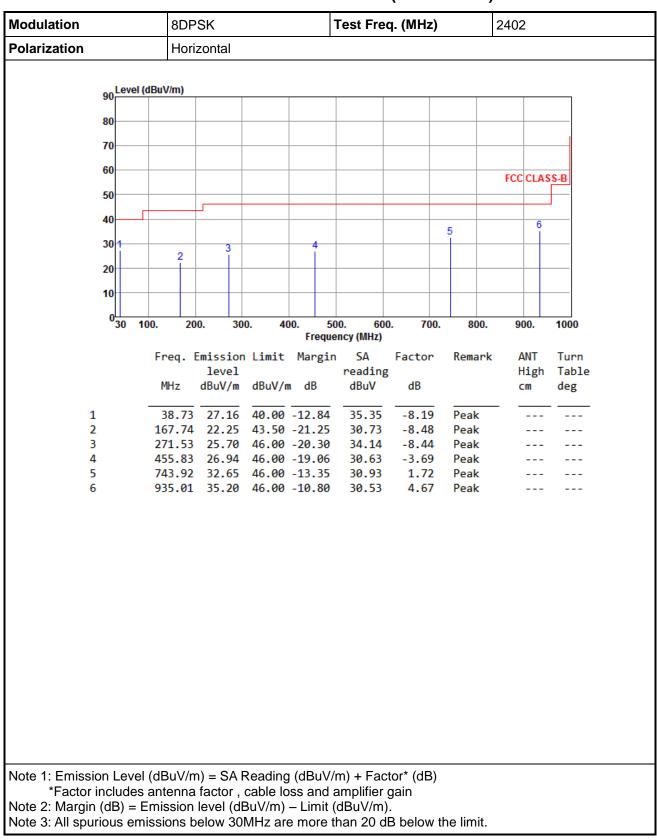
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

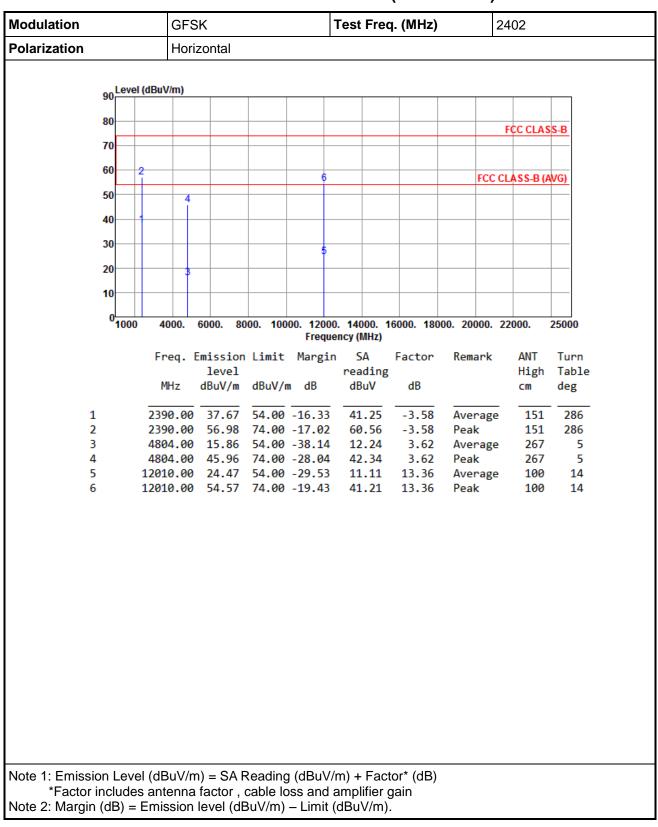
3.


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

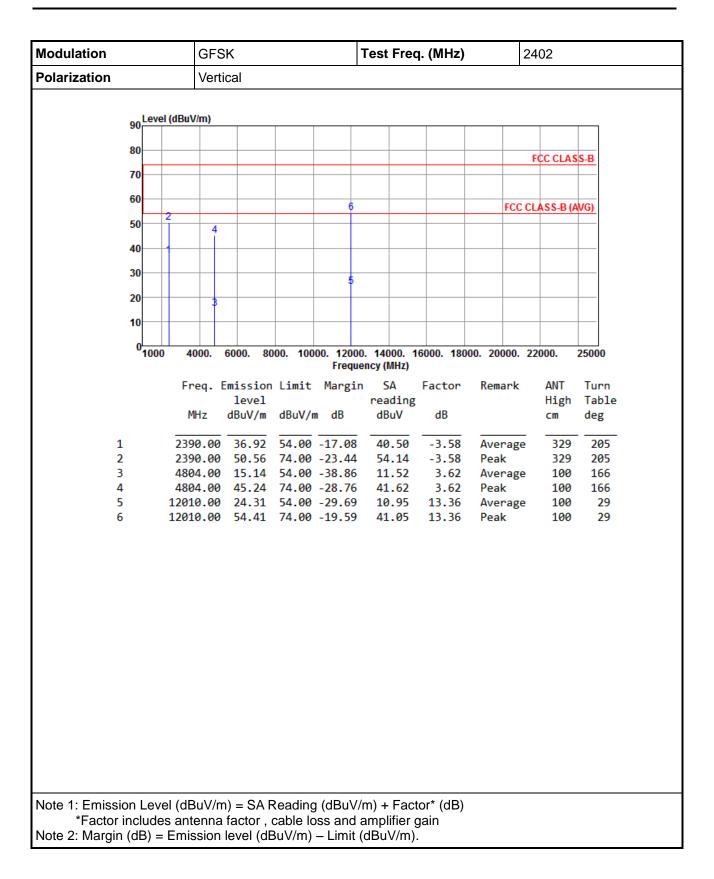
Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

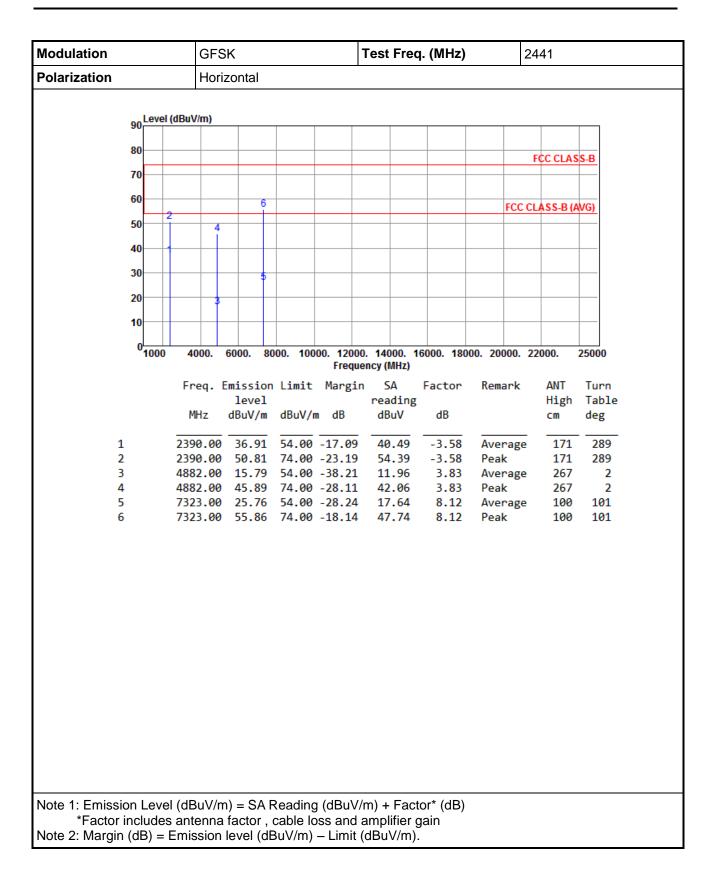

- $20\log (\text{Duty cycle}) = 20\log \frac{\frac{1 \text{ s} / 1600 \text{ s}}{100 \text{ ms}}}{100 \text{ ms}} = -30.1 \text{ dB}$
- 4. Radiated emission above 1GHz / Average value for other emissions
- 4. RBW=1MHz, VBW=1/T and Peak detector

3.1.3 Test Setup

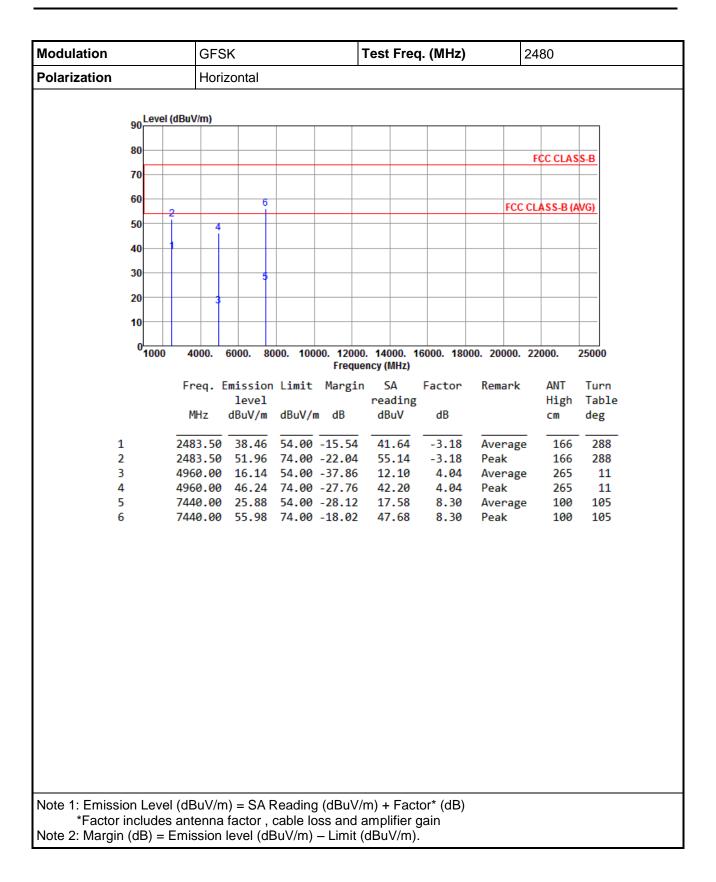


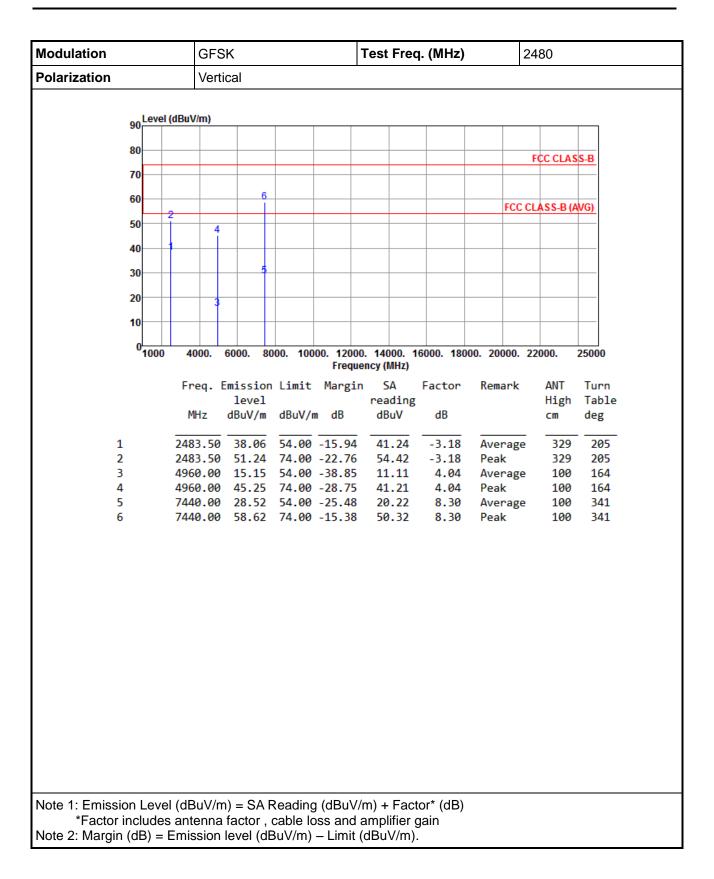
3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

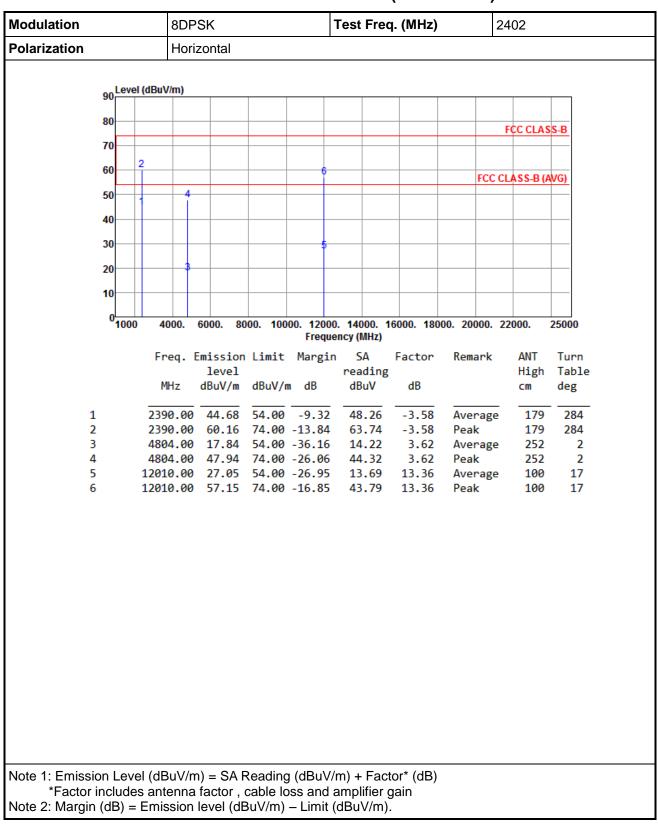

Modulation	8DP	8DPSKTest Freq. (MHz)2402							
Polarization	Vert	Vertical							
Lava	(dDu)//m)								
90	l (dBuV/m)								
80									
70									
60									
								FCC CLAS	SS-B
50									<u></u>
40								6	
30	2				4	5		-	
20	3								
10									
0 <mark>10 30</mark>	100. 20	0. 30	0. 40)0. 50		0. 700.	800.	900.	1000
	_				ncy (MHz)	_	_		_
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		Cm	deg
1 2	39.70 79.47	30.61		-9.39 -14.48	38.73 38.28	-8.12 -12.76	Peak Peak		
3		22.79			31.27	-8.48	Peak		
4		28.50			30.59		Peak		
5		30.52 33.14			31.08 29.85	-0.56 3.29	Peak Peak		
Ū	000100			12100	23103	5125	- Cuit		
Note 1. Emission /) o o olim -		») . Г аз				
Note 1: Emission Leve Factor include*									
Note 2: Margin (dB) =	Emission	level (dE	BuV/m)	– Limit (d	dBuV/m).			
Note 3: All spurious er							ho limit		

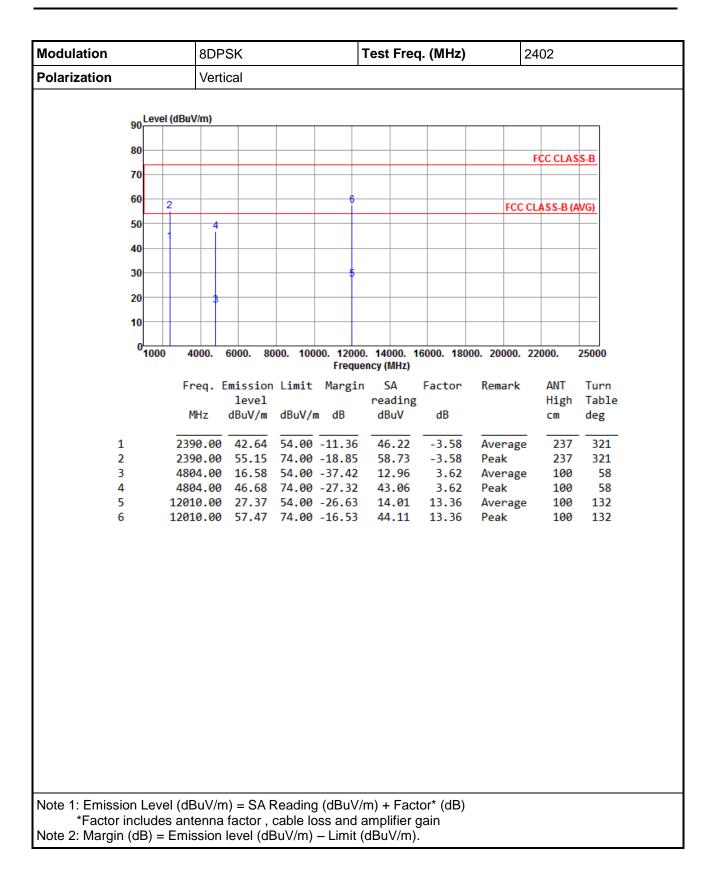


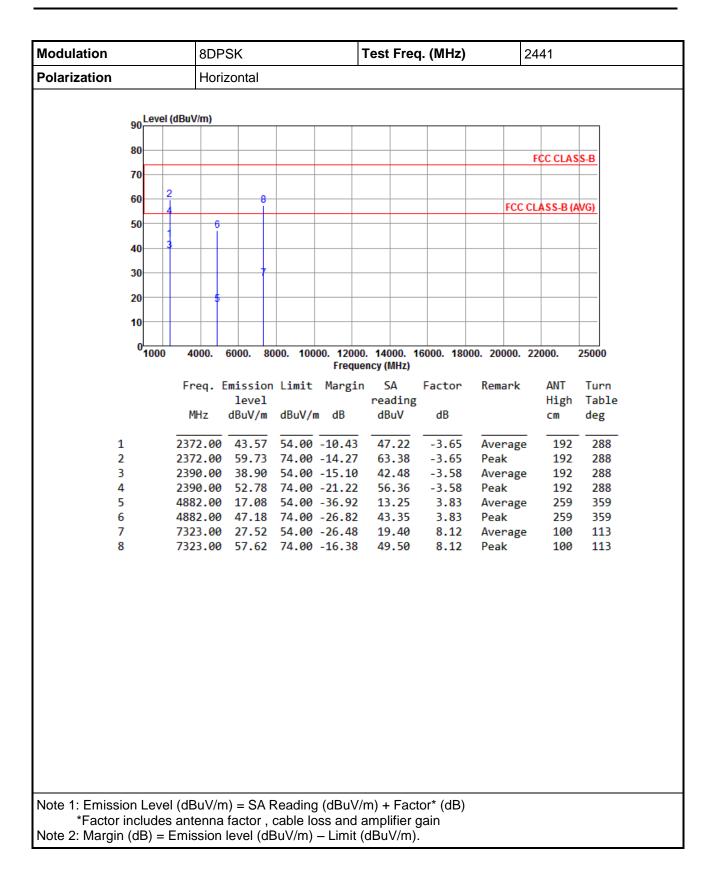
3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK



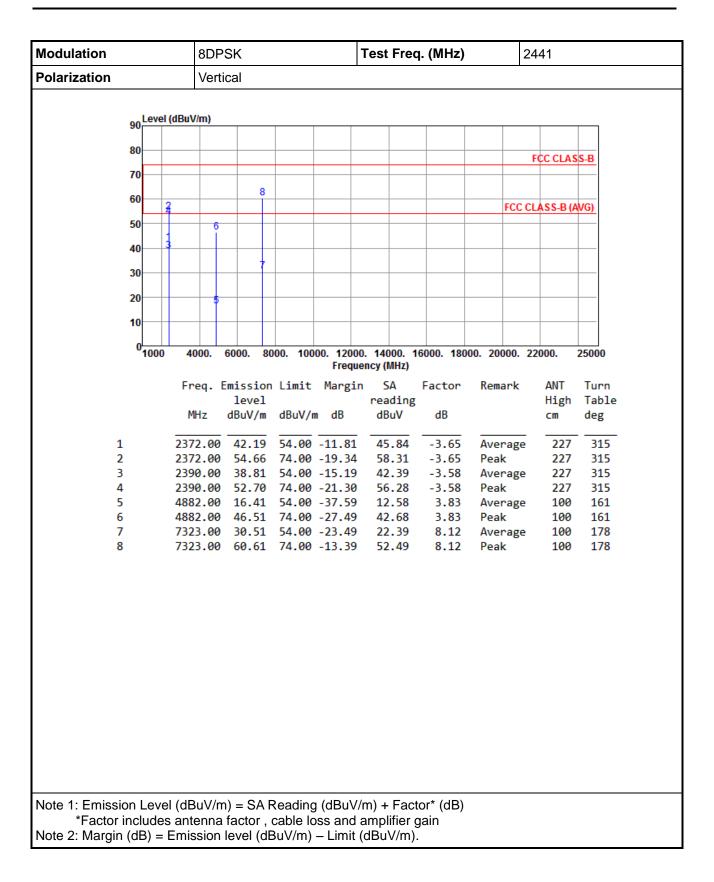


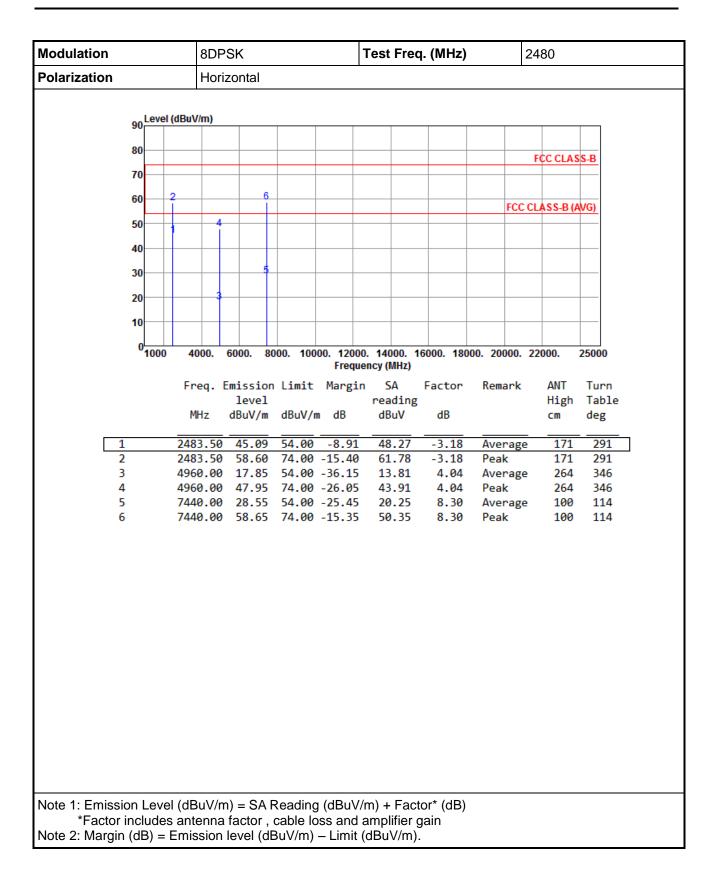


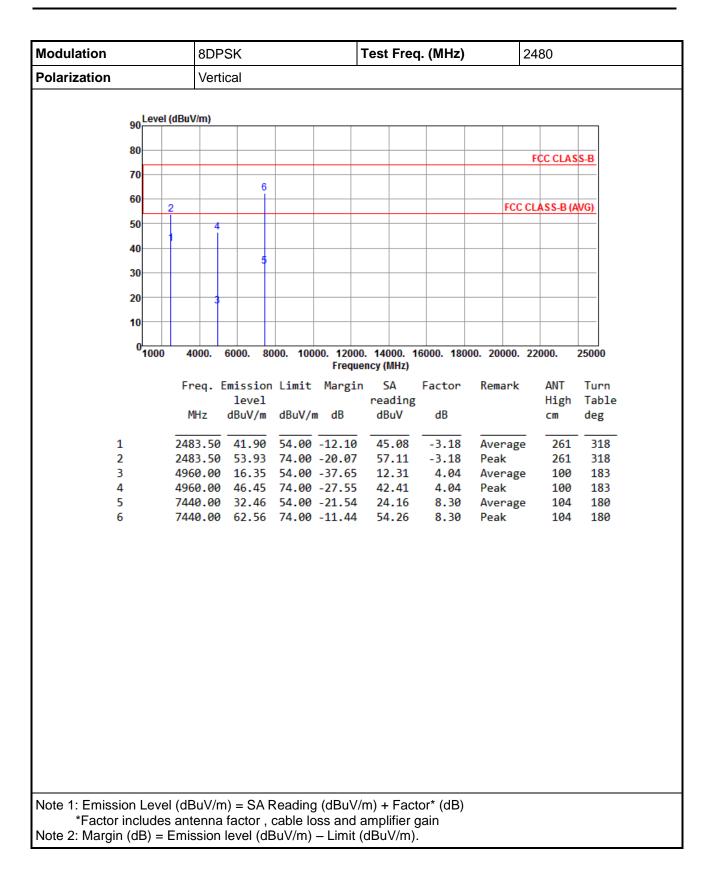




3.1.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK





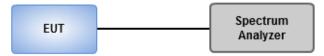


3.2 Unwanted Emissions into Non-Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.2.2 Test Procedures

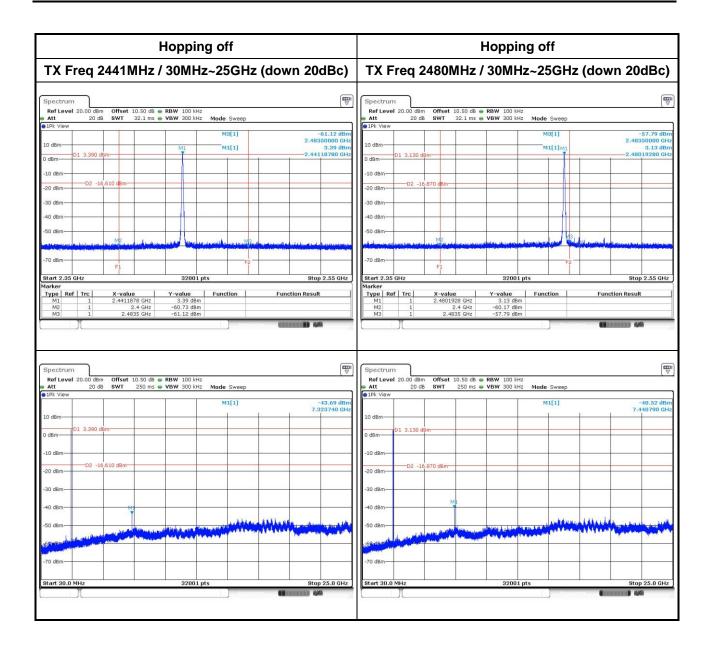

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

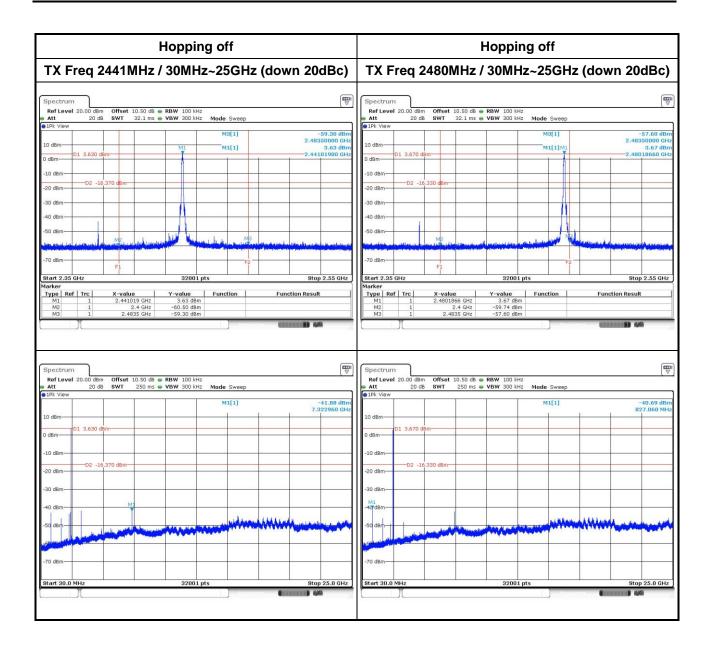
3.2.3 Test Setup



3.2.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

H	opping on		Hopping off TX Freq 2402MHz / 30MHz~25GHz (down 20dB					
30MHz~25	GHz (down 2	0dBc)						n 20dBc)
Spectrum			Spectrum					(T
	BW 100 kHz BW 300 kHz Mode Sweep		Ref Level 20.00 dBm Att 20 dB	Offset 10.50 dB SWT 32.1 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep		
10 dBm M1	M3[1] M1[1]	-59.04 dBm 2.48350000 GHz 3.57 dBm	1Pk View 10 dBm-	M1		M3[1]		-61.45 dB 2.48350000 GF 3.19 dB
0 dBm 01 3.570 dBm 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-2.40602640 GHz	0 dBm D1 3.190 dB	Bm				-2.40207020 Gł
-20 dBm			2022-0-262-000	.810 dBm				
-30 dBm			-30 dBm					
-50 dBm		Been division to a constant of a structure of a str	-50 dBm	MP		a harada an ua ME	and the state of the	a sudday was been the off off
-70 dBm	F2		-70 dBm	F1		F2		
CF 2.45 GHz	32001 pts	Span 200.0 MHz	Start 2.35 GHz		32001 pt	s		Stop 2.55 GHz
			Marker	Manakar	Y-value	Function	Fund	tion Result
Arker Trc X-value Y M1 1 2.4060264 GHz Y M2 1 2.4 GHz Y	Y-value Function 3.57 dBm -59.29 dBm -59.04 dBm	Function Result	Mpi Ref Trc. M1 1 1 M2 1 1	X-value 2.4020702 GHz 2.4 GHz 2.4835 GHz	3.19 dBm -57.33 dBm -61.45 dBm			ana ang ang ang ang ang ang ang ang ang
arker Type Ref Trc X-value Y M1 1 2.4060254 GHz M2 1 2.4060254 GHz M3 1 2.4085 GHz Spectrum RefLevel 20.00 dBm Offset 10.50 dB ® Rf	3.57 ddm -59.29 ddm -59.04 ddm -59.04 ddm	Function Result	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 dBm	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
tarker Type Ref Trc X-value Y M2 1 2.466026 GH2 M3 1 2.4642 M3 2.4835 GH2 Spectrum Ref Level 20.00 dBm Offset 10.50 dB ● Rt Att 20 dB SWT 250 ms ♥ V	3.57 ddm -59.29 ddm -59.04 ddm -59.04 ddm	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB	3.19 dBm -57.33 dBm -61.45 dBm	Mode Sweep M1[1]		-44.26 dB
Spectrum Offset 10.50 dB = Rf Ref Level 20.00 dBm Offset 10.50 dB = Rf Att 20 dB SWT 250 ms = VI	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm -5	(11111) (11111) (111) (1111) (M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 dBm Att 20 dB	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz	Mode Sweep		-44.26 dB
tarker Type Ref Trc X-value Y Vial 1 2.4060264 GH2 Y M2 1 2.46026 GH2 Y M3 1 2.4642 Y M3 1 2.4835 GH2 Y Spectrum Colspan="2">Ref Level 20.00 dBm Offset 10.50 dB @ RI Att 20 dB SWT 250 ms @ VI ID dBm 01 3.570 dBm I I	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm -5	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 Spectrum 20 dB e1pk View 20 dB	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz	Mode Sweep		-44.26 dB
Jarkar Yuyan Ref Trc X-value Yu M3 1 2.4060254 GHz Yu Yu M3 1 2.4060254 GHz Yu Yu M3 1 2.40835 GHz Yu Yu M3 1 2.46835 GHz Yu Yu Spectrum Ref Level 20.00 dBm Offset 10.50 dB = RI Yu Att 20 dB SWT 250 ms = VI J1Pk View 01 3.570 dBm O1 3.570 dBm O1 3.680 dBm 10 dBm 02 -16.430 dBm Yu Yu	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm -5	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 dBm Att 20 dB 10 dBm 0 dBm 01 3.190 dB -10 dBm -10 dBm	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz	Mode Sweep		-44.26 dB
tarker Ypp Ref Trc X-value Y M1 1 2.460036 GHz Y M2 1 2.46035 GHz Y M3 1 2.4835 GHz Y M3 1 2.4835 GHz Y Spectrum Ref Level 20.00 dBm Offset 10.50 dB Rf Att 20 dB SWT 250 ms Y 10 dBm 01 3.570 dBm 0 0 -10 dBm	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm -5	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 dbm Att 20 db 10 dbm 01 3.190 db -10 dbm -02 -16	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz	Mode Sweep		-44,26 dB 7.205920 Gł
Iarker Type Ref Trc X-value Y M2 1 2.460026 cH2 M2 1 2.4642 M3 1 2.4642 M3 1 2.4642 M3 1 2.4635 GH2 Spectrum Colspan="2">Colspan="2">Offset 10.50 dB @ RI Ref Level 20.00 dBm Offset 10.50 dB @ RI Att 20 dB @ SWT 250 ms @ VI 10 dBm 01 3.570 dBm 01 02 -16.430 dBm 03 dBm 02 -16.430 dBm 04 mm	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm -5	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 M3 1 Spectrum Ref Level 20.00 dBm Att 20 dB 10 dBm 01 3.190 dB -10 dBm D2 -16	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz	Mode Sweep		-44.26 dB
arkar Type Ref Trc X-velue V M1 1 1 2:406024 GH M3 1 2:405024 GH At 2:405 GHz Spectrum Ref Level 20:00 GBm Offset 10:50 GB R At 20 dB SWT 250 ms V 1Pk View 0 dBm 01 3:570 dBm 0 0 dBm 02 -16.430 dBm 0 10 dBm 10 3:570 dBm 0 10 dBm 10 4:570 dB	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm -5	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 M3 1 Spectrum Ref Level 20.00 dBm Att 20 dB ID dBm 01 3.190 di IO dBm 02 -16 -20 dBm 02 -16 -30 dBm 04	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 dBm -57.33 dBm -61.45 dBm RBW 100 kHz	Mode Sweep M1[1]		-44.26 dB
tarker Tre X-value M2 1 2.406026 cH2 M2 1 2.406026 cH2 M3 1 2.406026 cH2 M3 1 2.406026 cH2 M3 1 2.40835 GH2 Spectrum Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspa="2"Colspan="2"Colspan="2"Colspa="2"Colspa="2"Cols	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm BW 100 kHz BW 300 kHz Mode Sweep M1[1]	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 M3 1 Spectrum Ref Level 20.00 dbm Att 20 db IPk View 10 dBm 10 dBm 01 3.190 dL -20 dBm -02 -16 -30 dBm -40 dBm	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 d8m -57.33 d8m -51.45 d8m RBW 100 kHz VBW 300 kHz C C C C C C C C C C C C C C C C C C	Mode Sweep M1[1]		-44.26 dB
Marker X-value N M1 1 2.4060264 GHz N M2 1 2.4060264 GHz N M3 1 2.4083 GHz N Spectrum N N N N Ref Level 20.00 GBm Offset 10.50 dB R Nt 20 dB SWT 250 ms V 10 dBm 01 3.570 dBm 0 0 -00 -16 dBm 0 -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm -10 dBm	3.57 ddm -59.29 ddm -59.29 ddm -59.04 ddm BW 100 kHz BW 300 kHz Mode Sweep M1[1]	(11111) 44 (₹) -40.73 dBm	M1 1 M2 1 M3 1 M3 1 M3 1 M4 20.00 dbm Ref Level 20.00 dbm 20 db ID dbm 10 dbm 10 dbm 01 3.190 dt -20 dbm 02 -16 -20 dbm 02 -16 -30 dbm -50 dbm -50 dbm -50 dbm	2.4020702 GHz 2.4 GHz 2.4835 GHz 0ffset 10.50 dB 8WT 250 ms	3.19 d8m -57.33 d8m -51.45 d8m RBW 100 kHz VBW 300 kHz C C C C C C C C C C C C C C C C C C	Mode Sweep M1[1]		-44.26 dB



8DPSK

Hopping on	Hopping off
30MHz~25GHz (down 20dBc)	TX Freq 2402MHz / 30MHz~25GHz (down 20dBc)
Spectrum Image: Constraint of the sector of th	Spectrum Image: Constraint of the sector of th
10 dbm 11 M2[1] M2[1] 443.56 dbm 0 dbm 01.820 dbm 11 M2[1] -43.56 dbm -43.56 dbm 0 dbm 0.820 dbm 11.820 dbm 11.820 dbm -2.4000000 GHz -43.56 dbm -10 dbm 11.820 dbm 11.820 dbm 11.820 dbm -2.4000000 GHz -2.4000000 GHz -20 dbm -0.2 -16.180 dbm 11.80 dbm -1.80 dbm -1.80 dbm -1.80 dbm -30 dbm -0.8 -180 dbm -0.8 -180 dbm -1.80 dbm	10 dBm M1 M1[1] 2.4835000 0H 0 dBm 01 3.860 dBm 2.40186400 CH 3.86 dBn -10 dBm - - - - -20 dBm - - - - - -30 dBm - - - - - - -30 dBm - - - - - - - -50 dBm - - - - - - -
Stort Stort <th< td=""><td>Stort 2.35 GHz 32001 pts F1 Start 2.35 GHz 32001 pts Stop 2.55 GHz Marker Y-value Function Function Result Marker Y-value Function Function Result Marker 1 2.401864 GHz 3.66 dBm Function Result M1 1 2.4035 GHz -60.67 dBm Houston Result</td></th<>	Stort 2.35 GHz 32001 pts F1 Start 2.35 GHz 32001 pts Stop 2.55 GHz Marker Y-value Function Function Result Marker Y-value Function Function Result Marker 1 2.401864 GHz 3.66 dBm Function Result M1 1 2.4035 GHz -60.67 dBm Houston Result
Spectrum RefLevel 20.00 dBm Offset 10.50 dB ● RBW 100 kHz Att 20 dB SWT 250 ms ● VBW 300 kHz Mode Sweep	Spectrum Ref Level 20.00 dBm Offset 10.50 dB RBW 100 kHz Att 20 dB SWT 250 ms VBW 300 kHz Mode Sweep
1Pk View 10 dBm 10 dBm	
0 1 3.820 dam 0 1 3.820 dam 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 3.860 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -20 dBm 0 -4C dBm 0
-50 dBm	-5C dBm
Start 30.0 MHz 32001 pts Stop 25.0 GHz	Start 30.0 MHz 32001 pts Stop 25.0 GHz

3.3 Conducted Output Power

3.3.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.3.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.3.3 Test Setup

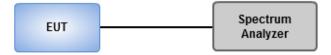
Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	2.24	3.51	125
GFSK	2441	2.15	3.32	125
GFSK	2480	2.10	3.22	125
л /4 DQPSK	2402	4.31	6.34	125
л /4 DQPSK	2441	4.18	6.21	125
л /4 DQPSK	2480	4.24	6.27	125
8DPSK	2402	4.97	6.96	125
8DPSK	2441	4.89	6.89	125
8DPSK	2480	4.88	6.88	125

3.3.4 Test Result of Conducted Output Power

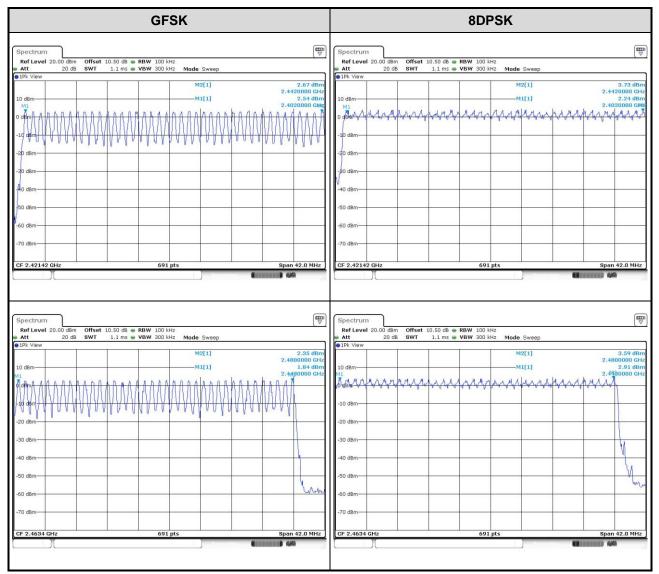
Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	2.17	3.36
GFSK	2441	2.07	3.17
GFSK	2480	2.04	3.09
л /4 DQPSK	2402	2.28	3.58
л /4 DQPSK	2441	2.20	3.42
л /4 DQPSK	2480	2.16	3.35
8DPSK	2402	2.29	3.60
8DPSK	2441	2.20	3.43
8DPSK	2480	2.17	3.36

Note: Average power is for reference only.

3.4 Number of Hopping Frequency


3.4.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


3.4.2 Test Procedures

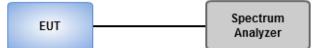
- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.4.3 Test Setup

3.4.4 Test Result of Number of Hopping Frequency

3.5 20dB and Occupied Bandwidth

3.5.1 Test Procedures


20dB Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

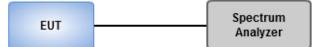
3.5.2 Test Setup

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	0.952	0.853
GFSK	2441	0.948	0.858
GFSK	2480	0.952	0.856
8DPSK	2402	1.300	1.188
8DPSK	2441	1.335	1.196
8DPSK	2480	1.330	1.195

3.5.3 Test result of 20dB and Occupied Bandwidth

Worst Plot of 20dB Bandwidth			Worst Plot of Occupied Bandwidth			
Spectrum RefLevel 20.00 dBm Offset 10.50 dB RBW Att 20 dB SWT 1.1 ms VBW PIk View Intervention Intervention Intervention Intervention	30 kHz 100 kHz Mode Sweep M1[1]	-18.84 dBm	Spectrum Ref Level 20.00 dBm Offs Att 20 dB SW 1Pk View	et 10.50 dB • RBW 30 kHz T 3 ms • VBW 100 kHz Mo	de Sweep	(₩ ⊽
10 dBm 01 1.022 dBm	Occ Bw D1[1]	2,44035217 GHz 1,193921852 MHz 0,20 dB 1,33478 MHz	10 dBm	N1	-Occ Bw	2.441012500 GHz 1.196000000 MHz
-10 dBm Mg/	2 million to		-10 dBm	Jun Man	m	
-20 dBm D2 -18,978 dBm			-20 dBm			
-50 dBm	\\	m	-50 dBm			m
-60 dBm			-60 dBm			
-70 dBm	F2		-70 dBm			
CF 2.441 GHz	691 pts	Span 3.0 MHz	CF 2.441 GHz	3000 pts		Span 3.0 MHz

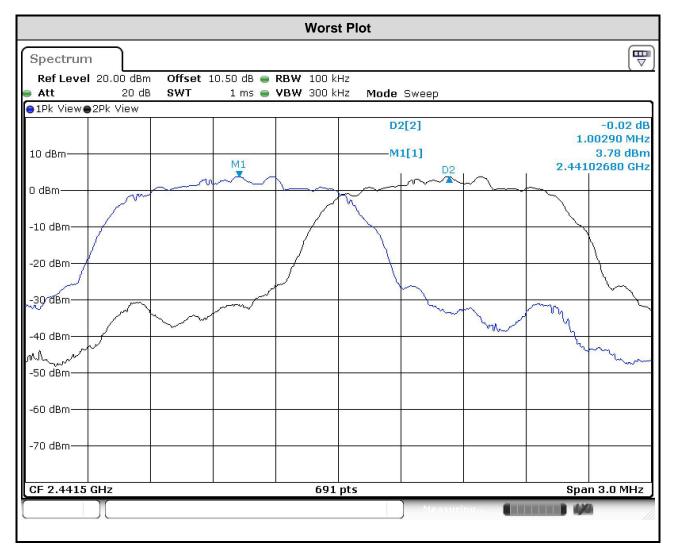
3.6 Channel Separation


3.6.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.6.2 Test Procedures

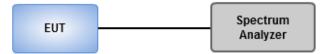
- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit


3.6.3 Test Setup

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)	
GFSK	2402	1.003	0.952	0.635	
GFSK	2441	1.003	0.948	0.632	
GFSK	2480	1.003	0.952	0.635	
8DPSK	2402	1.003	1.300	0.867	
8DPSK	2441	1.003	1.335	0.890	
8DPSK	2480	1.003	1.330	0.887	

3.6.4 Test result of Channel Separation

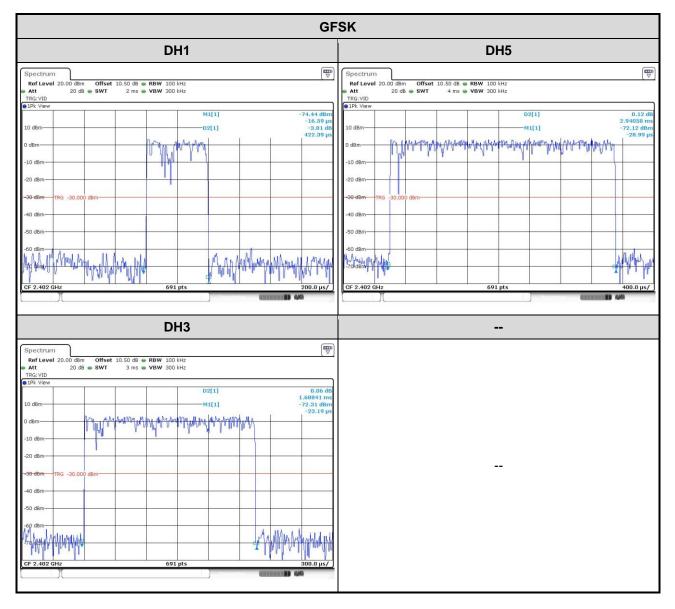
3.7 Number of Dwell Time

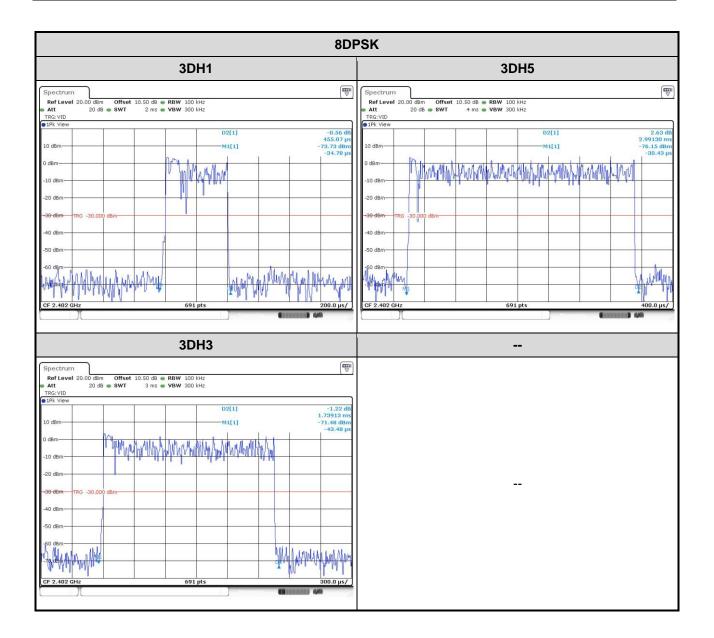

3.7.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.7.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- 5 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds


3.7.3 Test Setup



3.7.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 31.6 (79 Hopping*0.4)	Result (s)	Limit (s)
GFSK-DH1	2402	0.42239	320	0.135	0.4
GFSK-DH3	2402	1.68841	160	0.270	0.4
GFSK-DH5	2402	2.94058	106.6	0.313	0.4
8DPSK-DH1	2402	0.45507	320	0.146	0.4
8DPSK-DH3	2402	1.73913	160	0.278	0.4
8DPSK-DH5	2402	2.99130	106.6	0.319	0.4

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—