

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

TNB Test Report

Class 2 Permissive Change

Prepared for:

Garmin International Inc.

Address:

Product:

1200 E. 151st Street Olathe, Kansas, 66062, USA

A03690 (host) A03302 (module)

Test Report No:

R20191028-24-E4D

Approved By:

Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

16 June 2020

Total Pages:

20

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Revision Page

Rev. No.	Date	Description
Original	28 February 2020	Original – Njohnson
		Prepared by CFarrington
A	3 June 2020	Updated discrete emissions.
В	11 June 2020	Added cables to calibration table
С	16 June 2020	Updated calibration Table
D	16 June 2020	Updated calibration Table

Table of Contents

1	1 Summary of Test Results		ŀ
	2 EUT Description		
	2.1 Equipment under Test (EUT)		ŀ
	2.3 EUT Setup		ŀ
3	3 Test Results		
	3.1 Emissions Limitations Operation in the	Band 1616.0-1626.5 MHz 6	5
Anı	Annex A – Sample Field Strength Calculation		5
	Annex B – Measurement Uncertainty		
RE	REPORT END)

1 Summary of Test Results

The following information is submitted for consideration in processing Class 2 Permissive Change (C2PC) to authorized equipment. The module model: A03302, was granted a module authorization operating under 47CFR part 25 and Industry Canada RSS-170 operations in the 1616.0-1626.5 MHz frequency band. This report presents documentation supporting a change in the PCB trace leading to the antenna and installation into host module A03690.

The equipment under test (EUT) was tested for compliance to FCC Part 25 and Part 2 as well as RSS-170. Below is a summary of the test results. Complete results can be found in Section 3.

Report Section	47 CFR FCC Rule Part	Description	Result
3	§ 2.1046, §25.202	Spurious emissions	Compliant
3	RSS-170 Issue 3, Section 5.4	Power and emissions	Compliant

Test Methods:

(1) ANSI C63.26-2015

2 EUT Description

2.1 Equipment under Test (EUT)

EUT	A03690
EUT Received	7 January 2020
EUT Tested	20 May 2020 - 3 June 2020
Serial No.	3319367796
Operating Band	1616 MHz – 1626 MHz
Device Type	Iridium
Power Supply	Internal Battery/ Charger: Garmin (Phi Hong) MN: PSAF10R-050Q (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 Testing Location

All testing was performed at the NCEE Lincoln facility, which is an A2LA accredited EMC test laboratory accredited per scope 1953.01.

2.3 EUT Setup

The EUT was powered by internal Battery for all the tests. EUT was tested with both the integral antenna and external passive antenna.

2.4 Test Equipment

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer	N9038A	MY59050109	April 23, 2019	April 23, 2021
Keysight EXA Signal Analyzer	N9010A	MY56070862	December 14, 2018	December 14, 2020
SunAR RF Motion	JB1	A091418	March 6, 2020	March 6, 2021
EMCO Horn Antenna	3115	6415	March 16, 2020	March 16, 2022
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	April 14, 2020	April 14, 2022
Trilithic High Pass Filter*	6HC330	23042	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)	MFR-57500	01-07-002	09 Mar 2018*	09 Mar 2021*
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	09 Mar 2018*	09 Mar 2021*
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	09 Mar 2018*	09 Mar 2021*
RF Cable (Control room bulkhead to RF switch)	FSCM 64639	01E3871	09 Mar 2018*	09 Mar 2021*
RF Cable (RF switch to test receiver)	FSCM 64639	01F1206	09 Mar 2018*	09 Mar 2021*
RF switch – Rohde and Schwarz	TS-RSP	1113.5503.14	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (control room)	PE9128	NCEEBH2	09 Mar 2018*	09 Mar 2021*

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3 Test Results

3.1 Emissions Limitations Operation in the Band 1616.0-1626.5 MHz

Test:	FCC Part 25.202, 2.1051, 2.1053 RSS-170, Clause 5.3 ANSI C63.26, Section 5.5, Annex B				
Test Result:	Complies	Date:	6 May 2019		

Test Description

25.202 Section 12(f) *Emission limitations.* Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

Test Environment

Testing was performed at the NCEE Labs Lincoln facility. Laboratory environmental conditions varied slightly throughout the test:

Relative humidity of $35 \pm 5\%$ Temperature of $22 \pm 2^{\circ}$ C

Test Setup

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuators. The spectrum analyzer was used to make power measurements using the channel power function. The resolution bandwidth was set to 1 MHz and the channel bandwidth was set to match the occupied bandwidth as measured in Section 3.3.

Spurious emissions were measured using a pre-test site path loss according to Section 5.5.4 and Annex B of ANSI C63.26.

Radiated emissions measurements were made from 9 kHz to 12.5 GHz at a distance of 3m inside a semi-anechoic chamber. The EUT was rotated 360° , the antenna height varied from 1 - 4 meters and both the vertical and horizontal antenna polarizations examined. The results were compared against the limits. Measurements were made by first using a spectrum analyzer to acquire the signal spectrum; individual frequencies were then measured using a CISPR 16.1 compliant receiver with the following bandwidth setting:

30MHz – 1GHz:120kHz IF bandwidth, 60kHz steps.

Limits were converted from EIRP to 3m field strength. Measurements were performed with a quasi-peak detector. Path loss was measured during ANSI C63.4-2014 Normalized Site Attenuation measurements.

Test Results

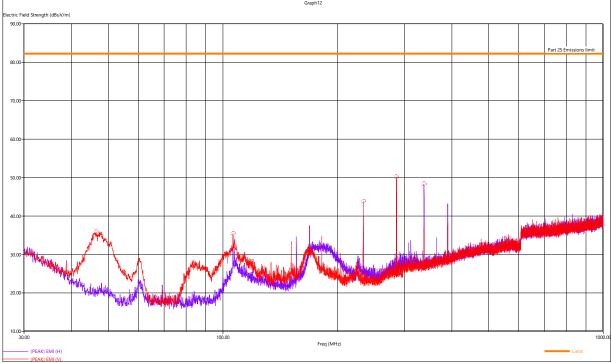


Figure 1 - Radiated Emissions Data Plot

All three channel were investigated and the channel with the highest emissions is shown for the 30 MHz - 1 GHz frequency range.

Plot shows peak data.

Frequency	Pre-test Level PK	Emission Power Level PK	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBm	dBm	dB	cm.	deg.		
46.44	35.75	-59.48	-13	46.48	121	118	V	High
106.26	35.46	-59.77	-13	46.77	114	279	V	High
234.00	43.72	-51.51	-13	38.51	203	135	V	High
286.02	50.10	-45.13	-13	32.13	356	354	V	High
337.98	48.24	-46.99	-13	33.99	110	317	Н	High

Table 1 - Radiated Emissions Measurements

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

Emission Power Level = Pre-test level – Path Loss (95.23 dB)

		Emission						Channel
Frequency	Level	Power Level	Limit	Margin	Height	Angle	Pol	
MHz	dBµV/m	dBm	dBm	dB	cm.	deg.		
1616.03	131.58	36.35	N/A	N/A	150	0	V	Low
1620.98	131.33	36.10	N/A	N/A	150	0	V	Mid
1625.98	131.85	36.62	N/A	N/A	150	0	V	High
3232.06	73.63	-21.60	-13.00	8.60	150	0	V	Low
3241.96	73.46	-21.77	-13.00	8.77	150	0	V	Mid
3251.96	73.83	-21.40	-13.00	8.40	150	0	V	High

Table 2 - Radiated Emissions Peak Measurements

No other signals were detected above system sensitivity

Requirement from FCC Part 25.202(f)

(f) *Emission limitations.* Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Figure 2 – Part 25.202(f) Mask, Transmitting at 1616.028330 MHz

		- 1	CC Part 25.202							- F
of 1 620	RF 50 Ω D			SENSE:INT	er Freg: 1.6209	79167 GH	z		04:24:1 Radio Std:	19 PM Jan 20, 20 None
SS	979107 GH		FGain:Low	🛶 Trig:	Free Run n: 20 dB		/g: 100.00% d	of 100	Radio Devi	
	Ref Offset 20 1 Ref 20.0 dE									
9					~~~~					Absolute
0						\sim				
0						- \ <u>`</u>				
0										Relative I
		\square								
		الممير ا								Spec
1 /		T							\sim	N.
										- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0										
0										
1										
									Sp	an 150 k
nter 1.62 tal Power		1 dBm / 0.03	MHz							
tal Power	Ref 19.5			Lower		^o eak ->	Upper			
tal Power Start Freq	Ref 19.5 Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)		
tal Power Start Freq 21.00 kHz	Ref 19.5 Stop Freq 42.00 kHz	Integ BW 4.000 kHz	dBm -12.84	ΔLim(dB) (-7.35)	Freq (Hz) -21.00 k	dBm -15.70	ΔLim(dB) (-10.22)	21.58 k		
tal Power Start Freq 21.00 kHz 42.00 kHz	Ref 19.5 Stop Freq 42.00 kHz 105.0 kHz	Integ BW 4.000 kHz 4.000 kHz	dBm -12.84 -26.60	ΔLim(dB) (-7.35) (-11.12)	Freq (Hz) -21.00 k -61.59 k	dBm -15.70 -28.72	∆Lim(dB) (-10.22) (-13.23)	21.58 k 59.63 k	t i i	
tal Power Start Freq 21.00 kHz 42.00 kHz 105.0 kHz	Ref 19.5 Stop Freq 42.00 kHz 105.0 kHz 150.0 kHz	Integ BW 4.000 kHz 4.000 kHz 4.000 kHz	dBm -12.84	ΔLim(dB) (-7.35) (-11.12) (-20.31)	Freq (Hz) -21.00 k	dBm -15.70	ΔLim(dB) (-10.22) (-13.23) (-19.86)	21.58 k	t i i	
tal Power Start Freq 21.00 kHz 42.00 kHz 105.0 kHz 4.000 MHz	Ref 19.5 Stop Freq 42.00 kHz 105.0 kHz 150.0 kHz 8.000 MHz	Integ BW 4.000 kHz 4.000 kHz 4.000 kHz 1.000 MHz	dBm -12.84 -26.60	ΔLim(dB) (-7.35) (-11.12) (-20.31) ()	Freq (Hz) -21.00 k -61.59 k	dBm -15.70 -28.72	ΔLim(dB) (-10.22) (-13.23) (-19.86) ()	21.58 k 59.63 k		
tal Power Start Freq 21.00 kHz 42.00 kHz 105.0 kHz 4.000 MHz 3.000 MHz	Ref 19.5 Stop Freq 42.00 kHz 105.0 kHz 150.0 kHz 8.000 MHz 12.50 MHz	Integ BW 4.000 kHz 4.000 kHz 4.000 kHz 1.000 MHz 1.000 MHz	dBm -12.84 -26.60 -43.80 	ΔLim(dB) (-7.35) (-11.12) (-20.31) () ()	Freq (Hz) -21.00 k -61.59 k	dBm -15.70 -28.72 -43.35 	ΔLim(dB) (-10.22) (-13.23) (-19.86) () ()	21.58 k 59.63 k 110.4 k		
tal Power Start Freq 21.00 kHz 42.00 kHz 105.0 kHz 4.000 MHz	Ref 19.5 Stop Freq 42.00 kHz 105.0 kHz 150.0 kHz 8.000 MHz	Integ BW 4.000 kHz 4.000 kHz 4.000 kHz 1.000 MHz	dBm -12.84 -26.60 -43.80	ΔLim(dB) (-7.35) (-11.12) (-20.31) ()	Freq (Hz) -21.00 k -61.59 k	dBm -15.70 -28.72	ΔLim(dB) (-10.22) (-13.23) (-19.86) ()	21.58 k 59.63 k 110.4 k		

Figure 3 – Part 25.202(f) Mask, Transmitting at 1620.979167 MHz

eysight Spect	rum Analyzer - Spectru		CC Part 25.202		-				04.07.4			
Ref 1.62	RF 50 Ω D 5979167 GH				er Freq: 1.6259				04:27:4	8 PM Jan 20, 1 Jone		
SS		I	FGain:Low		Free Run en: 20 dB	f 100 R	Radio Device: BTS					
Ref Offset 20 dB												
3										Absolut		
0				<u>_</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
) — — — (1			1			Relative		
)		<u> </u>										
								λ		Spe		
1 /	·							\sim	\sim	1		
· ——												
) ——												
,												
1												
nter 1.6	26 GHz								Sp	an 150 I		
									•			
tal Powe	r Dof 10.9	6 dBm / 0.03	MU>									
lai Fowe	19.8	6 dBm7 0.03	MHZ									
				Lower	٢.	Peak ->	Upper					
tart Freg	Stop Freq	Integ BW	dBm	∆Lim(dB)		dBm	∆Lim(dB)	Freq (Hz)				
21.00 kHz	42.00 kHz	4.000 kHz	-12.80	(-7.66)	-21.00 k	-13.17	(-8.03)	21.00 k	^			
2.00 kHz	105.0 kHz	4.000 kHz	-26.44	(-11.31)	-62.24 k	-27.10	(-11.96)	60.61 k				
05.0 kHz	150.0 kHz	4.000 kHz	-44.16	(-21.02)	-115.1 k	-43.00	(-19.86)	111.8 k				
.000 MHz	8.000 MHz	1.000 MHz		()			()					
3.000 MHz		1.000 MHz		()			()					
	15 00 MHz	1.000 MHz		()			()					
2.50 MHz												
2.50 MHz 2.50 MHz		1.000 MHz		()			()					

Figure 4 – Part 25.202(f) Mask, Transmitting at 1625.979167 MHz

The measurements shown for Part 25.202(f) in figures 2 -4 use a spectral mask built from the description found in the requirements described above. Device is shown to be compliant.

Requirement from FCC Part 25.216

(c) The e.i.r.p. density of emissions from mobile earth stations placed in service after July 21, 2002 with assigned uplink frequencies between 1610 MHz and 1660.5 MHz shall not exceed -70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559-1605 MHz. The e.i.r.p. of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed -80 dBW, averaged over any 2 millisecond active transmission interval, in the 1559-1605 MHz band.

Measurements were taken in dBm. Limit value has been converted from dBW to dBm.

RBW is set to a value greater than 700 Hz and 1 kHz thus showing compliance for discrete emissions described in the referenced FCC rule part and RSS-170.

Antenna gain is -1.9 dBm as declared by the manufacturer and thus the provided plots which assume antenna gain of 0 dBm are considered valid proof of compliance.

Limit = -80 dBW/MHz + 30 dB = -50 dBm/MHz

Keysight Spectrum Analyzer - Swept SA - 6 × 04:42:36 PM Jan 20, 2020 RF 50 Ω SENSE:INT Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 TYPE M WAWAAAAA Avg|Hold:>100/100 Trig: Free Run PNO: Fast \mathbf{P} PASS DET P NNNN Atten: 10 dB IFGain:Low Peak Table Freq (GHz) dBm ΔLimit1(dB) Ref 0.00 dBm 10 dB/div 1.59907 -63.00 -13.002 Ĺog Trace 1 Pass 1.59594 -63 01 -13 007 2 -10.0 1.60445 -63.10 -13,100 3 1 59079 -64 88 -14 880 4 -20.0 1.56010 -68.64 -18.643 5 6 1.57432 -68.66 -18.661 30.0 -18.731 7 1.56760 -68.73 8 40.0 9 10 -50.0 11 12 -60.0 4 13 7 6 14 -70.0 15 16 -80.0 17 -90.0 18 19 20 Start 1.55900 GHz Stop 1.60500 GHz Res BW 430 kHz VBW 50 MHz Sweep 1.000 ms (1001 pts) < MSG STATUS

Measurements according to FCC Part 25.216(c)

Figure 5 – Part 25.216(c), Transmitting at 1616.028330 MHz, Conducted Measurement

Keysight S	Spectrum Analyze	er - Swept SA												
KI	RF	50 Ω AC		_	SENS	SE:INT			A	e: Log-P		04:4	1:29 PM J	an 20, 2020
PASS			PNO IFGai	: Fast in:Low		Trig: Free Atten: 10			Avg Hold	d:>100/10	0		TYPE	1 2 3 4 5 M WWWW P N N N N
Peak Ta	ble													
F	req (GHz)	dBm	ΔLimit 1 (dB)	10 dl	B/div	Ref 0.0	0 dBr	n						
1	1.59603	-60.36	-10.358	Log	Trace	1 Pass				Y				
2	1.60403	-61.16	-11.164											
3	1.57588	-67.07	-17.068	-10.0										
4	1.55932	-67.97	-17.967											
5				-20.0										
6														
7				-30.0										
8				10.0										
9				-40.0										
10				-50.0										
11				-30.0										
12				-60.0									1	2
13				00.0				3					Ν	L.
14				-70.0	4	-	- Julianska	1 1	n laka miniki	and the state	AND THE PROPERTY OF	aphen W	lip mound	a Manur Jua
15							of diseased and	IN A DOM OF		1				
16				-80.0	<u> </u>									
17														
18				-90.0	<u> </u>									
19														
20				Star	1 1.559	900 GHz	,			*		Stor	1.605	00 GH2
<			>			30 kHz		/BW 50	MHz		Sweep	1.000	ms (10	01 pts
sg				1					STATUS		•		•	•
									0					

Figure 6 – Part 25.216(c), Transmitting at 1620.979167 MHz, Conducted Measurement

📕 Keysigł	nt Spectrum Analyze													r 🗾
XI	RF	50 Ω AC			SEN	ISE:INT						04:	39:10 PM Ja	-
Start F PASS	req 1.559	000000 G	PNO	: Fast in:Low	Ģ	Trig: Free Atten: 10			Avg Typ Avg Hold					1 2 3 4 5 M WWWW P N N N N
Peak T	able													
	Freq (GHz)	dBm	∆Limit1(dB)	10 di	B/div	Ref 0.0	0 dBn	n						
1	1.60081	-60.17	-10.166	Log		e 1 Pass	• • • •							
2	1.59598	-62.55	-12.551			0 11 435								
3	1.59240	-64.29	-14.295	-10.0										
4	1.56489	-67.38	-17.384											
5	1.56797	-67.53	-17.534	-20.0										
6	1.56061	-67.61	-17.608	-30.0										
7				-30.0										
8				-40.0										
9				40.0										
10				-50.0										
11														
12				-60.0								_	2	1
13					6	4 5						3 Martin	Marchen	home
14				-70.0	Martha and	of all all for a start of the s	der-sylleste	-	Hadrowership	hter with	the second second	W WHIT		
15														
16				-80.0	<u> </u>									
17														
18				-90.0										
19														
20 <			>			900 GHz 30 kHz		/BW 50	MHz		Sweep		o 1.605 ms (10	
sg			>						STATUS					- i pto

Figure 7 – Part 25.216(c), Transmitting at 1625.979167 MHz, Conducted Measurement

(g) <first section of paragraph removed because power density measurements are not applicable to permissive change validation>

...The e.i.r.p of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed a level determined by linear interpolation from -80 dBW at 1605 MHz to -20 dBW at 1610 MHz, averaged over any 2-millisecond active transmission interval.

Measurements were taken in dBm. Limit value has been converted from dBW to dBm.

RBW is set to a value greater than 700 Hz and 1 kHz thus showing compliance for discrete emissions described in the referenced FCC rule part and RSS-170.

Antenna gain is -1.9 dBm as declared by the manufacturer and thus the provided plots which assume antenna gain of 0 dBm are considered valid proof of compliance.

Limit = -80 dBW/MHz + 30 dB = -50 dBm/MHzto -20 dBW/MHz + 30 dB = 10 dBm/MHz

🔤 Keys	ight Spectrum Analyz													
LXI	RF	50 Ω AC			SEN	ISE:INT						10:		un 03, 2020
Ref L	evel -0.17	dBm					_		Avg Typ				TRACE	1 2 3 4 5 6
PAS				Wide	\mathbf{P}	Trig: Free			Avg Hold	:>1500/1	500		TYPE	P N N N N N
PA3	>		IFGai	n:High		#Atten: 0 d	B						DEI	
Peak	Table					D-405								
	Freq (GHz)	dBm	ΔLimit 1 (dB)	10 d	B/div	Ref Offs Ref -0.								
1	1.605315	-51.15	-4.901	Log		e 1 Pass								
2	1.605540	-51.43	-7.883			e i Fass								
3	1.605715	-50.57	-9.123	-10.2	<u> </u>									
4	1.605895	-51.43	-12.139											
5	1.606545	-50.27	-18.782	-20.2										
6	1.606470	-51.33	-18.944	-30.2										
7	1.607625	-46.47	-27.942	-30.2										
8	1.607690	-49.00	-31.255	-40.2										
9	1.607865	-51.16	-35.514	10.2						7				
10	1.608045	-51.41	-37.918	-50.2	1	2 3 4		5		Å, e	101112	1314	1516	1781920
11	1.608170	-50.91	-38.915		nhanth	www.hwww	wwww	" Marymy	non front	L WW	Mr. Walny	ᢆᡁᠺ᠕ᡁᡵ᠇᠔ᠬ	YWW	-Mrmm
12	1.608260	-50.37	-39.457	-60.2	<u> </u>	_								
13	1.608560	-51.33	-44.025											
14	1.608690	-50.89	-45.136	-70.2	<u> </u>									
15	1.609040	-51.21	-49.661											
16	1.609125	-50.58	-50.055	-80.2										
17	1.609550	-50.59	-55.164											
18	1.609605	-50.94	-56.174	-90.2										
19	1.609705	-50.85	-57.280											
20	1.609825	-51.11	-58.976			5000 GH					_			00 GHz
<			>	#Re	s BW	100 kHz	V	/BW 1.0			Sweep	1.000	ms (1)	001 pts)
MSG									STATUS					

Measurements according to FCC Part 25.216 (g) Peak measurements

Figure 8 – Part 25.216(g), Transmitting at 1616.028330 MHz, Conducted Measurement

Keysig	ht Spectrum Analyze	er - Swept SA												
XI	RF	50 Ω AC			SEN	SE:INT						10:	43:11 AM Ju	un 03, 2020
Ref Le	evel -0.17 c	lBm	BNO		_	Trig: Free	Run			be: Log-P d:>1500/			TRACE TYPE	1 2 3 4 5 M
PASS				: Wide n:High	Ģ	#Atten: 0 c							DET	PNNNN
Peak 1						Ref Offs	et 19 83	dB						
	Freq (GHz)	dBm	ΔLimit1(dB)	10 dE	Ndiv	Ref -0.1								
1	1.605455	-52.68	-8.114	Log		e 1 Pass				Y				
2	1.605685	-52.30	-10.489		1.40									
3	1.605735	-52.16	-10.952	-10.2										
4	1.605810	-52.71	-12.401	20.2										
5	1.605940	-52.51	-13.757	-20.2										
6	1.606730	-52.47	-23.199	-30.2										
7	1.606795	-52.51	-24.018					1						
8	1.606895	-52.71	-25.418	-40.2										
9	1.607065	-52.28	-27.035											
10	1.607355	-51.61	-29.836	-50.2		1 234 5		67.8	9 10		112	13 14	15 167 18	1920
11	1.607995	-52.55	-38.456 -39.249		ዀኊጚላኄ	M	J. May m	\sim	all way of	When		WWW	MAR and and	many
12	1.608585	-52.32	-39.249	-60.2										
13 14	1.608800	-51.87	-44.050											
14	1.609015	-52.51	-50.624	-70.2										
15	1.609155	-52.11	-51.936	-80.2										
17	1.609205	-52.22	-52.654											
18	1.609335	-52.68	-54.672	-90.2										
19	1.609745	-52.71	-59.615											
20	1.609855	-52.28	-60.506	Star	t 1.60	5000 GH	z			*		Stop	1.6100	00 GH:
c			>			100 kHz		/BW 1.0) MHz		Sweep			
SG				1					STATUS		-			-

Figure 9 – Part 25.216(g), Transmitting at 1620.979167 MHz, Conducted Measurement

🔤 Key	ysight Spectrum Analyze	er - Swept SA												r x
LXI	RF	50 Ω AC			SEN	ISE:INT						10:	42:01 AM Ju	in 03, 2020
Ref	Level -0.17 c	dBm		Wide		Trig: Free #Atten: 0			Avg Typ Avg Hold					1 2 3 4 5 6 M
PASS IFGain:High							uD							
Pea	K Table Freg (GHz)	dBm	ΔLimit 1 (dB)			Ref Offs								
	1.605065	-52.09	-2.836	10 dE	3/div	Ref -0.	17 dB	m					_	
1				LUG	Trace	e 1 Pass				1				
2	1.605355	-52.23	-6.460											
3	1.606375	-52.11	-18.584	-10.2	<u> </u>									
4	1.606480	-51.86	-19.588											
5	1,606505	-52.44	-20,466	-20.2										
6	1.606630	-52.32	-21.854	-30.2										
7	1.606715	-52.36	-22.907	-30.2										
8	1.606990	-51.95	-25.800											
9	1.607500	-51.95	-31,921	-40.2										
	1.607815	-52.18	-35.925										14	
10				-50.2				\$67 I	e .	9 10	11213	15	$\left \right\rangle$	167890
11	1.608230	-51.49	-40.219		hmp	WWWWW	marin	WY WWW	marcola	Marlon	ᡙ᠕ᡃᠰᡰᠰ᠕ᡎ	Mulan	1 m	~Mm
12	1.608310	-51.82	-41.511	-60.2										
13	1.608405	-52.12	-42.952											
14	1.609175	-45.19	-45.265	70.0										
				-70.2										
15	1.608645	-52.22	-45.926											
16	1.609630	-51.38	-56.911	-80.2	<u> </u>									
17	1.609680	-52.01	-58.138											
18	1.609735	-52.64	-59.431	-90.2										
19	1,609800	-52.45	-60.022											
										<u> </u>				
20	1.609865	-52.04	-60.390	Star	t 1.60	5000 GH	Iz							00 GHz
<			>	#Res	s BW	100 kHz	: \	/BW 1.0	0 MHz		Sweep	1.000	ms (10	01 pts)
MSG				1					STATUS					
									514105					

Figure 10 – Part 25.216(g), Transmitting at 1625.979167 MHz, Conducted Measurement

Annex A – Sample Field Strength Calculation

Radiated Emissions

The field strength is calculated in decibels (dB) by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = R + AF - (-CF + AG)

where FS = Field Strength

R = Receiver Amplitude Receiver reading in $dB\mu V$

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Preamplifier Amplifier Gain

Assume a receiver reading of 55.00 dB μ V is obtained. The Antenna Factor of 12.00 and a Cable Factor of 1.10 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.10 dB μ V/m.

 $FS = 55.00 + 12.00 - (-1.10 + 20.00) = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20] = 254.1 μ V/m

Annex B – Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)			
Radiated Emissions, 3m	30MHz - 1GHz	3.82			
Radiated Emissions, 3m	1GHz - 18GHz	4.44			

Expanded uncertainty values are calculated to a confidence level of 95%.

REPORT END