

 Test Report Serial Number: Test Report Date: Project Number:

45461364-R1.4
9 December 2016
1358

SAR Test Report - New Certification

Applicant:	Max	imum Repo	orted 1g S	SAR	
GARMIÑ	FCC	Hand	0.47		
Garmin International Inc.	IC	Hand	0.50	W/kg	
1200 East 151 St.	Gener	al Pop. Limit:	4.00	1	
Olathe, KS, 66062 USA					
FCC ID:		IC Registratio	n Number		
IPH-03100	IPH-03100 1792A-03100				
Product Model Number / HVIN		Product Name / PMN			
A03100		A03100			

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: 714830

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2016 Celltech Labs Inc,

Table of Contents

3
3
4
5
6
7
7
7
3
9
1
2
3
5
7
3
)
1
2
4
)
3
4
5
3

1.0 DOCUMENT CONTROL

Prepared By:	Art Voss			
Reviewed By:	Ben Hewson			
Issue Number	Descriptio	n	Ву	Issue Date
1.0	Initial Releas	se	Art Voss	10 October 2016
1.1	Correct to Cover	[.] Page	Art Voss	13 October 2016
1.2	Correction to Model	Numbers	Art Voss	22 November 2016
1.3	Corrections Per	тсв	Art Voss	8 December 2016
1.4	Corrections Per	TCB	Art Voss	9 December 2016

2.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEEE International Committ	ee on Electromagnetic Safety
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)
	in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 865664 D02v01r02	RF Exposure Compliance Reporting and Documentation Considerations
FCC KDB	
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 248227 D01v02r02	SAR Test Guidane for IEEE 802.11 (WiFI) Transmitters
* When the issue number	or issue date is omitted, the latest version is assumed.

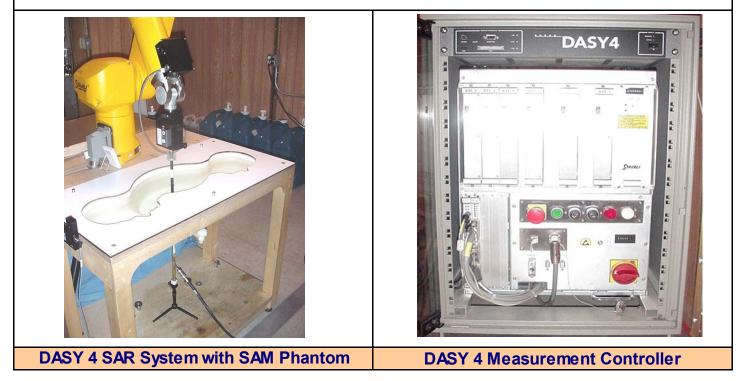
3.0 CLIENT AND DEVICE INFORMATION

Client Information					
Applicant Name	Garmin International Inc.				
	1200 East 151 St				
Applicant Address	Olathe, KS, 66062				
	USA				
	DUT Information				
Device Identifier(s):	FCC ID: IPH-03100				
Device identifier(3).	IC: 1792A-03100				
Type of Equipment:	Mobile GPS				
Device Model(s) / HVIN:	A03100				
Device Marketing Name / PMN:	A03100				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	BLE: 2448MHz				
Transmit requency Range.	WiFi: 2412-2462 MHz				
Number of Channels:	n/a				
Manuf. Max. Rated Output Power:	BLE: 4dBm, WiFi: 20dBm				
Modulation:	DSSS, OFDM, MCS0-7, CW				
Duty Cycle:	100%				
DUT Power Source:	5VDC Li-Ion				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

4.0 STATEMENT OF COMPLIANCE

This measurem	nent report demonstrates that the:
Applicant:	Model / HVIN:
Garmin International Inc.	A03100
complies with the SAR (Specific Absorp	tion Rate) RF exposure requirements and limits specified in the following:
Standard(s):	Measurement Procedure(s):
FCC 47 CFR §2.1093	FCC KDB 865664 D01v01r04, FCC KDB 447498 D01v06, FCC KDB 248227 D01v02r02
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5
	IEEE Standard 1528-2013, IEC 62209-2 2010
Use Group:	X General Population / Uncontrolled
Reason for Issue:	
New Certification	

A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used during this evaluation, equipment used and the various provisions of the rules are included within this test report.


Note: This device is intended to be installed as a Mobile GPS device. However in some cases, this device could be hand-held during certain WiFi and/or BlueTooth operations. The manufacturer chose to have this device evaluated for Extremity SAR.

5.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0										
Conducted Power Measurements										
Channel	Frequency (MHz)	Measured Power (dBm)	Rated Power (dBm)	Rated Power (W)	Delta (dBm)	SAR Test Channel (Y/N)				
1	2412	18.30	20.00	0.10	-1.70	Y				
6	2437	18.30	20.00	0.10	-1.70	Y				
11	2462	18.30	20.00	0.10	-1.70	Y				
Notes:										
The Conducted Power of the DUT was measured at the antenna port, while plugged into a USB charger and transmitting at 100% duty cycle.										

7.0 NUMBER OF TEST CHANNELS (N_c)

As per FCC KDB 248277 D01v02r02, the required 802.11 test channels are Ch1, Ch6 and Ch 11

8.0 ACCESSORIES EVALUATED

There are no handheld accessories.

9.0 SAR MEASUREMENT SUMMARY

Table 9.0															
Measured SAR Results (10g) - BODY Configuration (FCC/ISEDC)															
	DUT Test Accessories DUT Spacing Conducted Measured SAR (10g) SAR														
Date	Plot Frequency Modulation Antenna Battery Body Audio DUT Antenna Power 100% DC 50% DC Drift**														
	ID	M/N	M/N Type (<i>MHz</i>) ID ID ID (<i>mm</i>) (<i>mm</i>) (<i>dBm</i>) (<i>W/kg</i>) (<i>W/kg</i>) (<i>dB</i>)							(<i>dB</i>)					
26 Sep 2016	B11	DL51	n/a	2412	CW	n/a	n/a	n/a	n/a	0	0	18.3 0.043 -			-0.200
26 Sep 2016	6 B12 DL51 n/a 2437 CW n/a n/a n/a n/a 0 0 18.3 0.292 -						-0.200								
26 Sep 2016	26 Sep 2016 B13 DL51 n/a 2462 CW n/a n/a n/a n/a 0 0 18.3 0.158 -0.200														
SAR Limit Spatial Peak Head/Body RF Exposure Category															
FCC 47 CFR 2.1093 Health Canada Safety Code 6 10 Gram Average 4.0 W/kg General Population/User Unaware															
** The manufa					nto a USB cha	•	•	•	•		a hand-he	ld configuration	on.		

This device was tested while plugged into a USB charger as a result, the SAR Drift could not be accurately ascertained.

A drift assesment was made by measuring the conducted power over a period of time equal to the overall SAR test time as it was determind the SAR Drift was less than 0.2dB. A SAR Drift factor of -0.2dB is used for the purposes of SAR scaling.

10.0 SCALING OF MAXIMUM MEASURE SAR

able 10.0)										
			Scali	ng of Ma	aximum M	easured	SAR ⁽¹⁾				
		Freq	Measured Fluid Deviation			Co				sured rift	Measured SAR (10g)
Plot ID	Configuration	(MHz)	Permittivity	Cond	ductivity		(dBm)		(d	В)	(W/kg)
B12	Body	2437	-4.66%	3.	.98%		18.3		-0.2	200	0.292
					Step 1						
		Casta		Fluid	d Sensitivity Adj	ustment	Manager				Step 1 Adjust
		Scale Facto					Measured SAR				Step 1 Adjust SAR (10g)
Plot ID		(%)		x			(W/kg)			=	(W/kg)
		1.000%	6	х						=	0.000
B12		1.000%	6	X			0.292			=	0.292
				Manufa	Step 2	Telesense					
	Measu	red	Ra	ted	cturer's Tune-Up	o Tolerance					Step 2 Adjust
	Conducted			wer		Delta Step 1 Adjusted SAR					SAR (10g)
Plot ID	(dBm	1)	(dBm)			(dB) + (W/kg)				=	(W/kg)
						+	0.000		=	0.000	
B12	18.3		20).0		-1.7	+	0.2	92	=	0.432
			Sim	ultonoouo Tr	Step 3 ansmission - B	luctooth and/a					
	Rated Output		Separation			nated					Step 3 Adjust
	Power (Pmax)	Freq	Distance			AR		Step 2 Adju	usted SAR		SAR (10g)
Plot ID	(mW)	(MHz)	(mm)		(W/	'kg)	+	(W/	kg)	=	(W/kg)
						0.000 + 0.000				=	0.000
B12	2.5	2448	5		0.042 + 0.432					=	0.474
					Step 4 Drift Adjustme	nt					
		Measur	ed				n 2 Adjusted	CAD			Step 4 Adjust
		Drift			Step 3 Adjusted SAR						SAR (10g)
Plot ID		(dB)		+						(W/kg)	
D 40		0.000		+ +	0.000 =					0.000	
B12		-0.200		т	0.4/4 –					0.496	
					Reported SAI	R					
			FCC						IC		
		F	rom Steps 1 through 3						ps 1 through	4	
Plot ID			10g SAR (W/kg)					-	AR (W/kg)		
D10			0.00 0.47						0.00		
B12			0.47						0.50		

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The

Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per KDB 4474	198 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.
Step 4	
Per IEC 62209	9-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.
Step 5	

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.	Art Voss, P.Eng. Technical Manager Celltech Labs Inc. 10 October 2016 Date	A.F. VOSS # 31327 Contraction Manual Contraction Manual Contraction Ma
--	--	---

11.0 SAR EXPOSURE LIMITS

Table 11.0						
SAR RF EXPOSURE LIMITS						
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population / Uncontrolled Exposure ⁽⁴⁾	Occupational / Controlled Exposure ⁽⁵⁾			
Spatial Average ⁽¹⁾ (averaged over the whole body)		0.08 W/kg	0.4 W/kg			
•	oatial Peak ⁽²⁾ eraged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg			
•	oatial Peak ⁽³⁾ t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg			
(1) The Spatial Average value of the SAR averaged over the whole body.						

(2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.

(3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.

(4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.

(5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

12.0 DETAILS OF SAR EVALUATION

	EVALUATION DETAILS						
1	The DUT was evaluated for SAR in accordance with the procedures described in IEEE 1528, FCC KDB 865646 and RSS-102.						
2	The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer. The device was capable of transmitting in Continuous Wave (CW) and was testing in an unmodulated continuous transmit mode at 100% duty cycle.						
3	Each SAR evaluations were performed while plugged into a USB Charger						
4	The fluid temperature remained within +/-2°C from the time of the fluid dielectric parameter measurement to the completion of the SAR evaluation.						
5	The fluid temperature remained within +/-0.5°C throughout the test day.						

SCAN PROCEDURE					
Maximum distance from the closest measurement point to phantom surface.	4 ± 1mm				
Maximum probe angle normal to phantom surface.	5° ± 1°				
Area Scan Spatial Resolution ΔX , ΔY	12mm				
Zoom Scan Spatial Resolution ΔX , ΔY	5mm				
Zoom Scan Spatial Resolution ΔZ	5mm				
Zoom Scan Volume X, Y, Z	30mm x 30mm x 30mm				
Phantom	SAM				
Fluid Depth	150mm				
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.					
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1 gram and 10 gram peak spatial-averge SAR					

13.0 MEASUREMENT UNCERTAINTIES

Table 13.0									
UNCERTA	INTY BUC	GET FOR D	EVICE EVA	LUATION (IE	EE 15	528-20	13 Table 9)		
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration*	E.2.1	6.6	Normal	1	1	1	6.60	6.60	8
Axial Isotropy*	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	8
Hemispherical Isotropy*	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	8
Boundary Effect*	E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	8
Linearity*	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	8
System Detection Limits*	E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	8
Modulation Response	E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	8
Readout Electronics*	E.2.6	1.0	Normal	1	1	1	1.0	1.0	8
Response Time*	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	8
Integration Time*	E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	ø
RF Ambient Conditions - Noise	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	ø
RF Ambient Conditions - Reflection	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	ø
Probe Positioner Mechanical Tolerance*	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	8
Probe Positioning wrt Phantom Shell*	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	×
Extrapolation, interpolation & integration algorithms for max. SAR evaluation*	E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
Device Holder Uncertainty*	E.4.1	3.6	Normal	1	1	1	3.6	3.6	×
SAR Drift Measurement**	E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	×
SAR Scaling***	E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	×
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	×
SAR Correction Uncertainty	E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	œ
Liquid Conductivity (measurement)	E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
Liquid Permittivity (measurement)	E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
Liquid Conductivity (Temperature)	E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	8
Liquid Permittivity Temperature)	E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	×
Effective Degrees of Freedor	n ⁽¹⁾							V _{eff} =	873.2
Combined Standard Uncertainty			RSS				12.59	12.40	
Expanded Uncertainty (95% Confid	ence Interva	al)	k=2				25.18	24.80	
Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003									

(1) The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

* Provided by SPEAG

Calculation of the Degrees and Effective Degrees of Free $v_{eff} = \frac{u_c^4}{m}$	
	edom
$v_i = n - 1$ $\sum_{i=1}^{n-1} \frac{c_i u_i}{v_i}$	

14.0 FLUID DIELECTRIC PARAMETERS

Aprel Laboratory Test Result for UIM Dielectric Parameter Mon 26/Sep/2016 12:14:50 Freq Frequency(GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test e Epsilon of UIM							
	est_s Sig	ma of U	IM	****			
Freq 2.3500 2.3600 2.3700 2.3800 2.3900 2.4000 2.4100 2.4200 2.4200 2.4300 2.4400 2.4500 2.4500 2.4600 2.4700 2.4800 2.4900 2.5000 2.5100	52.83 52.82 52.81 52.79 52.78 52.77 52.77	1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93		1.89 1.90 1.92 1.93 1.95 1.96 1.98 1.99 2.00 2.02			
2.5200 2.5300 2.5400 2.5500	52.61 52.60 52.59 52.57	2.05 2.06 2.08 2.09	50.05 50.02 50.00 49.97	2.13 2.15 2.16 2.18			

Table 14.0							
	FLUID DIELECTRIC PARAMETERS						
Date: 26 Sep 2016 Fluid Temp: 22.2 Frequency: 2450MHz Tissue: Body							
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
2350.0000		50.4800	1.8900	52.8300	1.85	-4.45%	2.16%
2360.0000		50.4600	1.9000	52.8200	1.86	-4.47%	2.15%
2370.0000		50.4300	1.9200	52.8100	1.87	-4.51%	2.67%
2380.0000		50.4000	1.9300	52.7900	1.88	-4.53%	2.66%
2390.0000		50.3800	1.9500	52.7800	1.89	-4.55%	3.17%
2400.0000		50.3500	1.9600	52.7700	1.90	-4.59%	3.16%
2410.0000		50.3300	1.9800	52.7500	1.91	-4.59%	3.66%
2412.0000	*	50.3240	1.9820	52.7480	1.91	-4.60%	3.66%
2420.0000		50.3000	1.9900	52.7400	1.92	-4.63%	3.65%
2430.0000		50.2800	2.0000	52.7300	1.93	-4.65%	3.63%
2437.0000	*	50.2590	2.0140	52.7160	1.94	-4.66%	3.98%
2440.0000		50.2500	2.0200	52.7100	1.94	-4.67%	4.12%
2450.0000		50.2300	2.0300	52.7000	1.95	-4.69%	4.10%
2460.0000		50.2000	2.0500	52.6900	1.96	-4.73%	4.59%
2462.0000	*	50.1960	2.0520	52.6860	1.96	-4.73%	4.48%
2470.0000		50.1800	2.0600	52.6700	1.98	-4.73%	4.04%
2472.0000	*	50.1740	2.0640	52.6680	1.98	-4.74%	4.14%
2480.0000		50.1500	2.0800	52.6600	1.99	-4.77%	4.52%
2490.0000		50.1300	2.0900	52.6500	2.01	-4.79%	3.98%
2500.0000		50.1000	2.1100	52.6400	2.02	-4.83%	4.46%
2510.0000		50.0800	2.1200	52.6200	2.04	-4.83%	3.92%
2520.0000		50.0500	2.1300	52.6100	2.05	-4.87%	3.90%
2530.0000		50.0200	2.1500	52.6000	2.06	-4.90%	4.37%
2540.0000		50.0000	2.1600	52.5900	2.08	-4.92%	3.85%
2550.0000		49.9700	2.1800	52.5700	2.09	-4.95%	4.31%

*Channel Frequency Tested

15.0 SYSTEM VERIFICATION TEST RESULTS

System Verification Test Results						
Da	10	Frequency	Va	alidation Sour	ce	
Da	ate	(MHz)	P/	/N	S/N	
26 Sej	o 2016	2450	D24	50V2	825	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Body	22.2	22	24%	250	10	
		Fluid Pa	rameters			
	Permittivity Conductivity					
Measured	Target	Deviation	Measured	Target	Deviation	
50.23	52.70	-4.69%	2.03	1.95	4.10%	
		Measur	ed SAR			
	1 gram			10 gram		
Measured	Target	Deviation	Measured	Target	Deviation	
13.80	13.00	6.15%	6.23	6.05	2.98%	
	Me	asured SAR N	ormalized to 1.	0W		
	1 gram			10 gram		
Normalized	Target	Deviation	Normalized	Target	Deviation	
55.20	50.70	8.88%	24.92	23.80	4.71%	
	Prior to the SAR evaluations, system checks were performed on the					

planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

16.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 16.0					
Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: RX60L				
Repeatability	0.02 mm				
No. of axis	6				
Data Acquisition Electronic (DAE) System					
Cell Controller					
Processor	AMD Athlon XP 2400+				
Clock Speed	2.0 GHz				
Operating System	Windows XP Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Software	Measurement Software: DASY4, V4.7 Build 80				
Soltware	Postprocessing Software: SEMCAD, V1.8 Build 186				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY4 Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	3600				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom					
Туре	SAM				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				

Table 16.1		
	Measurement System Specification (Continued)	
	Probe Specification	
	Symmetrical design with triangular core;	
Construction:	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents, glycol)	
	In air from 10 MHz to 2.5 GHz	
Calibration:	In head simulating tissue at frequencies of 900 MHz	
	and 1.8 GHz (accuracy \pm 8%)	
Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)	
Directivity:	\pm 0.2 dB in head tissue (rotation around probe axis)	
	\pm 0.4 dB in head tissue (rotation normal to probe axis)	
Dynamic Range:	5 $_{\mu}$ W/g to > 100 mW/g; Linearity: \pm 0.2 dB	
Surface Detect:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surface	
	Overall length: 330 mm; Tip length: 16 mm;	
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm	1 - 1 - TR
	Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe
	Phantom Specification	
hickness of 2.0mm	ntom is an elliptical planar fiberglass shell phantom with a shell n +/2mm at the planar area. This phantom conforms to OET Bulletin IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.	SAM Phantom
	Device Positioner Specification	SAWFIIantoin
axis) and the device plane between the plate contains three	positioner has two scales for device rotation (with respect to the body e inclination (with respect to the line between the ear openings). The ear openings and the mouth tip has a rotation angle of 65 ^O . The bottom e pair of bolts for locking the device holder. The device holder positions standard measurement positions in the three sections.	

17.0 TEST EQUIPMENT LIST

Table 17.0							
Test Equipment List							
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL			
Schmid & Partner DASY4 System	-	-	-	-			
-DASY4 Measurement Server	158	1078	CNR	CNR			
-Robot	46	599396-01	CNR	CNR			
-DAE4	19	353	20-Apr-16	Annual			
-DAE3	18	370	22-Apr-16	Annual			
-EX3DV6 E-Field Probe	213	3600	27-Apr-16	Annual			
-CLA150 Validation Source	251	4007	24-Jan-16	Triennial			
-D835V2 Validation Dipole	217	4D075	23-Apr-15	Triennial			
-D450V3 Validation Dipole	221	1068	21-Apr-15	Triennial			
SAM Phantom	154	-	CNR	CNR			
HP 85070C Dielectric Probe Kit	33	none	CNR	CNR			
Gigatronics 8652A Pow er Meter	110	1835801	29-Feb-16	Triennial			
Sensor	248	1833687	29-Feb-16	Triennial			
HP 8753ET Netw ork Analyzer	134	US39170292	22-Oct-14	Triennial			
Generator	6	100104	08-May-14	Triennial			
Amplifier	106	26235	CNR	CNR			

CNR = Calibration Not Required

18.0 FLUID COMPOSITION

Table 18.0			2450MHz Body			
Tissue Simulating Liquid (TSL) Composition						
Component by Percent Weight						
WaterGlycolSaltHECBacteriacide						
69.98	30.0	0.02	0.0	0.0		

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

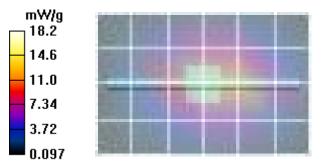
APPENDIX A – SYSTEM VERIFICATION PLOTS

Date/Time: 26/09/2016 12:41:50 PMDate/Time: 26/09/2016 12:45:01 PM

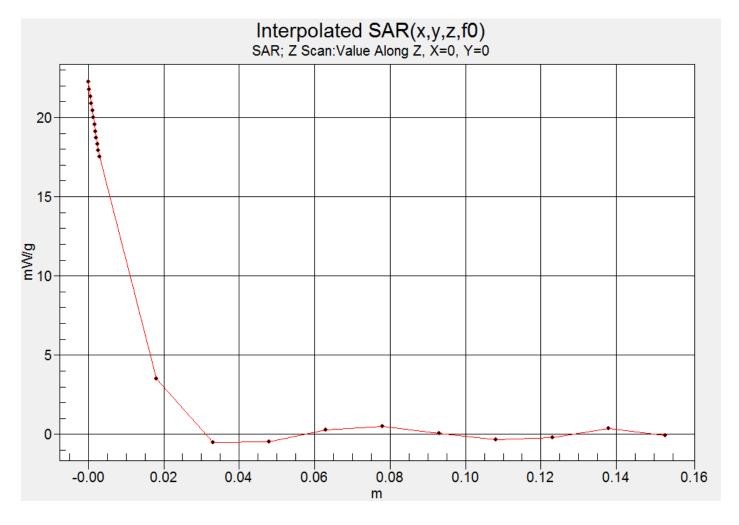
Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 25/04/2012 Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2.03 mho/m; ϵ_r = 50.2; ρ = 1000 kg/m³ Phantom section: Flat Section

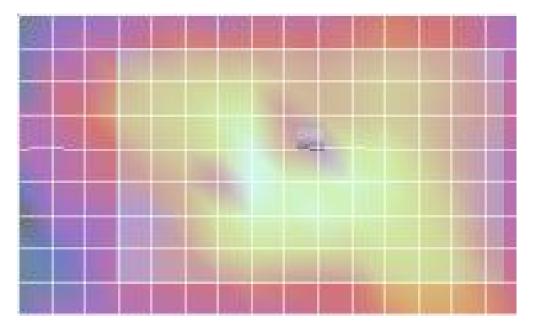

DASY4 Configuration:

- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 5mm (Mechanical Surface Detection)Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: SAM with CRP; Type: SAM; Serial: Not Specified
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.1 mW/g

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 94.5 V/m; Power Drift = -0.097 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.23 mW/g Maximum value of SAR (measured) = 18.2 mW/g



APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAT

Antenna Search

Plot B11

Date/Time: 30/09/2016 11:58:13 AMDate/Time: 30/09/2016 12:04:21 PM

Test Laboratory: Celltech Labs

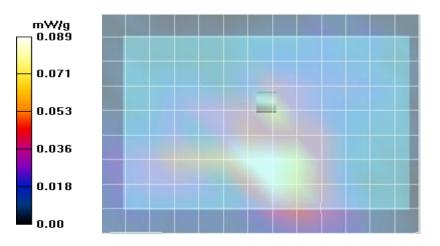
DUT: Garmin; Type: Dash Mount GPS; Serial: Not Specified Program Name: 2450 MHz Body

Communication System: CW; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.98 mho/m; ϵ_r = 50.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


B11* Body Back A03100, 2412MHz/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.089 mW/g

B11* Body Back A03100, 2412MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.75 V/m; Power Drift = 2.09 dB Peak SAR (extrapolated) = 0.192 W/kg

SAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.043 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.114 mW/g

Plot B12

Date/Time: 30/09/2016 12:20:16 PMDate/Time: 30/09/2016 12:26:27 PM

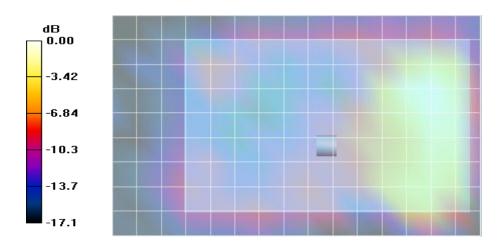
Test Laboratory: Celltech Labs

DUT: Garmin; Type: Dash Mount GPS; Serial: Not Specified Program Name: 2450 MHz Body

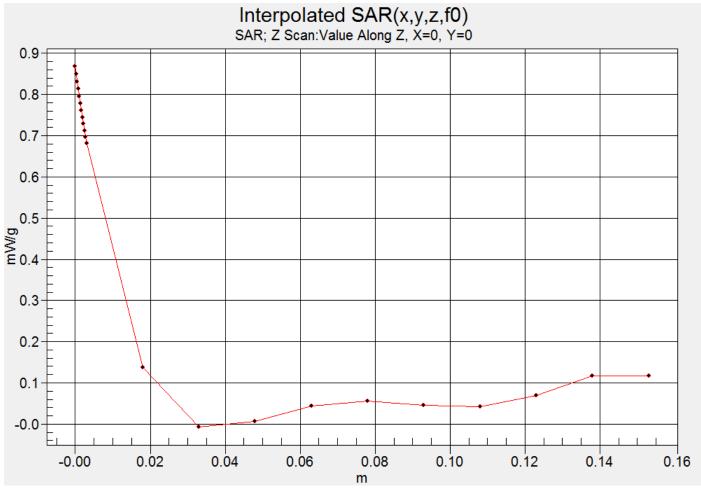
Communication System: CW; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 2.01 mho/m; ϵ_r = 50.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


B12* Retest Body Front A03100, 2437MHz/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.683 mW/g


B12* Retest Body Front A03100, 2437MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.65 V/m; Power Drift = 0.843 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.560 mW/g; SAR(10 g) = 0.292 mW/g

```
Info: Interpolated medium parameters used for SAR evaluation!
Maximum value of SAR (measured) = 0.701 mW/g
```


Plot B13

Date/Time: 30/09/2016 1:06:01 PMDate/Time: 30/09/2016 1:12:16 PM

Test Laboratory: Celltech Labs

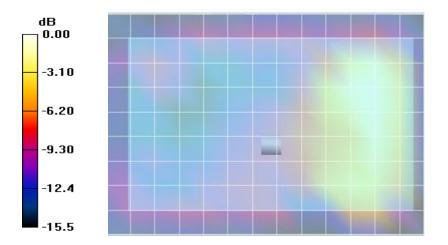
DUT: Garmin; Type: Dash Mount GPS; Serial: Not Specified Program Name: 2450 MHz Body

Communication System: CW; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 2.05 mho/m; ϵ_r = 50.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


B13* Body Front A03100, 2462MHz/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.347 mW/g

B13* Body Front A03100, 2462MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.98 V/m; Power Drift = 0.811 dB Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.158 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.373 mW/g

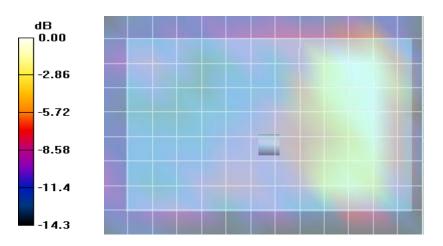
Date/Time: 30/09/2016 1:57:42 PMDate/Time: 30/09/2016 2:03:55 PM

Test Laboratory: Celltech Labs

DUT: Garmin; Type: Dash Mount GPS; Serial: Not Specified Program Name: 2450 MHz Body

Communication System: CW; Frequency: 2472 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2472 MHz; σ = 2.06 mho/m; ϵ_r = 50.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B14* Body Front A03100, 2472MHz/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.282 mW/g

B14* Body Front A03100, 2472MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.87 V/m; Power Drift = 2.49 dB Peak SAR (extrapolated) = 0.482 W/kg SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.130 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.289 mW/g

