

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Application For Grant of Certification

FCC CFR47 Part 87 Model: GMN-02232

118-136.975 MHz Aviation Communications Transceiver FCC ID: IPH-0159402

For

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

FCC Designation: US5305 ISED Registration: 3041A-1 Test Report Number: 190423

Test Date: April 23, 2019

Authorized Signatory: Scot DRogers

Scot D. Rogers

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Garmin International, Inc. Model: GMN-02232

SN's: 5YS000112, 5YS000103 FCC ID: IPH-0159402

Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87

Date: July 2, 2019
Page 1 of 37

Revision 1

File: GMN02232 FCC VHF Com TstRpt 190423

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report Application for Grant of Certification

For

Aviation Communications Transceiver Model: GMN-02232

Garmin International, Inc.

1200 East 151st Street Olathe, KS 66062

FCC ID: IPH-0159402 Frequency Range: 118-136.975 MHz

Test Date: April 23, 2019

Certifying Engineer: Scot DRogers

Scot D. Rogers Rogers Labs, Inc.

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019

Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 2 of 37

Table of Contents

TABLE OF CONTENTS	3
REVISION HISTORY	4
FORWARD	5
OPINION / INTERPRETATION OF RESULTS	5
APPLICABLE STANDARDS & TEST PROCEDURES	5
APPLICATION FOR CERTIFICATION	6
SYSTEM DESCRIPTION Equipment Configuration	
UNITS OF MEASUREMENTS	10
TEST SITE LOCATIONS	10
ENVIRONMENTAL CONDITIONS	10
LIST OF TEST EQUIPMENT	11
TRANSMITTER POWER OUTPUT	12
Measurements Required	12
Test Arrangement	12
Table 1 Transmitter Power Results	13
Figure 1 Power Output Across Frequency Band 118-136.750 MHz (25 kHz mode)	
MODULATION CHARACTERISTICS	16
Measurements Required	16
Test Arrangement	16
Modulation Characteristic Results	17
Figure 3 Modulation Characteristics	
OCCUPIED BANDWIDTH	19
Measurements Required	19
Test Arrangement	19
Table 2 Occupied Bandwidth Results	20
D I I I C ' I I C ' I I C C ' I I C C C C	•

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 3 of 37

Figure 5 Occupied Band Width (25 kHz channels 118.000-136.975 MHz)	
SPURIOUS EMISSIONS AT ANTENNA TERMINALS	23
Measurements Required	23
Test Arrangement	23
Table 3 Spurious Emissions at Antenna Terminal Results (Worst-case)	24
Figure 7 Spurious Emissions at Antenna Terminal	
FIELD STRENGTH OF SPURIOUS RADIATION (UNWANTED EMISSIONS)	26
Measurements Required	26
Test Arrangement	26
Table 4 General Spurious Radiated Emission Results	28
Table 5 Spurious Radiated Emission Results for 118.000 MHz Operation	29
Table 6 Spurious Radiated Emission Results for 127.500 MHz Operation	29
Table 7 Spurious Radiated Emission Results for 136.975 MHz Operation	30
Table 8 Spurious Radiated Emission Results for 136.992 MHz Operation	30
FREQUENCY STABILITY	31
Measurements Required	31
Test Arrangement	31
Table 9 Frequency Stability vs. Temperature Results	32
Table 10 Frequency Stability vs. Input Power Supply Voltage Results	32
ANNEX	33
Annex A Measurement Uncertainty Calculations	34
Annex B Additional Test Equipment List	35
Annex C Rogers Qualifications	36
Annex D Laboratory Certificate of Accreditation	37

Revision History

Revision 1 Issued July 2, 2019

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019

Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 4 of 37

Forward

In accordance with the Federal Communications, Code of Federal Regulations dated April 23, 2019, Part 2 Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.915, 2.925, 2.926, 2.1031 through 2.1057, and Part 87, Subchapter D, Paragraphs 87.131 through 87.147 the following information is submitted for consideration on obtaining Grant of Certification.

Opinion / Interpretation of Results

Tests Performed	Results					
Emissions Tests						
Requirements per CFR47 paragraphs 2.1031-2.1057	Complies					
Requirements per CFR47 paragraphs 87.131	Complies					
Requirements per CFR47 paragraphs 87.133	Complies					
Requirements per CFR47 paragraphs 87.135	Complies					
Requirements per CFR47 paragraphs 87.139	Complies					
Requirements per CFR47 paragraphs 87.141	Complies					

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable paragraphs of Part 87 the following is submitted for consideration in obtaining Grant of Certification. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.4-2014 and ANSI C63.26-2015.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019

Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 5 of 37

Application for Certification

(1) The full name and mailing address of the manufacturer of the device and the applicant for certification.

Garmin International, Inc. 1200 East 151st Street Olathe, KS 66062

- (2) FCC identifier. FCC ID: IPH-0159402
- (3) A copy of the installation and operating instructions to be furnished the user. A draft copy of the instructions may be submitted if the actual document is not available. The actual document shall be furnished to the FCC when it becomes available.

Refer to exhibit for Draft Instruction Manual.

- (4) Type or types of emission. 6K00A3E (25 kHz), (5K60A3E for 8.33 kHz operation)
- (5) Frequency range. 118-136.975 MHz (25 kHz channel operation), (118-136.992, 8.33 kHz channels)
- (6) Range of operating power values or specific operating power levels, and description of any means provided for variation of operating power.

10 W minimum, 40 dBm

(7) Maximum power rating as defined in the applicable part(s) of the rules.

Maximum allowable power output of 55 Watts as defined per CFR47 paragraph 87.131.

(8) The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

Power delivered into final amplifier 9.1 volts @ 2.9 amps (26.4 watts)

(9) Tune-up procedure over the power range, or at specific operating power levels.

Refer to Exhibit for Transceiver Alignment Procedure.

(10) A schematic diagram and a description of all circuitry and devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation, and for limiting power.

Refer to Exhibit for Circuit information and theory of operation.

(11) A photograph or drawing of the equipment identification plate or label showing the information to be placed thereon.

Refer to Exhibit for Photograph or Drawing.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019

Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 6 of 37

(12) Photographs (8" × 10") of the equipment of sufficient clarity to reveal equipment construction and layout, including meters, if any, and labels for controls and meters and sufficient views of the internal construction to define component placement and chassis assembly. Insofar as these requirements are met by photographs or drawings contained in instruction manuals supplied with the certification request, additional photographs are necessary only to complete the required showing.

Refer to Exhibit for Drawings of Components Layout and Chassis Drawings.

(13) For equipment employing digital modulation techniques, a detailed description of the modulation system to be used, including the response characteristics (frequency, phase and amplitude) of any filters provided, and a description of the modulating wave train, shall be submitted for the maximum rated conditions under which the equipment will be operated.

Not applicable

(14) The data required by §§2.1046 through 2.1057, inclusive, measured in accordance with the procedures set out in §2.1041.

Data is contained in this application

(15) The application for certification of an external radio frequency power amplifier under part 97 of this chapter need not be accompanied by the data required by paragraph (b)(14) of this section. In lieu thereof, measurements shall be submitted to show compliance with the technical specifications in subpart C of part 97 of this chapter and such information as required by §2.1060 of this part.

Does not apply to this device or application.

(16) An application for certification of an AM broadcast stereophonic exciter-generator intended for interfacing with existing certified, or formerly type accepted or notified transmitters must include measurements made on a complete stereophonic transmitter. The instruction book must include complete specifications and circuit requirements for interconnecting with existing transmitters. The instruction book must also provide a full description of the equipment and measurement procedures to monitor modulation and to verify that the combination of stereo exciter-generator and transmitter meet the emission limitations of §73.44.

Does not apply to this device or application.

(17) Applications for certification required by §25.129 of this chapter shall include any additional equipment test data required by that section.

Does not apply to this device or application.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019

Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 7 of 37

(18) An application for certification of a software defined radio must include the information required by §2.944.

Does not apply to this device or application.

- (19) Applications for certification of equipment operating under part 27 of this chapter, that a manufacturer is seeking to certify for operation in the:
- (i) 1755-1780 MHz, 2155-2180 MHz, or both bands shall include a statement indicating compliance with the pairing of 1710-1780 and 2110-2180 MHz specified in §\$27.5(h) and 27.75 of this chapter.
- (ii) 1695-1710 MHz, 1755-1780 MHz, or both bands shall include a statement indicating compliance with §27.77 of this chapter.
- (iii) 600 MHz band shall include a statement indicating compliance with §27.75 of this chapter.

Does not apply to this device or application.

(20) Before equipment operating under part 90 of this chapter and capable of operating on the 700 MHz interoperability channels (See §90.531(b)(1) of this chapter) may be marketed or sold, the manufacturer thereof shall have a Compliance Assessment Program Supplier's Declaration of Conformity and Summary Test Report or, alternatively, a document detailing how the manufacturer determined that its equipment complies with §90.548 of this chapter and that the equipment is interoperable across vendors. Submission of a 700 MHz narrowband radio for certification will constitute a representation by the manufacturer that the radio will be shown, by testing, to be interoperable across vendors before it is marketed or sold.

Does not apply to this device or application.

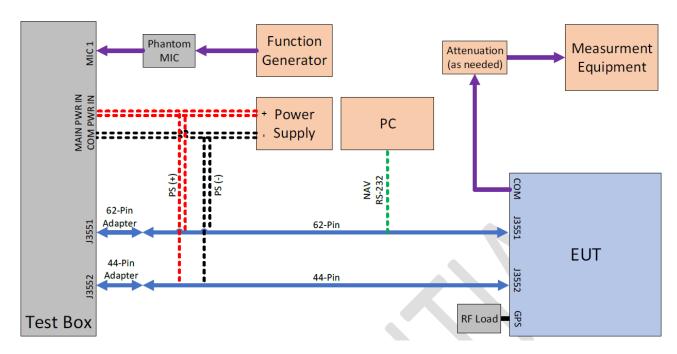
(21) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used.

Data is contained in this application or application exhibits.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019


Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 8 of 37

System Description

The GMN-02232 is an aeronautical communications transceiver. The authorized transmitter operational frequency band is 118.000 to 136.975 MHz (25 kHz mode). The device is marketed as Aircraft Mounted Integrated Avionics Unit. The design provides communication capability in the Aviation VHF Band with channel operational capability for 25 kHz or 8.33 kHz Channel Spacing. In addition to the authorized frequency band the design provides for VHF operation in 8.33 kHz channel spacing for international frequency band services and compatibility. This report documents operation for this application and authorization only as provided in 47CFR 87.173.

Equipment Configuration

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 9 of 37

Units of Measurements

AC Line Conducted EMI Data is in dBµV; dB referenced to one microvolt.

Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter

Antenna Conducted Data is in dBm, dB referenced to one milliwatt

Test Site Locations

Conducted EMI Antenna Port conducted emissions testing was performed in a shielded

screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS.

Radiated EMI The radiated emissions testing performed at the 3 meters, Open Area Test

Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS.

Registered Site information: FCC Site: US5305 and ISED: 3041A, CAB Identifier: US0096

NVLAP Accreditation Lab code 200087-0

Environmental Conditions

Ambient Temperature 23.7° C

Relative Humidity 42%

Atmospheric Pressure 1018.2 mb

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 10 of 37

List of Test Equipment

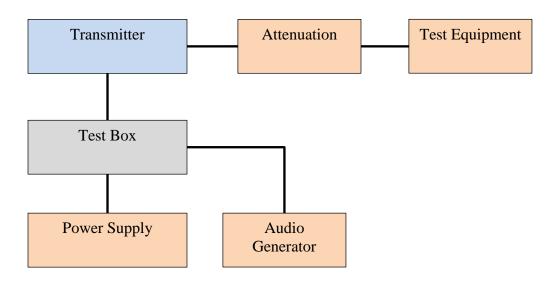
Equipment	<u>Manufacturer</u>	Model (SN)		al Date(m/d/y	
□ LISN		SN-50-25-10(1PA) (160611)	.15-30MHz	4/18/2019	4/18/2020
\square LISN		FCC-LISN-2.Mod.cd,(126)		10/16/2018	10/16/2019
⊠ Cable		. Sucoflex102ea(L10M)(3030	•		10/16/2019
⊠ Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(30306	9)9kHz-40 GHz	10/16/2018	10/16/2019
⊠ Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(30307	1)9kHz-40 GHz	10/16/2018	10/16/2019
☐ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/16/2018	10/16/2019
☐ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/16/2018	10/16/2019
☐ Antenna	ARA	BCD-235-B (169)	20-350MHz	10/16/2018	10/16/2019
☐ Antenna	EMCO	3147 (40582)	200-1000MHz	10/16/2018	10/16/2019
⊠ Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	5/2/2018	5/2/2020
☐ Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/16/2018	10/24/2019
☐ Antenna	Com Power	AH-840 (101046)	18-40 GHz	4/18/2019	4/18/2021
	Com Power	AL-130 (121055)	.001-30 MHz	10/16/2018	10/16/2019
	Sunol	JB-6 (A100709)	30-1000 MHz	10/16/2018	10/16/2019
	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	4/18/2019	4/18/2020
	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/31/2019	1/31/2020
\square Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2019
	Com-Power	PA-010 (171003)	100Hz-30MHz	10/16/2018	10/16/2019
	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/16/2018	10/16/2019
	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/16/2018	10/16/2019
☐ Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	10/16/2018	10/16/2019
☐ Power Mete	r Agilent	N1911A with N1921A	0.05-40 GHz	4/18/2019	4/18/2020
⊠ Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	4/18/2019	4/18/2020
\square Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-1800 MHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-1800 MHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-1800 MHz	4/18/2019	4/18/2020
☐ RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-1800 MHz	4/18/2019	4/18/2020
	Fairview	SA6NFNF100W-14 (1625)	30-1800 MHz	4/18/2019	4/18/2020
\square Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	4/18/2019	4/18/2020
\square Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	4/18/2019	4/18/2020
\square Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	4/18/2019	4/18/2020
\square Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	4/18/2019	4/18/2020
⊠ Weather sta	tion Davis	6312 (A81120N075)		10/26/2018	10/26/2019

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

 Phone/Fax: (913) 837-3214
 Test to: FCC Parts 2, 15, 87
 Date: July 2, 2019

 Revision 1
 File: GMN02232 FCC VHF Com TstRpt 190423
 Page 11 of 37


Transmitter Power Output

Measurements Required

Measurements shall be made to establish the radio frequency power delivered by the transmitter into the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted below:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. Output transmitter power is not user selectable.

Test Arrangement

The radio frequency power output was measured at the antenna terminal by placing appropriate attenuation in the antenna line and observing the emission with the spectrum analyzer. The spectrum analyzer and attenuation offered an impedance of 50Ω to match the impedance of the standard antenna. A Rohde & Schwarz ESU40 Spectrum Analyzer was used to measure the radio frequency power at the antenna port. Data was taken in dBm and converted to watts as shown in the following Table. Refer to Figures 1 and 2 showing plots of output power of the transmitter across the frequency band. Data was taken per CFR47 Paragraph 2.1046(a) and applicable paragraphs of Part 87.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 12 of 37

 P_{dBm} = power in dB above 1 milliwatt

Milliwatts = $10^{\text{(PdBm/10)}}$

Watts = (Milliwatts)(0.001)(W/mW)

Milliwatts = $10^{(41.06/10)}$

= 12,764 mW

= 12.8 Watts Peak power

Table 1 Transmitter Power Results

Frequency	Input Power	P_{dBm}	P_{mw}	P_{w}				
VHF Communications (25 kHz Channel)								
118.000	14	41.06	12,764.4	12.8				
127.000	14	41.25	13,335.2	13.3				
136.975	14	41.22	13,243.4	13.2				
	VHF Commun	ications (25	kHz Channel)					
118.000	28	40.92	12,359.5	12.4				
127.000	28	40.98	12,531.4	12.5				
136.975	28	40.88	12,246.2	12.2				
	VHF Communic	cations (8.3	3 kHz Channel)					
118.000	14	41.06	12,764.4	12.8				
127.000	14	41.25	13,335.2	13.3				
136.992	14	41.17	13,091.8	13.1				
VHF Communications (8.33 kHz Channel)								
118.000	28	41.01	12,618.3	12.6				
127.000	28	41.25	13,335.2	13.3				
136.992	28	41.20	13,182.6	13.2				

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.131. There are no deviations to the specifications.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 13 of 37

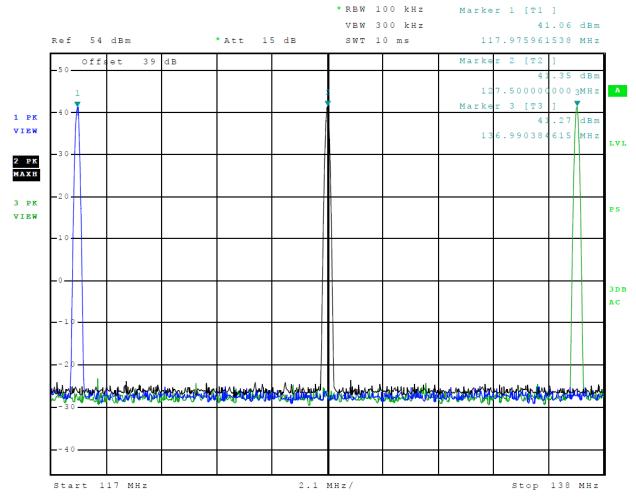


Figure 1 Power Output Across Frequency Band 118-136.750 MHz (25 kHz mode)

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 14 of 37

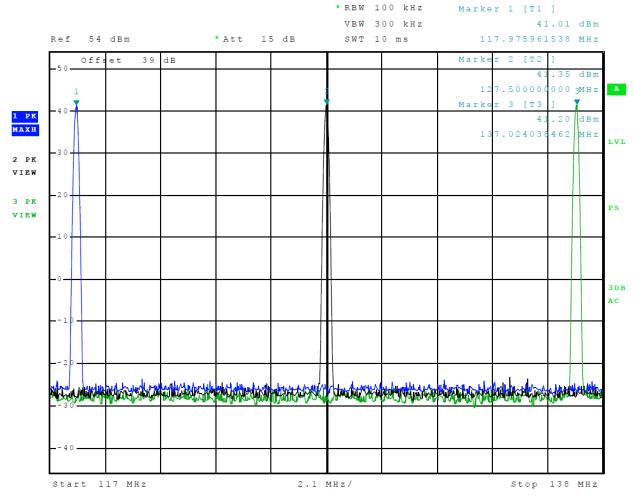
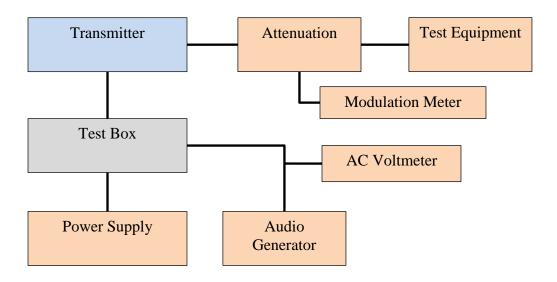


Figure 2 Power Output Across Frequency Band 118-136.992 MHz (8.33 kHz mode)

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 15 of 37



Modulation Characteristics

Measurements Required

A curve or equivalent data, which shows that the equipment will meet the modulation requirements of the rules, under which the equipment is licensed, shall be submitted. The radio frequency output was coupled to a Spectrum Analyzer and a modulation meter. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in its various modes. The modulation meter was used to measure the percent modulation.

Test Arrangement

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 16 of 37

Modulation Characteristic Results

Figure 3 shows the modulation characteristics of six frequencies while the input voltage was varied. The frequency was held constant and the percent modulation read from the modulation meter.

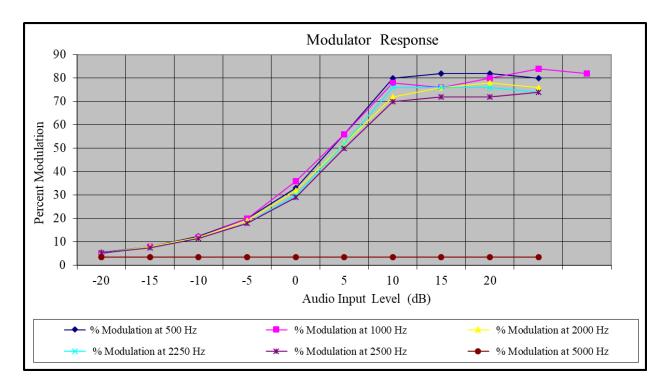


Figure 3 Modulation Characteristics

Figure 4 displays the graph made showing the audio frequency response of the modulator and low pass filter. The frequency generator was set to 1 kHz frequency and injected into the audio input port of the EUT. The input voltage amplitude was adjusted to obtain 50% modulation at 1000 Hz. This level was then taken as the 0-dB reference. The frequency of the generator was then varied and the output voltage level was adjusted to maintain the 50% modulation. The output level required for 50% modulation then recorded. This level was normalized to the level required for 50% modulation at 1000 Hz.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 17 of 37

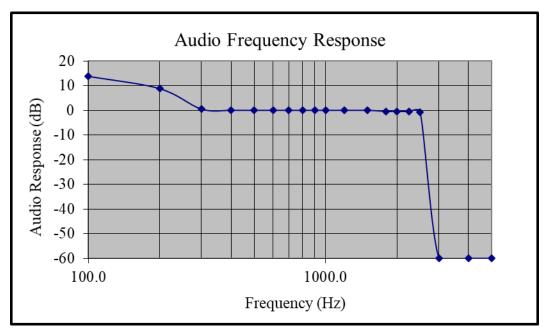


Figure 4 Audio Frequency Response / Modulation Characteristics

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87. There are no deviations to the specifications.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Test: 190423

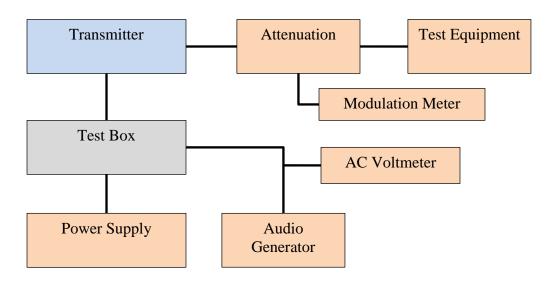
Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 18 of 37

SN's: 5YS000112, 5YS000103

FCC ID: IPH-0159402

Garmin International, Inc.

Model: GMN-02232



Occupied Bandwidth

Measurements Required

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are equal to 0.5 percent of the total mean power radiated by a given emission.

Test Arrangement

A Rohde & Schwarz ESU 40 spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in normal modes. Characteristics for audio communications were obtained with the EUT modulated by a frequency of 2500 Hz at a level 16 dB above 50% modulation. Other modulation schemes were measured using appropriate input signals as defined by other standards. The power ratio in dB representing 99% of the total mean power was recorded from the spectrum analyzer measurements. Refer to figures 5 and 6 displaying plots of 99% power occupied bandwidth measurements.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 19 of 37

Table 2 Occupied Bandwidth Results

Frequency (MHz)	Occupied bandwidth (kHz)
118.000 (25 kHz mode)	5.513
127.500 (25 kHz mode)	5.513
136.975 (25 kHz mode)	5.545
118.000 (8.33 kHz mode)	5.513
127.500 (8.33 kHz mode)	5.513
136.992 (8.33 kHz mode)	5.545

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.135. There are no deviations to the specifications.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 20 of 37

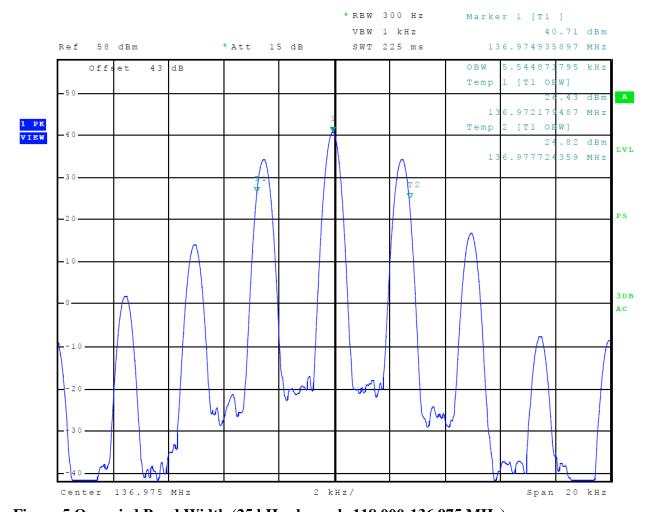


Figure 5 Occupied Band Width (25 kHz channels 118.000-136.975 MHz)

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 21 of 37

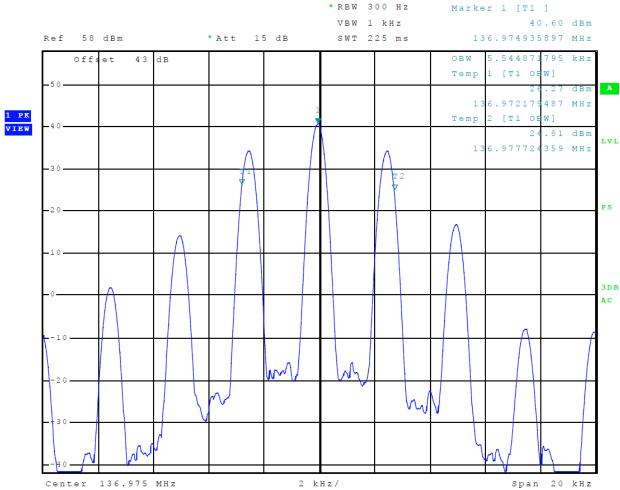


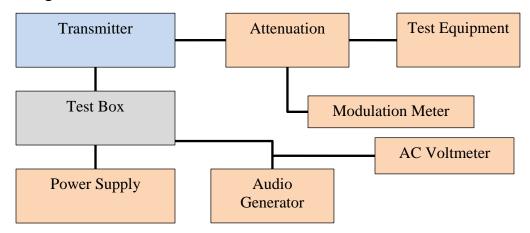
Figure 6 Occupied Band Width (8.33 kHz channels 118.000-136.992 MHz)

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 22 of 37

Spurious Emissions at Antenna Terminals


Measurements Required

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Refer to figure 7 for plot of spurious emissions at antenna port and figure 8 for plot of Spectral Emission Mask. All spurious emissions must be attenuated at least 43 +10log (Po) below the fundamental emission power level. The following equations represent the calculated attenuation offset level for the equipment operating with rated output power of 13.3 Watts.

Limit for 13.3 Watts transmitter

Limit (dBc) =
$$43 + 10 \text{ Log (Po)}$$

= $43 + 10 \text{ Log (13.3)}$
= 54.2 dBc

Test Arrangement

The radio frequency output was coupled to a Rohde & Schwarz ESU40 Spectrum Analyzer during antenna port conducted emissions measurements. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter modulated per section 2.1049 and operated in all normal modes. The frequency spectrum from 30 MHz to 1,500 MHz was observed and plot produced of the frequency spectrum displayed on the test equipment. Refer to figures 7 and 8 demonstrating compliance with antenna spurious emissions and Spectral Emission Mask. Data was taken per CFR47 2.1051, 2.1057, and applicable paragraphs of Part 87.139. There are no deviations to the specifications.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 23 of 37

Table 3 Spurious Emissions at Antenna Terminal Results (Worst-case)

Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
118.000	236.0	-20.22	-63.0
	354.0	-26.17	-69.0
	472.0	-72.39	-115.2
	590.0	-50.71	-93.5
	708.0	-70.75	-113.5
	826.0	-65.09	-107.9
127.000	254.0	-21.54	-64.4
	381.0	-27.62	-70.5
	508.0	-72.30	-115.2
	635.0	-52.80	-95.7
	762.0	-75.78	-118.7
	889.0	-75.19	-118.1
136.975	274.0	-27.62	-70.9
	410.9	-25.44	-68.7
	547.9	-66.50	-109.8
	684.9	-54.40	-97.7
	821.9	-74.16	-117.4
	958.8	-77.21	-120.5

Garmin International, Inc. SN's: 5YS000112, 5YS000103 Rogers Labs, Inc. 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 24 of 37

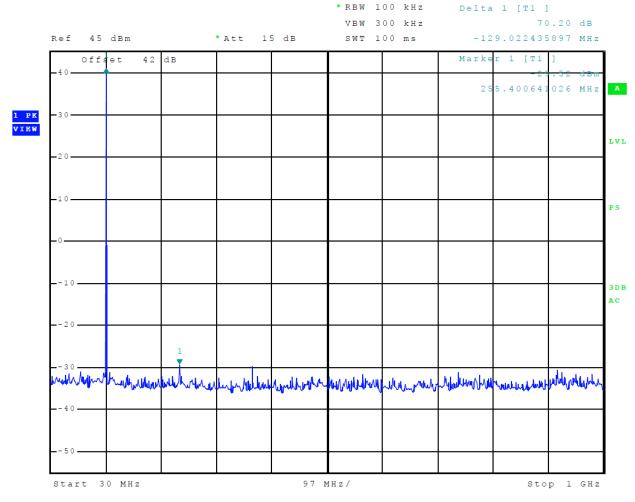


Figure 7 Spurious Emissions at Antenna Terminal

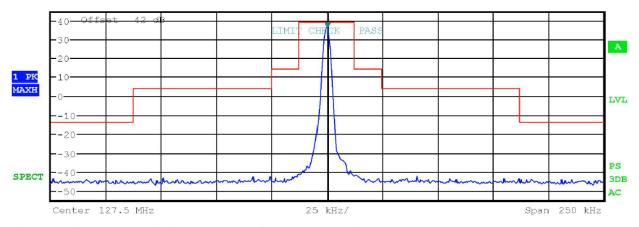
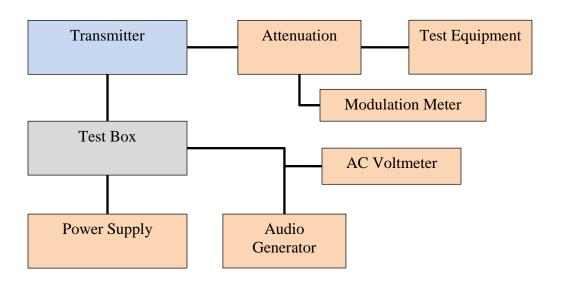


Figure 8 Spectral Emission Mask at Antenna Terminal

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 25 of 37



Field Strength of Spurious Radiation (Unwanted Emissions)

Measurements Required

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. This equipment is typically remote mounted with interface cabling connecting the display control unit to the cabinet. The test sample offered for testing required interfacing with additional test control panels offering operation and communications with all functions of transmitter.

Test Arrangement

The test setup was assembled in a screen room for preliminary screening. The transmitter was placed on a supporting platform 0.8 meters above the ground plane and at a distance of 1 meter from the receive antenna, plots were taken of the general radiated emissions. A final radiated emission testing was performed with the transmitter placed on a supporting turntable platform 0.8 meters above the ground plane and at a distance of 3 meters from the Field Strength Measuring (FSM) antenna. The EUT was operational and radiating into a 50Ω load. The receiving antenna was raised and lowered from 1m to 4m in height to obtain the maximum reading of spurious radiation from the EUT, cabinet, and interface cabling. The turntable was rotated though 360 degrees to locate the position registering the highest amplitude of emission.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 26 of 37

The frequency spectrum was then searched for spurious emissions generated from the transmitter, interface cabling, and test setup. The amplitude of each spurious emission was maximized by raising and lowering the FSM antenna, and rotating the turntable before final data was recorded. The frequency spectrum from 30 MHz to 1,500 MHz was investigated during radiated emissions testing. A Biconilog antenna was used for frequency measurements of 30 to 1000 MHz. A double-ridge horn antenna was used for frequencies of 1000 MHz to 1,500 MHz. Emission levels were measured and recorded from the spectrum analyzer in dBµV. Data was taken at the Rogers Labs, Inc. 3 meters open area test site (OATS). The transmitter was then removed and replaced with a substitution antenna, amplification as required, and signal generator. The signal from the generator was then adjusted such that the amplitude received was the same as that previously recorded for each frequency. This step was repeated for both horizontal and vertical polarizations. The power in dBm required to produce the desired signal level was then recorded from the signal generator. The power in dBm was then calculated by reducing the previous readings by the gain in the substitution antenna.

All spurious emissions must be attenuated at least 43 +10log (Po) below the fundamental emission power level. The following equations represent the calculated attenuation levels for the equipment.

Limit for 13.3 Watts transmitter

Limit (dBc) =
$$43 + 10 \text{ Log (Po)}$$

= $43 + 10 \text{ Log (13.3)}$
= 54.2 dBc

Requirement 54.2 dBc below the fundamental of 41.3 dBc equates to an absolute level of -13 dBm.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 27 of 37

Table 4 General Spurious Radiated Emission Results

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
120.2	25.1	28.9	-70.1	-66.3	-111.4	-107.6	-13
129.8	32.5	29.2	-62.7	-66.0	-104.0	-107.3	-13
132.2	33.4	31.5	-61.8	-63.7	-103.1	-105.0	-13
180.8	21.9	30.1	-73.3	-65.1	-114.6	-106.4	-13
205.5	27.8	24.7	-67.4	-70.5	-108.7	-111.8	-13

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequencies below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequencies above 1000 MHz.

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.139. There are no deviations to the specifications. There are no deviations or exceptions to the specifications.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 28 of 37

Table 5 Spurious Radiated Emission Results for 118.000 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
236.00	41.9	37.2	-53.33	-58.03	-94.6	-99.3	-13
354.00	40.2	33.5	-55.03	-61.73	-96.3	-103.0	-13
472.00	20.7	25.7	-74.53	-69.53	-115.8	-110.8	-13
590.00	27.8	32.6	-67.43	-62.63	-108.7	-103.9	-13
708.00	26.3	25.9	-68.93	-69.33	-110.2	-110.6	-13
826.00	22.6	23.6	-72.63	-71.63	-113.9	-112.9	-13

Table 6 Spurious Radiated Emission Results for 127.500 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
255.00	47.1	41.2	-48.13	-54.03	-89.4	-95.3	-13
382.50	31.8	28.6	-63.43	-66.63	-104.7	-107.9	-13
510.00	23.9	26.4	-71.33	-68.83	-112.6	-110.1	-13
637.50	24.6	26.1	-70.63	-69.13	-111.9	-110.4	-13
765.00	27.7	26.2	-67.53	-69.03	-108.8	-110.3	-13
892.50	23.3	24.2	-71.93	-71.03	-113.2	-112.3	-13

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 29 of 37

Table 7 Spurious Radiated Emission Results for 136.975 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
273.95	47.8	35.3	-47.43	-59.93	-88.7	-101.2	-13
410.93	30.1	26.0	-65.13	-69.23	-106.4	-110.5	-13
547.90	23.2	26.3	-72.03	-68.93	-113.3	-110.2	-13
684.88	24.7	22.4	-70.53	-72.83	-111.8	-114.1	-13
821.85	22.7	25.5	-72.53	-69.73	-113.8	-111.0	-13
958.83	23.2	24.9	-72.03	-70.33	-113.3	-111.6	-13

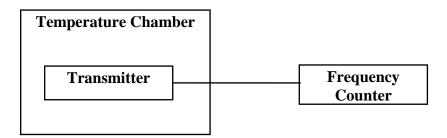
Table 8 Spurious Radiated Emission Results for 136.992 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
273.98	47.0	37.2	-48.23	-58.03	-89.5	-99.3	-13
410.98	29.8	26.3	-65.43	-68.93	-106.7	-110.2	-13
547.97	22.5	25.7	-72.73	-69.53	-114.0	-110.8	-13
684.96	24.7	23.2	-70.53	-72.03	-111.8	-113.3	-13
821.95	22.7	25.6	-72.53	-69.63	-113.8	-110.9	-13
958.94	23.2	24.8	-72.03	-70.43	-113.3	-111.7	-13

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 30 of 37


Frequency Stability

Measurements Required

The frequency stability shall be measured with variations of ambient temperature from -30° to +50° centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability, the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value.
- (2) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement

The measurement procedure outlined below shall be followed.

<u>Step 1:</u> The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

<u>Step 2:</u> With the transmitter inoperative (power switched "OFF"), the temperature of the test chamber shall be adjusted to +25°C. After a temperature stabilization period of one hour at +25°C, the transmitter shall be switched "ON" with standard test voltage applied.

<u>Step 3:</u> The carrier shall be keyed "ON", and the transmitter shall be operated at full radio frequency power output at the duty cycle, for which it is rated, for duration of at least 5 minutes. The radio frequency carrier frequency shall be monitored and measurements shall be recorded.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 31 of 37

<u>Step 4:</u> The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30°C to +50°C in 10-degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. The frequency was measured and the variation in parts per million calculated. Data was taken per CFR47 Paragraphs 2.1055 and applicable paragraphs of part 87.133.

Table 9 Frequency Stability vs. Temperature Results

Frequency 127.500 MHz)	Frequency Stability Vs. Temperature Ambient Frequency (127.500000)								
Temperature °C	-30	-20	-10	0	+10	+20	+30	+40	+50
Change (Hz)	30	30	20	0	10	0	0	-80	-100
PPM	0.235	0.235	0.157	0.000	0.078	0.000	0.000	-0.627	-0.784
%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Limit (PPM)	5	5	5	5	5	5	5	5	5

Table 10 Frequency Stability vs. Input Power Supply Voltage Results

Frequency (127.500 MHz)	Frequency Stability Vs. Voltage Variation 14-28 volts nominal; Results in Hz change					
Voltage V _{dc}	9.8	28.0	32.2			
Change (Hz)	0	0	0			
PPM	0	0	0			
%	0	0	0			
Limit (PPM)	5	5	5			

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 87.133(a). There are no deviations or exceptions to the specifications.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 32 of 37

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Additional Test Equipment List
- Annex C Rogers Qualifications
- Annex D Laboratory Certificate of Accreditation

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 33 of 37

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16–4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty U _(lab)
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.14
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 34 of 37

Annex B Additional Test Equipment List

List of Test Equipment	Calibration	Date (m/d/y)	<u>Due</u>
Antenna: Schwarzbeck Model: BBA 9106/VHBB 9124 (9124	627)	4/18/2019	4/18/2020
Antenna: Schwarzbeck Model: VULP 9118 A (VULP 9118 A	a-534)	4/18/2019	4/18/2020
Antenna: EMCO 6509		10/16/2018	10/16/2020
Antenna: EMCO 3143 (9607-1277) 20-1200 MHz		4/18/2019	4/18/2020
Antenna: EMCO Dipole Set 3121C		2/22/2019	2/22/2020
Antenna: C.D. B-101		2/22/2019	2/22/2020
Antenna: Solar 9229-1 & 9230-1		2/22/2019	2/22/2020
Cable: Belden 8268 (L3)		10/16/2018	10/16/2019
Cable: Time Microwave: 4M-750HF290-750		10/16/2018	10/16/2019
Frequency Counter: Leader LDC-825 (8060153		4/18/2019	4/18/2020
Oscilloscope Scope: Tektronix 2230		2/22/2019	2/22/2020
Wattmeter: Bird 43 with Load Bird 8085		2/22/2019	2/22/2020
R.F. Generators: HP 606A, HP 8614A, HP 8640B		2/22/2019	2/22/2020
R.F. Power Amp 65W Model: 470-A-1010		2/22/2019	2/22/2020
R.F. Power Amp 50W M185- 10-501		2/22/2019	2/22/2020
R.F. Power Amp A.R. Model: 10W 1010M7		2/22/2019	2/22/2020
R.F. Power Amp EIN Model: A301		2/22/2019	2/22/2020
LISN: Compliance Eng. Model 240/20		4/18/2019	4/18/2020
LISN: Fischer Custom Communications Model: FCC-LISN-50	0-16-2-08	4/18/2019	4/18/2020
Audio Oscillator: H.P. 201CD		2/22/2019	2/22/2020
ESD Test Set 2010i		2/22/2019	2/22/2020
Oscilloscope Scope: Tektronix MDO 4104		2/22/2019	2/22/2020
EMC Transient Generator HVT TR 3000		2/22/2019	2/22/2020
AC Power Source (Ametech, California Instruments)		2/22/2019	2/22/2020
Fast Transient Burst Generator Model: EFT/B-101		2/22/2019	2/22/2020
Field Intensity Meter: EFM-018		2/22/2019	2/22/2020
KEYTEK Ecat Surge Generator		2/22/2019	2/22/2020
ESD Simulator: MZ-15		2/22/2019	2/22/2020
Shielded Room not required			

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 35 of 37

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 31 years' experience in the field of electronics. Work experience includes six years working in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University
- 2) Bachelor of Science Degree in Business Administration Kansas State University
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019
Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 36 of 37

Annex D Laboratory Certificate of Accreditation

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200087-0

Rogers Labs, Inc.

Louisburg, KS

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2019-03-27 through 2020-03-31

Effective Dates

For the National Voluntary Laboratory Accreditation Program

Rogers Labs, Inc. Garmin International, Inc. SN's: 5YS000112, 5YS000103 4405 West 259th Terrace Model: GMN-02232 FCC ID: IPH-0159402

Louisburg, KS 66053 Test: 190423

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 15, 87 Date: July 2, 2019 Revision 1 File: GMN02232 FCC VHF Com TstRpt 190423 Page 37 of 37