Report No.: 7142FC

TEST REPORT

Test Report No.: 7142FC

Applicant

Kenwood Corporation

EUT

CD RECEIVER

Model No.

KDC-BT838U

Serial No.

PPK00001 (Radiated Emission Test)

PPE00024 (Conducted RF Test via Antenna Terminal)

FCC ID

IOM21683

Issue Date

17 April 2008

Date of Test

3, 4 April 2008 (Radiated Emission Test)

19 February 2008 (Conducted RF Test via Antenna Terminal)

Test Standard:

FCC Part 15 Subpart C § 15.207, 15.247 (10-1-06 Edition)

Procedure

ANSI C63.4: 2003 PUBLIC NOTICE DA 00-705

Test Results

PASS

Approved By:

Manager / Kenzo Furuta

NVLAP

NVLAP LAB CODE 200607-0

Reviewed By:

Chief Engineer / Takeshi Matsumura

Tested By:

Chief Engineer / Takeshi Matsumura

Page: 1 / 40

Table of Contents

Revise	ed Record	
1 Te	est Report	5
2 Ge	eneral Information	
2.1	Applicant Information	4
2.2	Product Description	
2.3	Summary of Test and Inspection Result	
2.4	Test Methodology	
2.5	Test Facility	
	stem Test Configuration	
3.1	Justification	ş
3.2	Operating Modes	
3.3	Configuration of Tested System	
3.4	Test Instruments	
3.5	Special Test Condition	
3.6	Equipment Modifications	
4 An	ntenna Requirement	
	C Powerline Conducted Emission	
	dB Bandwidth	
6.1	Test Setup	
6.2	Test Results	18
7 Ca	arrier Frequency Separation	19
7.1	Test Setup	19
7.2	Test Results	19
8 Nu	umber of Hopping Frequency	20
8.1	Test Setup	20
8.2	Test Results	
9 Dv	well Time	21
9.1	Test Setup	21
9.2	Test Results	
	aximum Peak Output Power	
	•	
	Test Setup	
10.2	Test Results	22
11 Ba	and Edge Compliance	25
11.1	Test Setup	25
11.2	Test Results	25
12 Sp	ourious RF Conducted Emission	
12.1	Test Setup	27
12.2	*	
13 Ra	adiated Emission	31
13.1	Test Setup	31
13.1	<u> •</u>	
13.3		
	3.3.1 Transmitter Spurious Emissions	

14	e.i.r.p. Calculation from Peak Power	.34
15	Photos of Tested EUT and Test Setup	.35
	pendix 1: AFH-Hopping Sequence	
	pendix 2: Certificate of Accreditation	
	pendix 3: Test Instruments	

Revised Record

Revised Record							
Number of Revised Time	Date	Person in Charge	Detail of Revision	Approved By			
Initial	17 April 2008	T. Matsumura	-	-			

1 Test Report

- (1) This report summarizes the result of a single investigation and test result relate only to tested sample.
- (2) The report shall not be reproduced except in full without the written approval of the TAIYO YUDEN Co., Ltd.
- (3) This test report must not be used by the client to claim product endorsement by any government agency.
- (4) We hereby certify that no party to the applications authorized hereunder is subject to a denial of benefits, including FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 853(a).
- (5) The test results in this report are traceable to international standards.

2 General Information

2.1 Applicant Information

Company Name	Kenwood Corporation			
Address	2967-3 Ishikawa-machi Hachioji-shi Tokyo 192-8525 Japan			

2.2 Product Description

EUT	CD RECEIVER			
Model No.	KDC-BT838U			
Serial No.	PPK00001 (Radiated Emission Test)			
Serial 140.	PPE00024 (Conducted RF Test via Antenna Terminal)			
FCC ID	IOM21683			
Production Stage	Pre-Production			
Type of Wide Band Modulation	FHSS with AFH			
Type of Modulation	GFSK			
ITU Code	F1D			
Power Supply	DC 12.0V from Battery			
Operating Voltage Range	DC 10.8V Min. DC 16.0V Max.			
AC Adaptor	-			
Operating Temperature Range	-30 ℃ Min. 85 ℃ Max.			
Weight	1.4kg			
Dimensions of EUT	W188 mm × D181.5 mm × H58.5 mm			
Antenna Type	Ceramic Patch Antenna			
Max Antenna Gain	-3.00dBi			
Operating Clocks	32.768kHz, 4.332MHz, 9.000MHz, 10.250MHz, 12.000MHz,			
Operating Clocks	13.000MHz and 16.934MHz			
Receipt Date of Tested Sample	28 March 2008 (Radiated Emission Test)			
Receipt Date of Tested Sample	1 February 2008 (Conducted RF Test via Antenna Terminal)			

EUT is "CD RECEIVER" including 2.4GHz Bluetooth module.

This is operated within the bands 2400 - 2483.5MHz frequency hopping intentional radiators.

It provides 79 channels. And it adopts an AFH function to prevent interference with other wireless applications. Refer to Appendix 1.

Page: 5 / 40

2.3 Summary of Test and Inspection Result

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst Margin	Results
1	AC Powerline Conducted Emission	ANSI C63.4: 2003	FCC 15.207	Conducted Emission Test	N/A	-	N/A
2	Carrier Frequency Separation	ANSI C63.4: 2003	FCC 15.247 (a)(1)	Conducted RF Test via Antenna	N/A	-	Pass
3	Number of Hopping Frequency	Public Notice DA00-705	FCC 15.247 (a)(1)(iii)	Terminal	N/A	-	Pass
4	Dwell Time	DA00-705	FCC 15.247 (a)(1)(iii)		N/A	-	Pass
5	Maximum Peak Output Power		FCC 15.247 (b)(1)		N/A	-	Pass
6	Band Edge Compliance		FCC 15.247(d)		N/A	-	Pass
7	Spurious RF Conducted Emission		FCC 15.247(d)		N/A	-	Pass
8	Radiated Emission		FCC 15.247(d)	Radiated Emission Test	N/A	7.0dB Transmitting Mode: 2402MHz Frequency: 74.806MHz Antenna Polarization: Horizontal	Pass
9	e.i.r.p.		FCC 15.247 (b)(5)	Conducted Calculated	N/A	-	Pass

Page: 6 / 40

2.4 Test Methodology

Interference measurements were made in accordance with ANSI C63.4: 2003 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2.5 Test Facility

TAIYO YUDEN CO., LTD. EMC Center. 5607-2, Nakamuroda-machi, Takasaki-shi, Gunma, 370-3347, Japan.

- FCC 47CFR, Part 15 Subpart C regulation test were performed on the shielded room, and radiated interference field strength test was performed on the 10 meter semi-anechoic chamber located at TAIYO YUDEN CO., LTD. EMC Center, 5607-2 Nakamuroda-machi, Takasaki-shi, Gunma, 370-3347 Japan.
- 2. This Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) by United States Department of Commerce, National Institute of Standard and Technology (NIST) for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations.
- 3. These criteria encompass the requirements of ISO/IEC 17025:2005 and the relevant requirements of ISO 9002:1994 as suppliers of calibration or test results. Accreditation awarded for specific services, listed on the Scope of Accreditation for: Electromagnetic Compatibility and Telecommunications FCC. (NVLAP LAB CODE: 200607-0). Refer the certificate of the accreditation to Appendix 2.
- 4. This laboratory is listed by Federal Communications Commission, Equipment Authorization Division (Registration Number: 606514) and listed by Industry Canada (No.4389A-1).

Page: 7 / 40

3 System Test Configuration

3.1 Justification

Emission tests were performed with no deviation from the ANSI C63.4: 2003 and FCC 47CFR, Part 15
Section 15.247 regulation tests were performed with no deviation from the FCC Public Notice DA00705 released March 30, 2000.

- 2. The system was configured for testing a typical fashion (as a customer would normally use it.).
- 3. Radiate testing in the range of 1 GHz to 25 GHz was investigated with the spectrum (peak detector function) under the FCC regulation section 15.209 (e) and 15.35 (b). For above 18GHz, test performed at an antenna to EUT distance of 1 meter. The level of any unwanted emissions from EUT did not exceed the level of the fundamental emission (Compliance with 15.209 (c)). And test result found to be compliance with FCC regulation section 15.209 (a) Radiated emission limits (500 micro-volts/meter). Data is presented for the "worst case" measurements, that E.U.T was normal operated.
- 4. Radiate testing in the range of 30 MHz to 1000 MHz was performed at an antenna to EUT distance of 3 meters under the 15.209 (e) and 15.31(f)(1).
- 5. Tests were performed with the representative channel operation as follows.

a. Lowest Frequency Channel: CH0 2402MHz
b. Middle Frequency Channel: CH39 2441MHz
c. Highest Frequency Channel: CH78 2480MHz

Page: 8 / 40

3.2 Operating Modes

Transmitting Mode

Modulation		GFSK				
Signal Pattern		PRBS9				
Signal Packet Type GFSK		DH1, DH3, DH5 for Dwell time test. DH5 for other test				
Representative Channel		CHO 2402MHz (Lowest Frequency Channel)				
		CH39 2441MHz (Middle Frequency Channel)				
		CH78 2480MHz (Highest Frequency Channel)				

Remarks:

Signal Pattern PRBS9: Signal Packet Type: DH1, 3, 5: Periodic Pseudo Random Bit Sequence. 29 –1

Data high rate, ACL type packet
Data payload with CRC, without FEC

Fully transmission within one consecutive 625-microsecond transmission slots

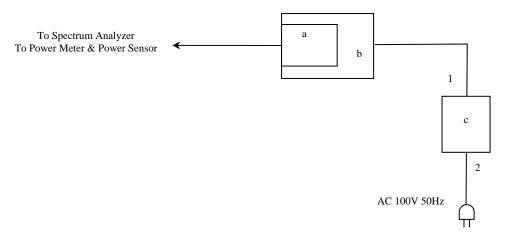
Number of slot = 1(DH1), 3(DH3), 5(DH5)

Data size of payload = 27bytes (DH1), 183bytes (DH3), 339bytes (DH5)

Software (Controller): The test software supplied by Kenwood Corporation was used to set up the

Bluetooth operating mode.

Page: 9 / 40


3.3 Configuration of Tested System

(1) Conducted RF Test via Antenna Terminal

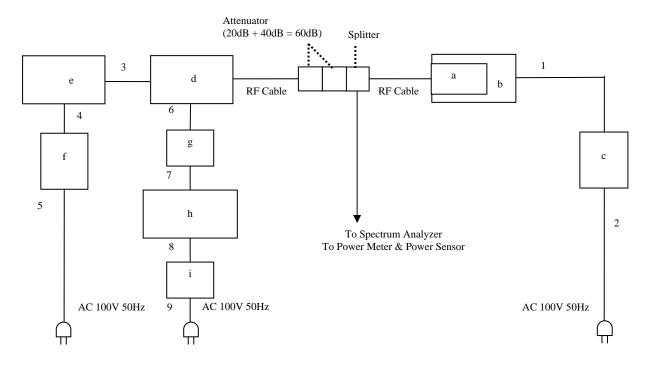
These numbers and the marks in the picture are corresponding to the numbers and the marks in Tables below.

Test Setting for Normal Frequency Hopping and Non Frequency Hopping Mode

Power Supply of EUT: DC12.0V from Regulated DC Power Supply "c".

List of EUT and Accessories

	Product Name	M/N	S/N	Manufacturer	EUT / Accessory	FCC ID / DoC				
a	CD RECEIVER	KDC-BT838U (RF Module)	PPK00001	Kenwood Corporation	EUT	IOM21683				
b	Jig	DNX8220BT	PPE00024	Kenwood Corporation	Accessory	-				
С	Regulated DC Power Supply	PMC18-3A	FB000315	KIKUSUI	Accessory	-				


Interface Cables

	Cable Type	M/N	Shielded	Ferrite Core	Material of Connector	Length	Notes
1	DC Cable	-	No	No	Plastic	2.20m	-
2	AC Cable	-	No	No	Plastic	2.45m	-

Page: 10 / 40

Test Setting for Adaptive Frequency Hopping Mode

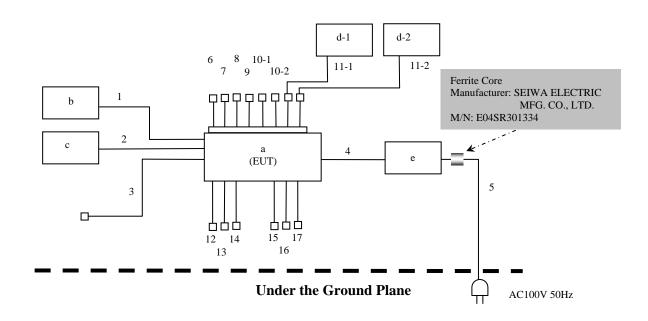
Power Supply of EUT: DC12.0V from Regulated DC Power Supply "c".

List of EUT and Accessories

	Product Name	M/N	S/N	Manufacturer	EUT / Accessory	FCC ID / DoC
a	CD RECEIVER	KDC-BT838U (RF Module)	PPK00001	Kenwood Corporation	EUT	IOM21683
b	Jig	DNX8220BT	PPE00024	Kenwood Corporation	Accessory	-
с	Regulated DC Power Supply	PMC18-3A	FB000315	KIKUSUI	Accessory	-
d	Car Audio System	KCA-BT200	PPE00019	Kenwood Corporation	Accessory	-
e	CD Receiver	KDC-W5641U	KE1447V1100106	Kenwood Corporation	Accessory	-
f	Regulated DC Power Supply	PMC18-5A	LJ001201	KIKUSUI	Accessory	-
g	Evaluation Board	WB4-40	18	Parrot	Accessory	-
h	Personal Computer	N1010vP180x 420DC120	TW30710675	Hewlett Packard	Accessory	-
i	AC/DC Adapter	ADP-75HB	MVT0305016771	Hewlett Packard	Accessory	-

Page: 11 / 40

Interface Cables


No.	Cable Type	M/N	Shielded	Ferrite Core	Material of Connector	Length	Notes
1	DC Cable	-	No	No	Plastic	2.20m	-
2	AC Cable	-	No	No	Plastic	2.45m	-
3	Interface Cable (*1)	-	Yes	No	Metal	1.41m	-
4	DC Cable	-	No	No	Plastic	1.05m	-
5	AC Cable	-	No	No	Plastic	2.45m	-
6	Bus Cable	-	No	No	Plastic	0.44m	-
7	RS232C Cable	-	No	No	Metal	1.62m	-
8	DC Cable	-	No	No	Plastic	1.80m	-
9	AC Cable	-	No	No	Plastic	1.80m	-

^{(*1):} This cable is able to provide "Signal-Interface" and "DC Power-Supply".

Page: 12 / 40

(2) Radiated Emission Test

These numbers and the marks in the picture are corresponding to the numbers and the marks in Tables below. Power Supply of EUT: DC12.0V from Regulated DC Power Supply "e".

List of EUT and Accessories

	and of the T und Treesbories									
	Product Name	M/N	S/N	Manufacturer	EUT / Accessory	FCC ID / DoC				
a	CD RECEIVER	O RECEIVER KDC-BT838U		Kenwood Corporation	EUT	IOM21683				
b	Microphone	W01-1676-05	8	HOSHIDEN	Accessory	-				
с	FM Antenna	LR-36	3	-	Accessory	-				
d-1 d-2	Speaker	PR-100S	50704401298	BM Audio Labs. Inc	Accessory	-				
e	Regulated DC Power Supply	PA 18-1.2	2110071	Kenwood Corporation	Accessory	-				

Page: 13 / 40

Interface Cables

	Cable Type	M/N	Shielded	Ferrite Core	Material of Connector	Length	Notes
1	Mic Cable	-	No	No	Plastic	3.00m	
2	FM Antenna Cable	-	Yes	No	Plastic	3.35m	Fold back and forth in the center
3	CD Changer Cable	-	Yes	No	Plastic	2.44m	
4	DC Cable	-	No	No	Plastic	2.21m	-
5	AC Cable	-	No	Yes	Plastic	1.90m	-
6	Ant Cont Cable	-	No	No	Plastic	0.10m	-
7	Power Cont Cable	-	No	No	Plastic	0.10m	-
8	Mute Cont Cable		No	No	Plastic	0.10m	-
9	Dimmer Cont Cable	-	No	No	Plastic	0.10m	-
10-1	Speaker Cable	_	No	No	Plastic	0.10m	_
10-2	Spoundr cuero		110	110	Tiustic	0110111	
11-1	Speaker Cable	_	No	No	Plastic	3.06m	
11-2	Speaker Cable		110	110	Tidotic	3.0011	
12	Remote Control Cable	-	No	No	Plastic	1.00m	
13	Aux Input Cable	-	No	No	Plastic	2.02m	Fold back and forth in the
14	USB Cable	-	Yes	No	Metal	1.00m	center
15	Audio Out Cable (Rear)	-	Yes	No	Metal	0.98m	
16	Audio Out Cable (Front)	-	Yes	No	Metal	0.98m	
17	Audio Out Cable (Sub Woofer)	-	Yes	No	Metal	0.98m	

Page: 14 / 40

3.4 Test Instruments

About test instruments for all tests, please refer to appendix 3.

3.5 Special Test Condition

Nothing

3.6 Equipment Modifications

No modification has been carried out by TAIYO YUDEN CO., LTD. EMC Center.

4 Antenna Requirement

The EUT provides a permanently attached antenna and it was found to be compliant with FCC regulation section 15.203.

Antenna Type	Ceramic Patch Antenna
Antenna Gain	-3.00dBi

Page: 16 / 40

5 AC Powerline Conducted Emission

N/A

This EUT is intended for use in vehicles. So this measurement is not applied to this EUT.

TAIYO YUDEN CO., LTD. Page: 17/40

6 20dB Bandwidth

6.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

Spectrum Analyzer Setting:

Detector Mode	Peak
RBW	30kHz
VBW	30kHz
Span	2MHz
Sweep Time	Auto

6.2 Test Results

Serial No. : PPE00024 Power : DC 12.0V

Mode : Transmitting Mode, Non Frequency Hopping

Temperature : 22.9 °C Humidity : 53.4 %

(1) Operation Mode: Transmitting Mode (GFSK Modulation)

СН	Frequency [MHz]	20dB Bandwidth [MHz]
0ch(Lowest)	2402.0	0.877
39ch(Middle)	2441.0	0.863
78ch(Highest)	2480.0	0.870

Page: 18 / 40

7 Carrier Frequency Separation

7.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

Spectrum Analyzer Setting:

Detector Mode	Peak
RBW	100kHz
VBW	300kHz
Span	3MHz
Sweep Time	Auto

7.2 Test Results

Serial No. : PPE00024 Power : DC 12.0V

Mode : Transmitting Mode, Frequency Hopping

Transmitting Mode, Adoptive Frequency Hopping

Temperature : 22.9 °C Humidity : 53.4 %

Regulation : FCC Part15 C §15.247 (a)(1)

(1) Operating Mode: Transmitting Mode (GFSK Modulation) Transmitting Mode, Frequency Hopping (79ch)

Channel	Channel Separation [MHz]	Limit *1 [MHz]
Low Frequency (0ch-1ch)	0.955	> 0.585
Middle Frequency (38ch-39ch)	1.015	> 0.576
High Frequency (77ch-78ch)	1.010	> 0.581

Transmitting Mode, Adoptive Frequency Hopping (20ch)

Channel	Channel Separation [MHz]	Limit *1 [MHz]
Low Frequency (0ch-1ch)	1.000	> 0.585
Middle Frequency (38ch-39ch)	1.010	> 0.576
High Frequency (77ch-78ch)	1.015	> 0.581

^{*1:} Limit value of Carrier Frequency Separation is 2/3 of 20dB Bandwidth. Refer the result of 20dB Bandwidth to Section 6.

Page: 19 / 40

8 Number of Hopping Frequency

8.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

Spectrum Analyzer Setting:

Detector Mode	Peak
RBW	300kHz
VBW	300kHz
Sweep Time	Auto

8.2 Test Results

Serial No. : PPE00024 Power : DC 12.0V

Mode : Transmitting Mode, Frequency Hopping

Transmitting Mode, Adoptive Frequency Hopping

Temperature : 22.9 °C Humidity : 53.4 %

Regulation : FCC Part15 C §15.247 (a)(1)(iii)

(1) Operating Mode: Transmitting Mode (GFSK Modulation)

· / I	Č ,	
Mode	Number of Channel [time]	Limit [time]
Transmitting Mode Frequency Hopping (79ch)	79	≧15
Transmitting Mode Adoptive Frequency Hopping (20ch)	20	≧15

Adaptive Frequency Hopping: Intelligent hopping techniques to avoid interference to other transmission.

Page: 20 / 40

9 Dwell Time

9.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

Spectrum Analyzer Setting:

Detector Mode	Peak
RBW	1MHz
VBW	1MHz
Span	0Hz
Sweep Time	Auto

9.2 Test Results

Serial No. : PPE00024 Power : DC 12.0V

Mode : Transmitting Mode (DH1, DH3, DH5), Frequency Hopping

Transmitting Mode (DH1, DH3, DH5), Adoptive Frequency Hopping

Temperature : 22.9 **℃** Humidity : 53.4 %

Regulation : FCC Part15 C §15.247 (a)(1)(iii)

(1) Operating Mode: Transmitting Mode, Frequency Hopping (79ch)

GFSK Modulation				
Packet	Dwell Time [ms]	Limit [ms]		
DH1	147.20	400		
DH3	274.72	400		
DH5	316.48	400		

(2) Operating Mode: Transmitting Mode, Adaptive Frequency Hopping (20ch)

GFSK Modulation			
Packet	Dwell Time [ms]	Limit [ms]	
DH1	147.20	400	
DH3	274.72	400	
DH5	316.48	400	

Page: 21 / 40

Data of Dwell Time (Frequency Hopping (79ch))

Time of Occupancy (Dwell Time) for Packet Type DH1

The frequency-hopping rate of Bluetooth system is 1600hops per 1 second. A DH1 packet needs 1 time slot for transmitting and 1 time slot for receiving.

In a DH1 packet, it hops 800 times for transmitting per 1 second.

The number of hopping channel is 79.

The number of times that appears in 1 channel per 1 second is as follows.

800/79=10.13 [times]

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed $0.4 \times 79 = 31.6$ seconds

The number of times that appears in 1 channel per 31.6 seconds is as follows.

 $10.13 \times 31.6 = 320.11 \text{ [times]}$

Transmitting time is 0.460 ms.

Then, dwell time is $320.11 \times 0.460 \text{ ms} = 147.20 \text{ ms}$ per 31.6 seconds.

Time of Occupancy (Dwell Time) for Packet Type DH3

The frequency-hopping rate of Bluetooth system is 1600hops per 1 second. A DH3 packet needs 3 times slot for transmitting and 1 time slot for receiving.

In a DH3 packet, it hops 400 times for transmitting per 1 second.

The number of hopping channel is 79.

The number of times that appears in 1 channel per 1 second is as follows.

400/79=5.06 [times]

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed $0.4 \times 79 = 31.6$ seconds

The number of times that appears in 1 channel per 31.6 seconds is as follows.

 $5.06 \times 31.6 = 159.90 \text{ [times]}$

Transmitting time is 1.717ms.

Then, dwell time is $161.16 \times 1.717 \text{ms} = 274.72 \text{ms}$ per 31.6 seconds.

Time of Occupancy (Dwell Time) for Packet Type DH5

The frequency-hopping rate of Bluetooth system is 1600hops per 1 second.

A DH5 packet needs 5 times slot for transmitting and 1 time slot for receiving.

In a DH5 packet, it hops 266.67 times for transmitting per 1 second.

The number of hopping channel is 79.

The number of times that appears in 1 channel per 1 second is as follows.

266.67/79=3.37 [times]

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed $0.4 \times 79 = 31.6$ seconds

The number of times that appears in 1 channel per 31.6 seconds is as follows.

 $3.37 \times 31.6 = 106.49$ [times]

Transmitting time is 2.967 ms.

Then, dwell time is $106.49 \times 2.967 \text{ms} = 316.48 \text{ms}$ per 31.6 seconds.

TAIYO YUDEN CO., LTD. Page: 22 / 40

Data of Dwell Time (Frequency Hopping (20ch))

Time of Occupancy (Dwell Time) for Packet Type DH1

The frequency-hopping rate of Bluetooth system is 1600hops per 1 second. A DH1 packet needs 1 time slot for transmitting and 1 time slot for receiving.

In a DH1 packet, it hops 800 times for transmitting per 1 second.

The number of hopping channel is 20.

The number of times that appears in 1 channel per 1 second is as follows.

800/20=40 [times]

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed $0.4 \times 20 = 8.0$ seconds

The number of times that appears in 1 channel per 8.0 seconds is as follows.

 $40 \times 8.0 = 320.00 \text{ [times]}$

Transmitting time is 0.460 ms.

Then, dwell time is $320.00 \times 0.460 \text{ms} = 147.20 \text{ms}$ per 8.0 seconds.

Time of Occupancy (Dwell Time) for Packet Type DH3

The frequency-hopping rate of Bluetooth system is 1600hops per 1 second. A DH3 packet needs 3 times slot for transmitting and 1 time slot for receiving.

In a DH3 packet, it hops 400 times for transmitting per 1 second.

The number of hopping channel is 20.

The number of times that appears in 1 channel per 1 second is as follows.

400/20=20 [times]

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed $0.4 \times 20 = 8.0$ seconds

The number of times that appears in 1 channel per 8.0 seconds is as follows.

 $20 \times 8.0 = 160.00 \text{ [times]}$

Transmitting time is 1.717 ms.

Then, dwell time is $160.00 \times 1.717 \text{ms} = 274.72 \text{ms}$ per 8.0 seconds.

Time of Occupancy (Dwell Time) for Packet Type DH5

The frequency-hopping rate of Bluetooth system is 1600hops per 1 second. A DH5 packet needs 5 times slot for transmitting and 1 time slot for receiving.

In a DH5 packet, it hops 266.67 times for transmitting per 1 second.

The number of hopping channel is 20.

The number of times that appears in 1 channel per 1 second is as follows.

266.67/20=13.34 [times]

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed $0.4 \times 20 = 8.0$ seconds

The number of times that appears in 1 channel per 8.0 seconds is as follows.

 $13.34 \times 8.0 = 106.72 \text{ [times]}$

Transmitting time is 2.967 ms.

Then, dwell time is $106.72 \times 2.967 \text{ms} = 316.48 \text{ms}$ per 8.0 seconds.

TAIYO YUDEN CO., LTD.

Page: 23 / 40

10 Maximum Peak Output Power

10.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

Spectrum Analyzer Setting:

Detector Mode	Peak
RBW	1MHz
VBW	1MHz
Span	5MHz
Sweep Time	Auto

10.2 Test Results

Serial No. : PPE00024 Power : DC 12.0V

Mode : Transmitting Mode, Non Frequency Hopping

Temperature : 22.9 °C Humidity : 53.4 %

Regulation : FCC Part15 C §15.247 (b)(1)

(1) Operating Mode: Transmitting Mode (GFSK Modulation)

СН	Frequency	Reading	Cable Loss1	Cable Loss2	Resi	ılt	Lim	iit
CH	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]
0ch(Lowest)	2402	-4.99	0.56	0.33	-4.10	0.389	30.0	1000
39ch(Middle)	2441	-5.56	0.60	0.33	-4.63	0.344	30.0	1000
78ch(Highest)	2480	-6.68	0.57	0.33	-5.78	0.264	30.0	1000

Result = Reading + Cable Loss1 + Cable Loss2

Note: Cable Loss1: RF Cable

Cable Loss2: Conversion cable used for connecting to SMA type

Page: 24 / 40

11 Band Edge Compliance

11.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

Spectrum Analyzer Setting:

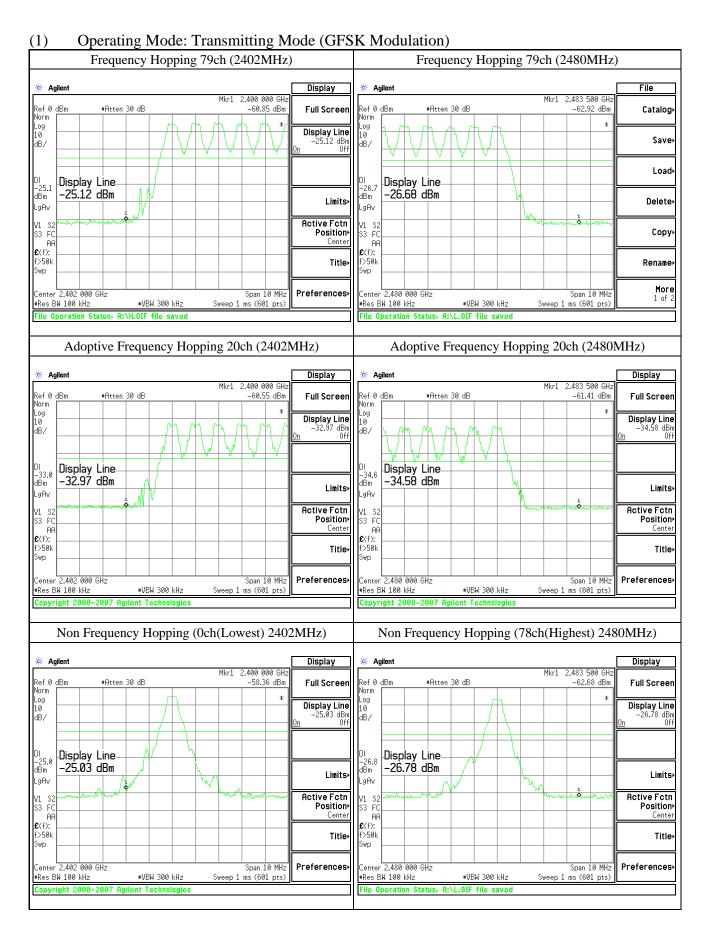
Detector Mode	Peak
RBW	100kHz
VBW	100kHz
Span	10MHz
Sweep Time	Auto

11.2 Test Results

Serial No. : PPE00024 Power : DC 12.0V

Mode : Transmitting Mode, Frequency Hopping (79ch)

Transmitting Mode, Adoptive Frequency Hopping (20ch)


Transmitting Mode, Non Frequency Hopping

Temperature : 22.9 **℃** Humidity : 53.4 %

Regulation : FCC Part15 C §15.247 (d)

The spectrum data are attached next page. Display line indicates the 20dB offset below highest level. It shows compliance with the requirement in part 15.247(d).

Page: 25 / 40

Page: 26 / 40

Test Report Report No.: 7142FC

Spurious RF Conducted Emission

12.1 Test Setup

The spectrum analyzer was connected to the transmitter output port through the RF cable.

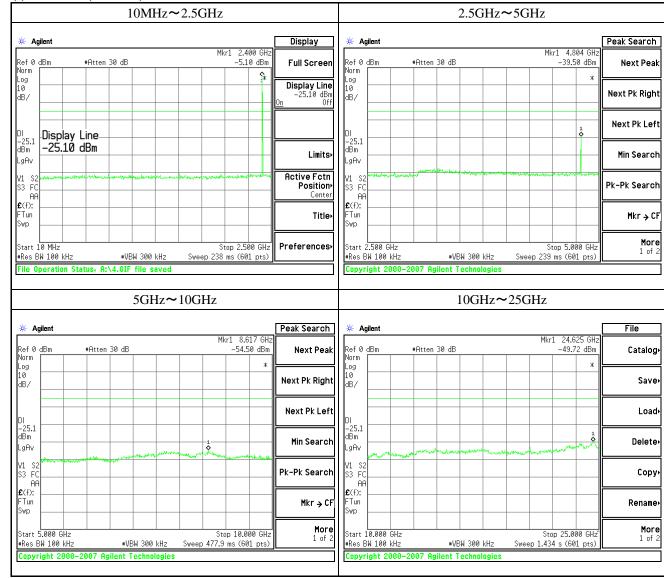
Spectrum Analyzer Setting:

Detector Mode	Peak
RBW	100kHz
VBW	100kHz
Sweep Time	Auto

12.2 Test Results

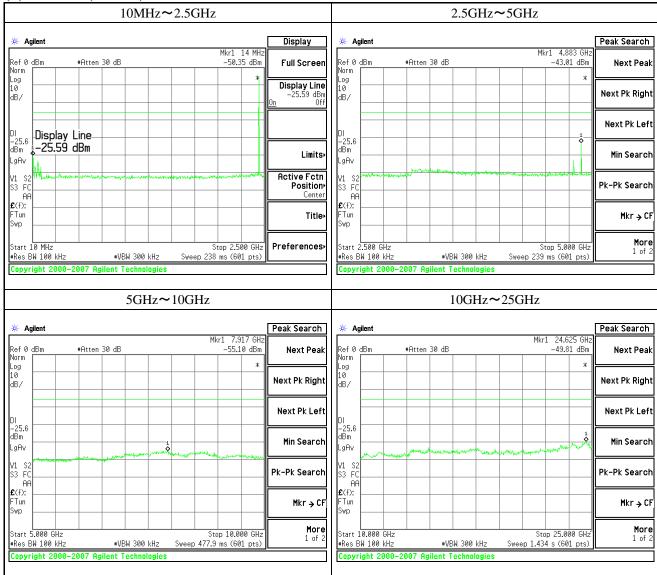
Serial No. PPE00024 Power DC 12.0V

Transmitting Mode, Non Frequency Hopping Mode

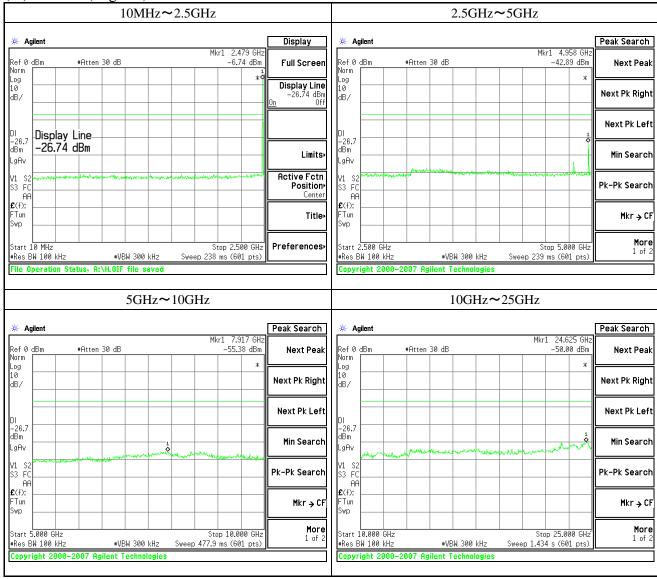

Temperature : Humidity : Regulation : 22.9 **℃** 53.4 %

FCC Part15 C §15.247 (d)

The spectrum data are attached next page. Display line indicates the 20dB offset below highest level. It shows compliance with the requirement in part 15.247(d).


Page: 27 / 40

- (1) Operating Mode: Transmitting Mode (GFSK Modulation)
- (i) 0ch (Lowest) 2402MHz


Page: 28 / 40

(ii) 39ch (Middle) 2441MHz

Page: 29 / 40

(iii) 78ch (Highest) 2480MHz

Page: 30 / 40

13 Radiated Emission

13.1 Test Setup

The test setup was made according to ANSI STD C63.4: 2003 clause 8 on the 10-meter semi-anechoic chamber, which allows a 3 or 1 m distance measurement.

EUT was placed on non-conductive table (foam polystyrene).

The height of this table was 0.8 m.

The measurement has been conducted with both horizontal and vertical antenna polarization.

The turntable has been fully rotated. The highest radiation of the equipment has been recorded.

For further description of the configuration refer to separate document named "Test Setup Photos (7142FC)".

Distance between equipment and antenna : 3m (30MHz to 18GHz) 1m (18GHz to 25GHz)

Test Receiver Setting:

30~1000MHz:

Detector Mode	Quasi-Peak
Bandwidth	120kHz

Spectrum Analyzer Setting:

1~25GHz:

Detector Mode	Peak and Average
Bandwidth	Peak: RBW: 1MHz, VBW: 1MHz
Danuwidui	Average: RBW: 1MHz, VBW: 10Hz

13.2 Radiated Emission Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading.

The basic equation with a sample calculation is as follows:

$$c.f. = AF + CF + AL - AG - DF$$

 $RE = RA + c.f.$

Where c.f. : Correction Factor [dB(1/m)]

RE: Radiated Emission (Emission Level - Result) [dB(uV/m)]

RA : Receiver Amplitude (Reading Level) [dBuV]

AF: Antenna Factor [dB(1/m)]
CF: Cable Attenuation Loss [dB]
AG: Amplifier Gain [dB]

AL : Attenuator Loss [dB]
DF : Distance Factor

Distance between equipment and antenna: 3m = 0 [dB] Distance between equipment and antenna: 1m = 9.5 [dB]

Page: 31 / 40

Assume a receiver reading of 36.5 dBuV is obtained.

The Correction Factor of -2.0 dB/m is added, giving a Radiated Emission of 34.5 dBuV/m. The 34.5 dBuV/m value was mathematically converted to its corresponding level in uV/m.

$$RE = 36.5 + (-2.0) = 34.5 \text{ dBuV/m}$$

Level in $uV/m = Common Antilogarithm: 10^ (34.5/20) = 53.1 uV/m$

TAIYO YUDEN CO., LTD.

13.3 Test Results

13.3.1 Transmitter Spurious Emissions

CD RECEIVER Product Model KDC-BT838U Serial No. FCC Part15 Subpart C §15.247(d) PPK00001 Test Standard DC 12.0V Power Supply Operator T. Matsumura Temperature / Humidity (Test Date) 23.5°C / 35.9% (3 April) 23.0°C / 33.0% (4 April) Remark Transmitting Mode **GFSK Modulation**

Radiated Emission: Lch (2402MHz)

Below 1GHz

Frequency [MHz]	Pol. [H / V]	[Reading [dB(uV)] P / AV /]]	Factor [dB/m]		Level lB(uV/m P / AV / l	/ 4	Limit [dB(uV/m)]	Margin [dB] QP / AV / PK			Remark
74.806	Н	45.1			-12.1	33.0			40.0	7.0			
113.416	Н	42.6			-10.3	32.3			43.5	11.2			
127.986	Н	42.4			-9.4	33.0			43.5	10.5			
132.801	Н	42.0			-9.1	32.9			43.5	10.6			

Above 1GHz

TIOUTE TOTTE												
Frequency	Pol. [H / V]	Reading [dB(uV)]		Factor [dB/m]	F.	Level	\1	Limit	Margin			Remark
[MHz]	[П/ ۷]	QP / AV / PK		[UD/III]	[dB(uV/m)] QP / AV / PK		[dB(uV/m)]	[dB] QP / AV / PK				
4804.000	Н	47.5		1.2			48.7	74.0			25.3	
4804.000	Н	38.0		1.2		39.2		54.0		14.8		
4804.000	V		47.8	1.2			49.0	74.0			25.0	
4804.000	V	37.4		1.2		38.6		54.0		15.4		
7206.000	Н		42.2	4.1			46.3	74.0			27.7	Floor Noise
7206.000	Н	31.2		4.1		35.3		54.0		18.7		Floor Noise

15.247(d):

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Radiated Emission: Mch (2441MHz)

Below 1GHz

Frequency [MHz]	Pol. [H / V]		Reading [dB(uV)] P / AV /]]	Factor [dB/m]		Level lB(uV/m P / AV / l	/ 4	Limit [dB(uV/m)]	Margin [dB] QP / AV / PK			Remark
74.796	Н	45.0			-12.1	32.9			40.0	7.1			
113.490	Н	43.0			-10.3	32.7			43.5	10.8			
127.903	Н	43.0			-9.4	33.6			43.5	9.9			
132.718	Н	42.9			-9.1	33.8			43.5	9.7			

Above 1GHz

Frequency	Pol.		Reading		Factor		Level		Limit		Margin		Remark
[MHz]	[H / V]		[dB(uV)] OP / AV / PK		[dB/m]	[dB(uV/m)] OP / AV / PK		[dB(uV/m)]	[dB] OP / AV / PK				
		Ųι	QI/AV/IK			Ų	/ A V / I	IX		Ų	/ / 1 V / l	112	
4882.000	Н		48.1		1.4		49.5		74.0	24.5			
4882.000	Н		38.8		1.4		40.2		54.0		13.8		
4882.000	V			50.4	1.4			51.8	74.0			22.2	
4882.000	V		41.6		1.4		43.0		54.0		11.0		
7323.000	Н			42.5	4.7			47.2	74.0			26.8	Floor Noise
7323.000	Н		31.6		4.7		36.3		54.0		17.7		Floor Noise

15.247(d):

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Radiated Emission: Hch (2480MHz)

Below 1GHz

Frequency [MHz]	Pol. [H / V]	l	Reading [dB(uV)] P / AV /]]	Factor [dB/m]	-	Level lB(uV/m P / AV /]	 Limit [dB(uV/m)]	QI	Margin [dB] P/AV/]	Remark
74.816	Н	44.8		-12.1	32.7		40.0	7.3			
113.427	Н	43.6			-10.3	33.3		43.5	10.2		
127.979	Н	43.1			-9.4	33.7		43.5	9.8		
132.804	Н	42.6			-9.1	33.5		43.5	10.0		

Above 1GHz

Frequency [MHz]	Pol. [H / V]	[dB(t	Reading [dB(uV)] QP / AV / PK		-	Level lB(uV/m P / AV / l		Limit [dB(uV/m)]	QI	Margin [dB] P / AV / I		Remark
4960.000	Н		45.7				47.3	74.0			26.7	Floor Noise
4960.000	Н	33.	33.2			348		54.0		19.2		Floor Noise
4960.000	V		46.8	1.6		48.4		74.0			25.6	Floor Noise
4960.000	V	36.	3	1.6		37.9		54.0		36.1		Floor Noise
7440.000	Н		45.9	4.8			50.7	74.0			23.3	Floor Noise
7440.000	Н	32.	3	4.8		37.1		54.0		16.9		Floor Noise

In this test condition, the spurious emission was not found.

15.247(d):

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

TAIYO YUDEN CO., LTD. Page: 33 / 40

14 e.i.r.p. Calculation from Peak Power

15.247 (b)(5): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

(Limit [W] =60 / f [MHz], 24mW at 2.5GHz)

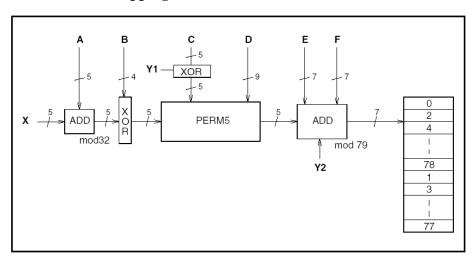
EIRP Calculation:

A	В	С		Limit [mW]
Specified Antenna Gain [dBi]	Max. RF Output Power at Antenna Terminal [dBm]	Total EIRP		
		[dBm]	[mW]	60 / f [MHz]
-3.00	-4.10	-7.10	0.19	25

Calculation: C [dBm] = A [dBi] + B [dBm]

 $EIRP = -7.10dBm = \underline{0.19mW}$

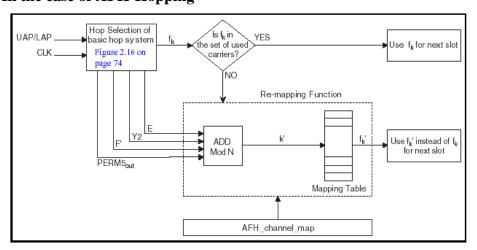
Page: 34 / 40


15 Photos of Tested EUT and Test Setup

Setup photo with EUT has been submitted as separate document named "Test Setup Photos (7142FC)".

Appendix 1: AFH-Hopping Sequence

AFH-Hopping Sequence is provided for in the Bluetooth Spec 1.2. Here is an outline below.


1. In the case of 79Hopping

Due to the above flow, 32 hops are made into 5 ways. Then, the sign of the sign head 160 is formed. The remainder that is worked out by dividing with 79 is assigned to Hopping Channel.

Each parameter of the above figure uses the value calculated from the Bluetooth clock and the Bluetooth address, which are shown in the next page.

2. In the case of AFH-Hopping

Also in the case of AFH, the fundamental sign adopt the sign head 160that is the same as the case of 79Hopping. Hopping Pattern uses the value that is worked out by dividing with the number of AFH-Channel's. Then, available Hopping becomes even as well as 79Hopping.

The selection of the communication Channel is done by the communication error rate and the receiving signal strength. Frequency is determined by pairing the channel and the value, which is divided by the number of AFH-Channel one-to-one.

It is decided in the specifications that Communication Channel has to have "20Channels" at least. However, if the number of communication Channel is controlled to be under 20 back to 79Channel-Hopping, and select the communication Channel again.

Page: 36 / 40

TAIYO YUDEN CO., LTD.

3. The parameter list which decides Hopping-Pattern

	Page scan / Interlaced Page Scan / Inquiry scan / Interlaced Inquiry Scan	Page/Inquiry	Master/Slave page response and Inquiry response	Connection state
X	$\begin{array}{c} {\rm CLKN_{16-12}} / \\ {\rm (CLKN_{16-12}+16)} mod 32 / \\ \\ Xir_{4-0} / \\ Xir_{4-0} + 16) mod 32 \end{array}$	Xp_{4-0}/Xi_{4-0}	$Xprm_{4-0}/$ $Xprs_{4-0}/$ Xir_{4-0}	CLK ₆₋₂
Y1	0	CLKE ₁ /CLKN ₁	CLKE ₁ /CLKN ₁ /1	CLK ₁
Y2	0	$32 \times \text{CLKE}_1 / \\ 32 \times \text{CLKN}_1$	$32 \times \text{CLKE}_1 \ /$ $32 \times \text{CLKN}_1 \ /$ 32×1	$32 \times \mathrm{CLK}_1$
Α	A_{27-23}	A ₂₇₋₂₃	A ₂₇₋₂₃	$A_{27-23} \oplus \text{CLK}_{25-21}$
В	A_{22-19}	A _{22 - 19}	A _{22 - 19}	A_{22-19}
С	A _{8,6,4,2,0}	A _{8, 6, 4, 2, 0}	A _{8, 6, 4, 2, 0}	$A_{8, 6, 4, 2, 0} \oplus \mathrm{CLK}_{20 - 16}$
D	A_{18-10}	A_{18-10}	A_{18-10}	$A_{18-10} \oplus \operatorname{CLK}_{15-7}$
Е	A _{13, 11, 9, 7, 5, 3, 1}	A _{13, 11, 9, 7, 5, 3, 1}	A _{13,11,9,7,5,3,1}	A _{13, 11, 9, 7, 5, 3, 1}
F	0	0	0	16 × CLK _{27 – 7} mod 79
F'	n/a	n/a	n/a	$16 \times \text{CLK}_{27-7} \mod N$

Page: 37 / 40

Appendix 2: Certificate of Accreditation

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200607-0

Taiyo Yuden Co., Ltd. EMC Center

Takasaki-shi Gunma 370-3347 JAPAN

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005).

2007-10-01 through 2008-09-30

Effective dates

Sally S. Buce
For the National Institute of Standards and Technology

NVLAP-01C (REV. 2006-09-13)

Page: 38 / 40

Appendix 3: Test Instruments

1. Conducted RF Test via Antenna Terminal

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (Interval (year))	
Spectrum Analyzer	Rohde & Schwarz	FSIQ26	840061/0004	14 February 2007 (1)	0
	Agilent Technologies	E4446A	US42070181	17 October 2007 (1)	•
	Rohde & Schwarz	NRVD	838380/0043	5 February 2007 (1)	0
Power Meter	Agilent Technologies	N1911A	MY45100612	8 June 2007 (1)	0
		E4416A	MY45100855	4 September 2007 (1)	•
	Rohde & Schwarz	NRV-Z1	838357/0001	5 February 2007 (1)	0
Power Sensor	Agilent Technologies	N1922A	MY45240439	8 June 2007 (1)	0
		8482A	MY41094396	4 September 2007 (1)	•
	SUHNER	SUCOFLEX 104	RF2-2	3 July 2007 (1)	•
RF Cable		SUCOFLEX 104E	RF3-3	4 April 2007 (1)	•
		SUCOFLEX 103	SU5	1 August 2007 (1)	•
	HP	85381C	No.3	1 August 2007 (1)	•
Power Divider	Aeroflex / Inmet	6005-03	RF-8	3 July 2007 (1)	•
Attenuator	Anritsu	MP721D	M04067	1 August 2007 (1)	•
Attenuator		MP721F	M40372	1 August 2007 (1)	•
	Advantest	R6451A	67840312	19 September 2007 (1)	•
Multi Meter	Agilent Technologies	34401A	MY41038383	5 June 2007 (1)	0
Temperature Chamber	TABAI ESPEC	PU-2KTH	14006759	6 February 2007 (1)	0
Hygro thermograph	SEKONIC	ST-200	HD01-000797	6 September 2007 (1)	•

Note:

•: Applied by measurement.

O: Not applied by measurement.

Page: 39 / 40

2. Radiated Emission Test

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (Interval (year))	
10m Anechoic Chamber	TDK Co., Ltd.	DA-06912	-	13 February 2008 (1)	•
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100148	31 July 2007 (1)	•
Spectrum	Agilent	E4407B	MY44221019	23 April 2007 (1)	
Analyzer	Technologies	E4446A	US42070181	17 October 2007 (1)	
Ammlifian	Agilent	83017A	3950M00169		
Amplifier	Technologies	8447D	2944A06812		•
RF Selector	TDK Co., Ltd	NS4900	0302-010	1 August 2007 (1)	•
Tunable Filter	TOYO Corporation	NF-49BT	No.1		0
RF Filter	Microtronics	ERM50702-01	020		0
		RG214	RG1		
	SUHNER	RG214	RG3		•
		RG214	RG5		•
		RG214	RG7		
RF Cable		RG214	RG8		•
RF Cable	HP	HP8120-4782	163 9232		•
	SUHNER	SUCOFLEX 106	SU1		•
		SUCOFLEX 103	SU5		•
		SUCOFLEX 103	SU6		0
	HP	85381C	No.3		•
Attenuator	KYORITSU	KPD-602	220142		•
	Schwarzbeck	BBA9106	No.3		0
		UHALP9108-A	0160		0
		VULB9160	3179	19 December 2007 (1)	•
Antenna		VHA9103	No.3 (+D3-1, 2)		0
		UHA9105	No.3		0
	EMCO	3115	9403-4232	12 F-h 2000 (2)	•
		3116	9311-2227	13 February 2008 (2)	•
Hygro thermograph	SEKONIC	ST-50	HE01-00511	14 February 2008 (1)	•

Note:

•: Applied by measurement.

O: Not applied by measurement.

Page: 40 / 40