

TEST REPORT

For RF

Report No.: CHTEW22100093 Report Verification:

Project No...... SHT2209104201EW

FCC ID.....: IN2TX52

Applicant's name: Hunter Fan Company

38016 United States

Product Name: Remote Control for Ceiling Fan

Trade Mark Hunter

Model No. K6266-A1

A4, K6019-A1, K6019-A4, KB283-A1, KB283-A2

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of receipt of test sample...... Oct.11, 2022

Date of testing...... Oct.11, 2022- Oct.25, 2022

Date of issue...... Oct.26, 2022

Result...... PASS

Compiled by

(Position+Printed name+Signature): File administrator Echo Wei

Echo Wei

Supervised by

(Position+Printed name+Signature): Project Engineer Kiki Kong

Krks Kong

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW22100093 Page: 2 of 67 Date of issue: 2022-10-26

Contents

÷	IEST STANDARDS AND REPORT VERSION	3
.1.	Test Standards	3
. 1. .2.	Report version	3
.2.	Report Version	3
<u>.</u>	TEST DESCRIPTION	4
<u>-</u>	SUMMARY	5_
.1.	Client Information	5
.2.	Product Description	5
.3.	Radio Specification Description	5
.4.	Testing Laboratory Information	6
<u>.</u>	TEST CONFIGURATION	7
.1.	Test frequency list	7
2.	Descriptions of Test mode	7
3.	Test sample information	7
4.	Support unit used in test configuration and system	8
5.	Testing environmental condition	8
6.	Statement of the measurement uncertainty	8
7.	Equipment Used during the Test	9
<u>.</u>	TEST CONDITIONS AND RESULTS	11
1.	Antenna Requirement	11
1. 2.	AC Conducted Emission	12
z. 3.	20dB bandwidth	13
,. .	99% Occupied Bandwidth	14
	Transmission Time	15
	Duty Cycle Corrected Factor	16
	Radiated field strength of the fundamental signal	17
	Radiated Spurious Emission	20
	TEST SETUP PHOTOS	26
	EXTERNAL AND INTERNAL PHOTOS	27
	APPENDIX REPORT	67
_		

Report No.: CHTEW22100093 Page: 3 of 67 Date of issue: 2022-10-26

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC Rules Part 15.231(a): Periodic operation in the band 40.66–40.70 MHz and above 70 MHz.
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-10-26	Original

Report No.: CHTEW22100093 Page: 4 of 67 Date of issue: 2022-10-26

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203	PASS	Xiaoqin Li
5.2	AC Conducted Emission	15.207	N/A	N/A
5.3	20dB Bandwidth	15.231(c)	PASS	Xiaoqin Li
5.4	99% Occupied Bandwidth	-	PASS*1	Xiaoqin Li
5.5	Transmission time	15.231(a)(1)	PASS	Xiaoqin Li
5.6	Duty cycle corrected factor	-	PASS ^{*1}	Xiaoqin Li
5.7	Field strength of the Fundamental signal	15.231(b)	PASS	Xiaoqin Li
5.8	Radiated Spurious Emission	15.231(b)/15.205/15.209	PASS	Xiaoqin Li

Note:

The measurement uncertainty is not included in the test result.

 ^{*1:} No requirement on standard, only report these test data.

Report No.: CHTEW22100093 Page: 5 of 67 Date of issue: 2022-10-26

3. **SUMMARY**

3.1. Client Information

Applicant:	Hunter Fan Company
Address:	7130 Goodlett Farms Pkwy, Suite 400, Memphis Tennessee 38016 United States
Manufacturer:	Hunter Fan Company
Address:	7130 Goodlett Farms Pkwy, Suite 400, Memphis Tennessee 38016 United States
Factory:	Shenzhen H&T lintelligent Control CO., Ltd.
Address:	H&T Industrial Park,No.18 BaoShan Road,Tian Liao Community,Guangming new district,Shenzhen,Guangdong,China 518132

3.2. Product Description

Main unit information:		
Product Name:	Remote Control for Ceiling Fan	
Trade Mark:	Hunter	
Model No.:	K6266-A1	
Listed Model(s):	K6266-A2, K6266-A3, K6266-B1, K6266-B2, K5579-A1, K5580-A4, K6019-A1, K6019-A4, KB283-A1, KB283-A2	
Power supply:	DC 3V from battery	
Hardware version:	V04	
Software version:	V01	

3.3. Radio Specification Description

Operation frequency:	433.92MHz
Modulation:	ООК
Channel number:	1
Antenna type:	РСВ

Report No.: CHTEW22100093 Page: 6 of 67 Date of issue: 2022-10-26

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

Report No.: CHTEW22100093 7 of 67 Date of issue: 2022-10-26 Page:

4. TEST CONFIGURATION

4.1. Test frequency list

According to section ANSI C63.10 section 5.6.1,

Measurements of unlicensed wireless devices shall be performed and, if required, reported for each band in which the EUT can be operated with the device operating at the number of frequencies in each band specified in Table 4

Table 4—Number of frequencies to be tested

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

So test frequency as follow:

Channel	Frequency (MHz)
CH _M	433.92

4.2. Descriptions of Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit.

The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Test sample information

Test item	HTW sample no.
RF Conducted test items	Please refer to the description in the appendix report
RF Radiated test items	YPHT22091048001

Note:

RF Conducted test items: 20dB Bandwidth, 99% Occupied Bandwidth, Transmission time, Duty cycle

corrected factor

RF Radiated test items: Field strength of the Fundamental signal

Report No.: CHTEW22100093 Page: 8 of 67 Date of issue: 2022-10-26

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?					
✓ No	✓ No				
Item	Equipment	Trade Name	Model No.		
1					
2					

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Statement of the measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission	3.21dB
20dB Bandwidth	0.002%
99% Occupied Bandwidth	0.002%
Transmission time	2.3ns
Duty cycle corrected factor	-
Field strength of the Fundamental signal	4.54dB for 30MHz-1GHz 5.10dB for above 1GHz
Radiated Spurious Emission	4.54dB for 30MHz-1GHz 5.10dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22100093 Page: 9 of 67 Date of issue: 2022-10-26

4.7. Equipment Used during the Test

•	Conducted Emission											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27					
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2022/08/30	2023/08/29					
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2022/08/29	2023/08/28					
•	Pulse Limiter	R&S	HTWE0193	ESH3-Z2	101447	2022/08/29	2023/08/28					
•	RF Connection Cable HUBER+SUHNER		HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2022/09/17	2023/09/16					
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A					

•	Radiated emission-6th test site										
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2023/09/29				
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2022/08/30	2023/08/29				
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05				
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05				
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04				
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24				
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2022/02/25	2023/02/24				
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A				

•	Radiated em	ission-7th test s	ite				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2023/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2022/08/25	2023/08/24
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/04/27	2023/04/26
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/05	2022/11/04
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Report No.: CHTEW22100093 Page: 10 of 67 Date of issue: 2022-10-26

•	RF Conducted Method									
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Signal and spectrum Analyzer R&S		FSV40	100048	2022/08/25	2023/08/24				
•	Spectrum Analyzer Agilent		N9020A	MY50510187	2022/08/25	2023/08/24				
•	Power Meter Anritsu		ML249A	N/A	2022/08/25	2023/08/24				
0	Radio communication tester	R&S	CMW500	137688-Lv	2022/08/25	2023/08/24				

Report No.: CHTEW22100093 Page: 11 of 67 Date of issue: 2022-10-26

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement

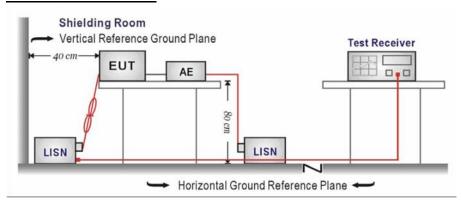
FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The antenna type is a PCB antenna, please refer to the below antenna photo.

Report No.: CHTEW22100093 Page: 12 of 67 Date of issue: 2022-10-26

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fragues ou range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

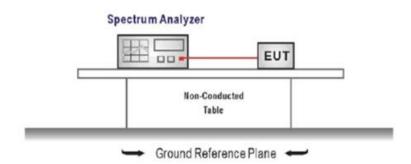
- 1. The EUT was setup according to ANSI C63.10 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

 Report No.: CHTEW22100093 Page: 13 of 67 Date of issue: 2022-10-26


5.3. 20dB bandwidth

LIMIT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900 MHz.

For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = channel center frequency

Span= approximately 2 to 3 times the 20 dB bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

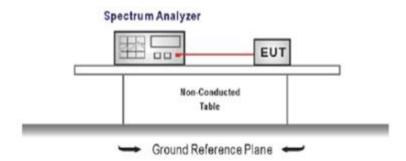
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST DATA:

Please refer to appendix A on the appendix report


Report No.: CHTEW22100093 Page: 14 of 67 Date of issue: 2022-10-26

5.4. 99% Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =channel center frequency

Span≥1.5 x OBW

RBW = 1%~5%OBW

VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

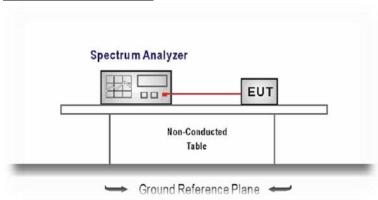
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST DATA

Please refer to appendix B on the appendix report


Report No.: CHTEW22100093 Page: 15 of 67 Date of issue: 2022-10-26

5.5. Transmission Time

<u>LIMI</u>T

A manually operated transmitter shall employ a switch that will auto-matically deactivate the transmitter within not more than 5 seconds of being released.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Frequency=Center carrier frequency

RBW=100kHz, VBW=300kHz, Span= zero,

Sweep time= 10second, Detector function = peak, Trace = single

4. Measure and record the results in the test report.

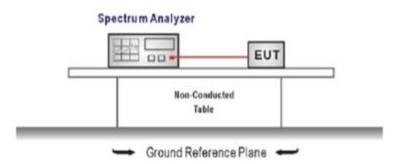
TEST MODE:

Please refer to the clause 4.2

TEST RESULTS

TEST DATA

Please refer to appendix C on the appendix report


Report No.: CHTEW22100093 Page: 16 of 67 Date of issue: 2022-10-26

5.6. Duty Cycle Corrected Factor

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span=zero span, Frequency=centered channel, RBW= 1MHz, VBW ≥ RBW
 - Sweep time=as necessary to capture the entire dwell time,
 - Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

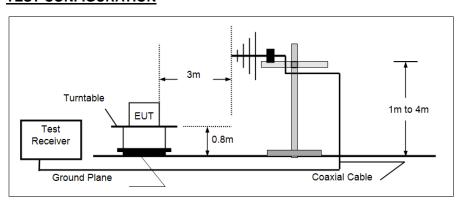
TEST MODE:

Please refer to the clause 4.2

TEST DATA

Please refer to appendix D on the appendix report

Report No.: CHTEW22100093 Page: 17 of 67 Date of issue: 2022-10-26


5.7. Radiated field strength of the fundamental signal

LIMIT

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1GHz, The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

TEST MODE:

Please refer to the clause 4.2

TEST RESULTS

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level Limit

Report No.: CHTEW22100093 Page: 18 of 67 Date of issue: 2022-10-26

	l		CH _M			Po	olarity			Horizont	al
100L	evel (dE	BuV/m)				 				Date: 10-	-20-2022
90											
							1				
80							Ň				
70											
60							H				
50					 						
40							<i>}-</i> {				
30							٠				
20"	Marine	- Mahamahan	age with the	and the same	redental control	wherether handfeld.	"Marker de de	Portal de la constantina della	hardenskihele	والمسيني والمحاولة والمراجع المادي	agry/acceptione
10											
04											
		125								'	442
4	23	425				Frequency (MHz)				443
4.	23	425			F	Frequency (undamental					443
No.	Frec		ding	Factor		undamental	of Peak	nit	Margi	n Polarity	443 Detector
		ı. Rea	ding V/m]	Factor [dB]	1	undamental	of Peak		Margii [dB]	n Polarity	
	Fred	ι Rea z] [dΒμ	V/m]		Prean (dB)	undamental	of Peak I Lim m] [dBµ\	//m]			
No.	Fred [MH:	ι Rea z] [dΒμ	V/m]	[dB]	(dB)	undamental np Leve [dBµV//	of Peak Lim m] [dBµ\ 3 100.	//m]	[dB]		Detector
No.	Frec [MH:	j. Rea z] [dΒμ θ2 84	V/m]	[dB] 24.68	Prean (dB) 30.4	undamental np Leve [dBµV// 4 79.18	of Peak I Lim m] [dBµ\ B 100. f Average	//m] 80	[dB]	2 Horizontal	Detector
No.	Fred [MH:	ι Rea z] [dΒμ	V/m]	[dB] 24.68	(dB)	undamental np Leve [dBµV//	of Peak Lim m] [dBµ\ 3 100.	//m] 80	[dB]		Detector
No.	Frec [MH:	j. Rea z] [dBµ 92 84 Freq.	V/m] .94	[dB] 24.68 evel //m]	Prean (dB) 30.4 Fur	undamental np Leve [dBµV// 4 79.18 ndamental o	of Peak Lim m] [dBµ\ 3 100. f Average Limit	//m] 80	[dB] 21.62	2 Horizontal	Detector

Report No.: CHTEW22100093 Page: 19 of 67 Date of issue: 2022-10-26

annel		CH _M			Polar	ity		Vertica	al
100 Lev	el (dBuV/r	n)						Date	: 10-20-2022
90									
80									
70					1				
60									
50									
40									
30					}-\				
20	and the same	المراب أربعناها المرابعة والمرابعة والمرابعة	Mark Makey	approximent and or	weependoodele	Manufacture	er in de la company	up-waterneb cape	ahrangemen
									I
10									
	425								
	425			Fre	equency (MH	z)			44
	425				equency (MH				44
	Freq.	Reading	Factor		amental of P	Peak Limit	Margin	Polarity	44 Detector
0423		Reading [dBµV/m]	Factor [dB]	Funda	amental of P	Peak	Margin [dB]	Polarity	
0423	Freq.	_		Funda	amental of P	Peak Limit		Polarity Vertical	
0423 No.	Freq.	[dBµV/m]	[dB]	Preamp (dB)	Level	Limit [dBµV/m]	[dB]		Detector
0423 No.	Freq. [MHz] 433.92	[dBµV/m] 68.93	[dB] 24.68	Preamp (dB)	Level [dBµV/m]	Limit [dBµV/m]	[dB]		Detector
0 423 No.	Freq. [MHz] 433.92	[dBµV/m] 68.93	[dB] 24.68	Funda Preamp (dB) 30.44 Fundan	Level [dBµV/m] 63.17	Limit [dBµV/m] 100.80	[dB] 37.63	Vertical	Detector PK

Report No.: CHTEW22100093 Page: 20 of 67 Date of issue: 2022-10-26

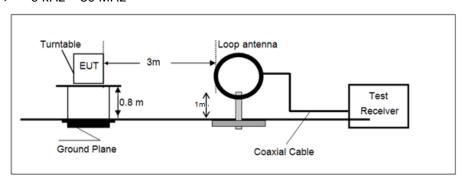
5.8. Radiated Spurious Emission

LIMIT

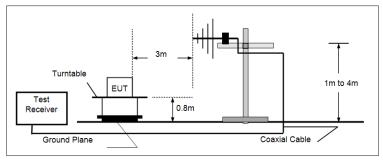
FCC CFR Title 47 Part 15 Subpart C Section 15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

FCC CFR Title 47 Part 15 Subpart C Section 15.209

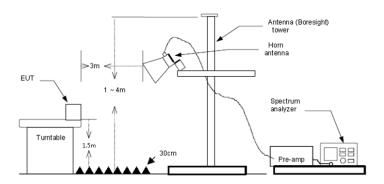

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value		
30MHz~88MHz	40.00	Quasi-peak		
88MHz~216MHz	43.50	Quasi-peak		
216MHz~960MHz	46.00	Quasi-peak		
960MHz~1GHz	54.00	Quasi-peak		
Above 1CHz	54.00	Average		
Above 1GHz	74.00	Peak		

TEST CONFIGURATION

> 9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

Above 1 GHz

Report No.: CHTEW22100093 Page: 21 of 67 Date of issue: 2022-10-26

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

Average level = Peak level - DCCF

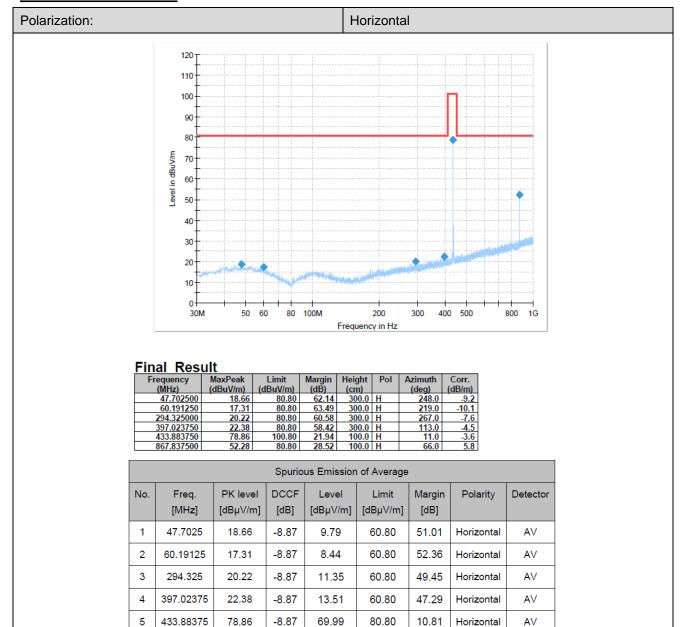
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

□ Passed □ Not Applicable

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Over Limit = Level Limit

FOR 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

Report No.: CHTEW22100093 Page: 22 of 67 Date of issue: 2022-10-26

FOR 30 MHz ~ 1000 MHz

5

433.88375

867.8375

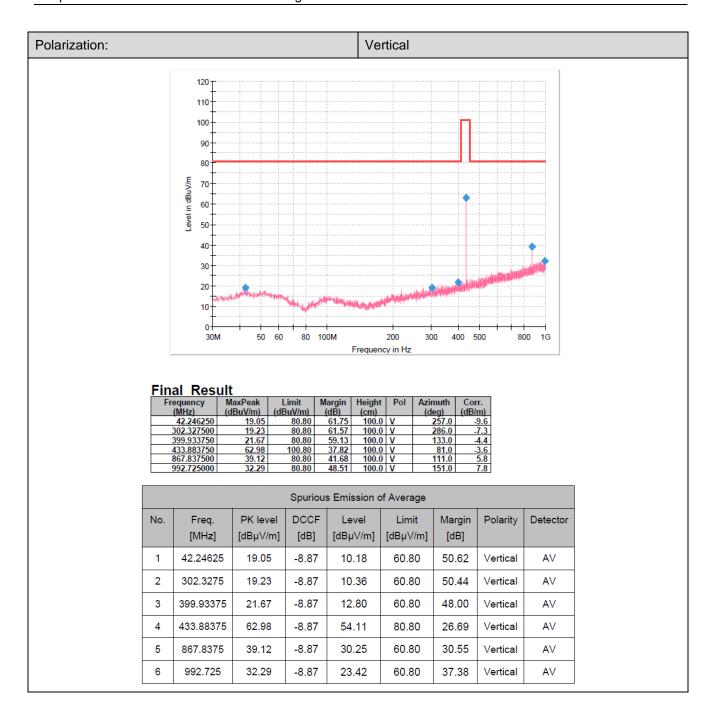
78.86

52.28

-8.87

43.41

60.80


17.39

ΑV

ΑV

Horizontal

Horizontal

Report No.: CHTEW22100093 Page: 24 of 67 Date of issue: 2022-10-26

FOR 1 GHz ~ 5 GHz

ation:				F	Horizontal						
100 ^{L0}	evel (dBuV/m)						Date: 10-1	7-2022			
90											
80				Т			FCC 15 2	31 PK			
70				2		4					
60							FCC 15.2	31 AV			
50		1					5 6				
40					Programme Copyrigates	بالسيسينيليب	مهاسه بدائه بالمستبد	Mary and			
30	Marie Ma	Mark Brown and Company of the World	And the Paris of the Paris of	TOWN THE THE							
20											
10											
011	000 1200	1500	1 1 1	2000		i	i	5000			
	1200			Frequency (I	MHz)			5555			
Mark	Frequen	cy Reading	Ante	nna Cable	Preamp	Level	Limit O	ver Remar			
1	MHz 1302.06	dBuV/m 48.70	dB 26.0		dB 36.76 4	dBuV/m 10.79	dBuV/m lin 74.00 -33	mit .21 Peak			
2	2168.73		27.8			59.69	80.80 -21				
3	2601.29		27.5			56.38	80.80 -24				
4	3035.91		28.7			54.79	80.80 -16				
5 6	3902.37 4339.71		29.8 30.4			17.38 16.11	74.00 -26 74.00 -27				
			Spuri	ous Emissio	n of Avera	ge					
No.	Freq.	PK level	DCCF	Level	Limit	Margin	Polarity	Detector			
140.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]						
1	1302.06	40.79	-8.87	31.92	54.00	22.08	Horizontal	AV			
2	2168.73	59.69	-8.87	50.82	60.80	9.98	Horizontal	AV			
3	2601.29	56.38	-8.87	47.51	60.80	13.29	Horizontal	AV			
4	3035.91	64.79	-8.87	55.92	60.80	4.88	Horizontal	AV			
5	3902.37	47.38	-8.87	38.51	54.00	15.49	Horizontal	AV			
	1	1		I	I	1	Horizontal	AV			

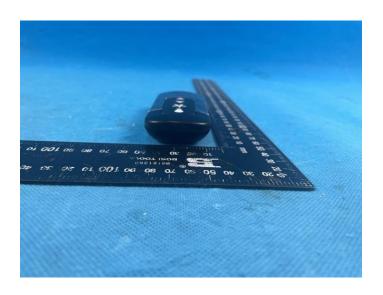
zation:					Ve	Vertical						
100 Level (dBuV/m)						Date: 10-17-2022						
90												
80				n - II								
70						I L]	L	FCC	15.23	1 PK	
60				n -	2	3						
50							J [L	FCC 5	15.23	11 AV	
40		<u>.</u>			<u>i</u>				[.].		اسلسا	
30	ورووسيها		harara paragraphica de la constanta de la cons	سيسليب	- Land	سببالسبس	and the state of t		A PARTY AND	Alexander .		
20												
10												
					1		!					
0,	1000	1200	1500		000 Frequency (M	Hz)					5000	
Mark		Frequenc MHz	y Reading dBuV/m	Antenn dB	a Cable dB	Preamp dB	Lev dBuV		imit BuV/m	Ov lim		
1		1302.06	62.60	26.01	2.84		54.69		4.00	-19.		
2		2168.73	69.60	27.89	3.74		63.72		0.80	-17.		
3		2601.29	70.05	27.51	4.33		64.60		0.80	-16.		
4 5		3035.91 3908.66	61.01 51.37	28.77 29.82	4.61 5.20		56.97 49.78		0.80 4.00	-23. -24.		
6		4339.71	51.16	30.46	5.42		51.06		4.00	-22.		
				Spuriou	s Emission	of Avera	age					
No		Freq.	PK level	DCCF	Level	Limit		Margin	Pola	rity	Detector	
110.		[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/		[dB]		.,		
1	1	302.06	54.69	-8.87	45.82	54.00		8.18	Vertical		AV	
2	2	168.73	63.72	-8.87	54.85	60.80		5.95	Vertical		AV	
3	2	601.29	64.60	-8.87	55.73	60.80		5.07	Vertical		AV	
4	3	035.91	56.97	-8.87	48.10	60.80		12.70	Vertical		AV	
5	3	908.66	49.78	-8.87	40.91	54.00	54.00 13.0		Vertical		AV	
	-											

Report No.: CHTEW22100093 Page: 26 of 67 Date of issue: 2022-10-26

6. TEST SETUP PHOTOS

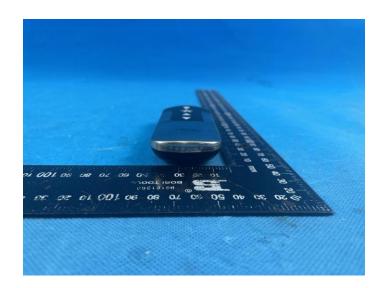
Radiated Emission

Report No.: CHTEW22100093 Page: 27 of 67 Date of issue: 2022-10-26

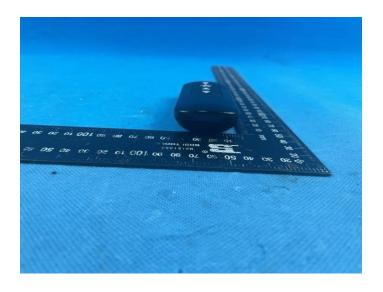

7. EXTERNAL AND INTERNAL PHOTOS

External Photos

K6266-A1



Report No.: CHTEW22100093 Page: 28 of 67 Date of issue: 2022-10-26



Report No.: CHTEW22100093 Page: 29 of 67 Date of issue: 2022-10-26

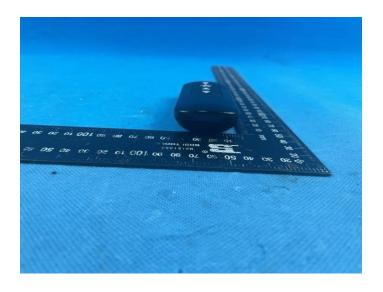
K6266-A2

Report No.: CHTEW22100093 Page: 30 of 67 Date of issue: 2022-10-26

Report No.: CHTEW22100093 Page: 31 of 67 Date of issue: 2022-10-26

K6266-A3

Report No.: CHTEW22100093 Page: 32 of 67 Date of issue: 2022-10-26



Report No.: CHTEW22100093 Page: 33 of 67 Date of issue: 2022-10-26

K6266-B1

Report No.: CHTEW22100093 Page: 34 of 67 Date of issue: 2022-10-26

Report No.: CHTEW22100093 Page: 35 of 67 Date of issue: 2022-10-26

K6266-B2

Report No.: CHTEW22100093 Page: 36 of 67 Date of issue: 2022-10-26

Report No.: CHTEW22100093 Page: 37 of 67 Date of issue: 2022-10-26

K5579-A1

Report No.: CHTEW22100093 Page: 38 of 67 Date of issue: 2022-10-26

Report No.: CHTEW22100093 Page: 39 of 67 Date of issue: 2022-10-26

K5580-A4

Report No.: CHTEW22100093 Page: 40 of 67 Date of issue: 2022-10-26





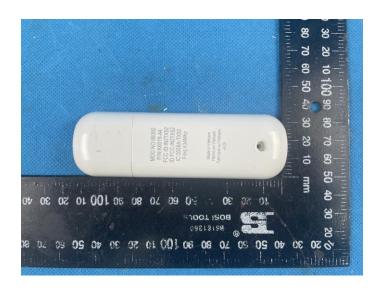
Report No.: CHTEW22100093 Page: 41 of 67 Date of issue: 2022-10-26

K6019-A1

Report No.: CHTEW22100093 Page: 42 of 67 Date of issue: 2022-10-26

Report No.: CHTEW22100093 Page: 43 of 67 Date of issue: 2022-10-26

K6019-A4



Report No.: CHTEW22100093 Page: 44 of 67 Date of issue: 2022-10-26



Report No.: CHTEW22100093 Page: 45 of 67 Date of issue: 2022-10-26

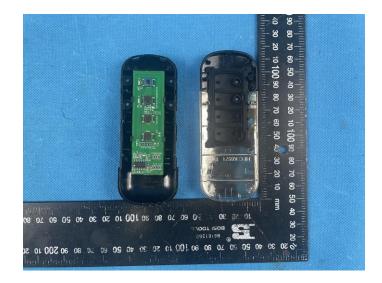
KB283-A1

Report No.: CHTEW22100093 Page: 46 of 67 Date of issue: 2022-10-26

Report No.: CHTEW22100093 Page: 47 of 67 Date of issue: 2022-10-26

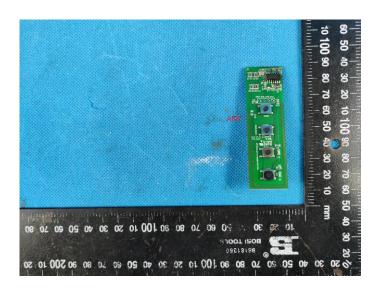
KB283-A2

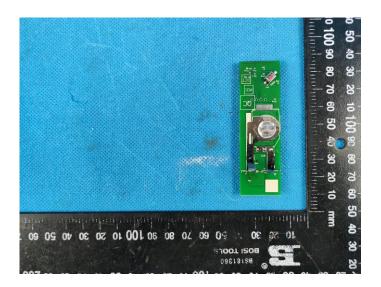
Report No.: CHTEW22100093 Page: 48 of 67 Date of issue: 2022-10-26



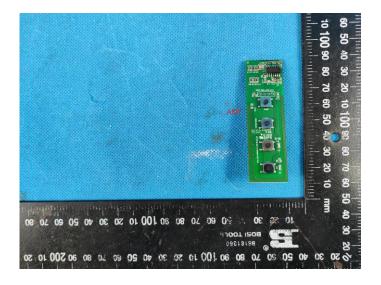
Report No.: CHTEW22100093 Page: 49 of 67 Date of issue: 2022-10-26

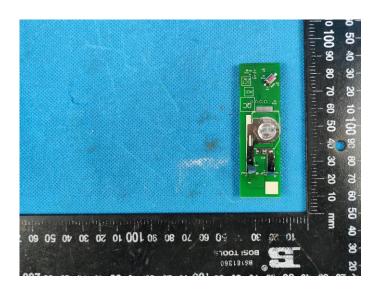
Internal Photos

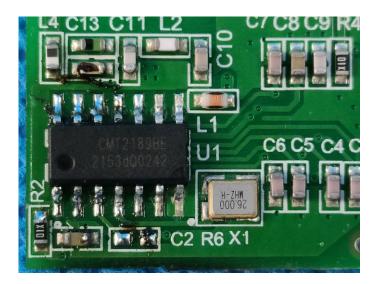

K6266-A1

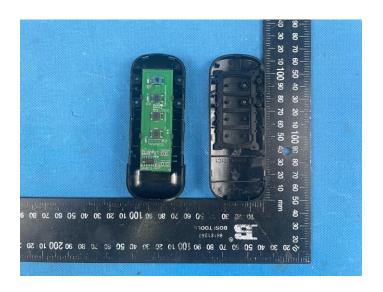


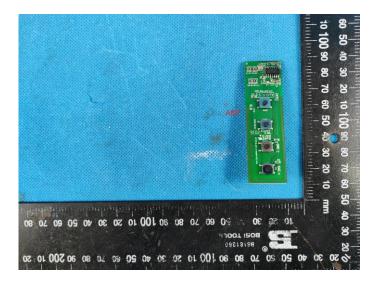
Report No.: CHTEW22100093 Page: 50 of 67 Date of issue: 2022-10-26

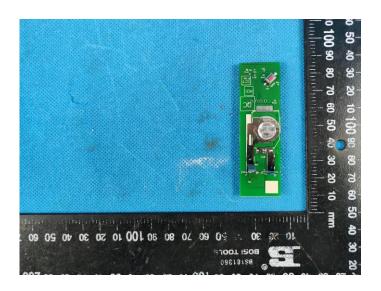


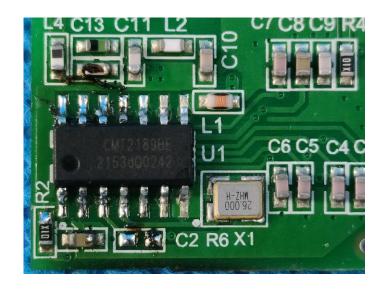

Report No.: CHTEW22100093 Page: 51 of 67 Date of issue: 2022-10-26


K6266-A2

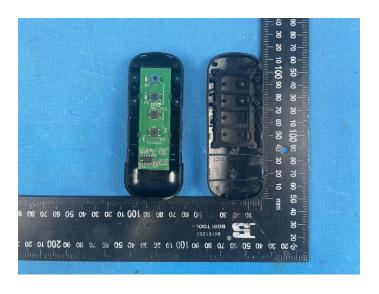


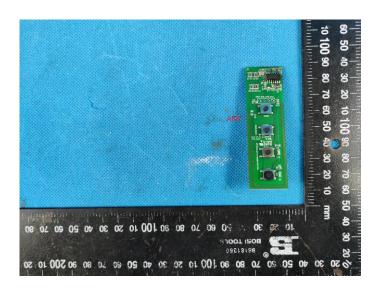


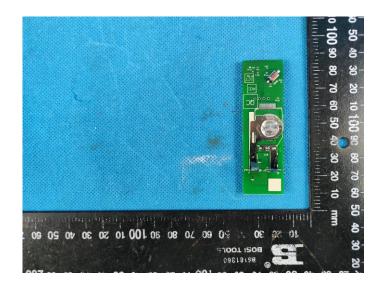

K6266-A3

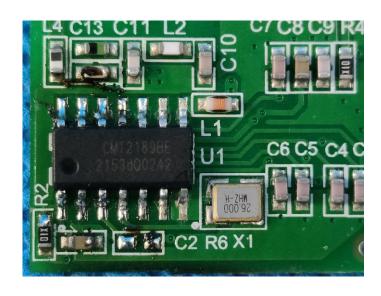


Report No.: CHTEW22100093 Page: 53 of 67 Date of issue: 2022-10-26

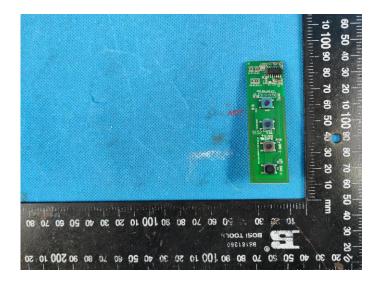


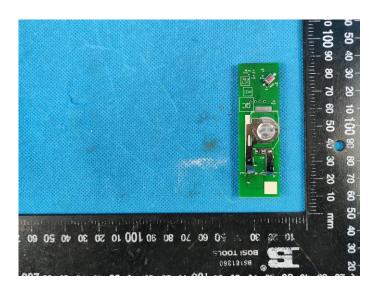


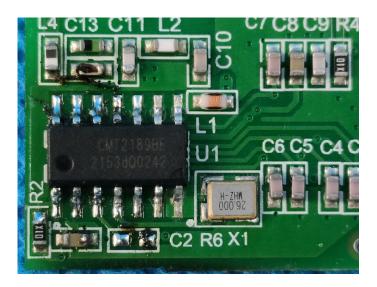

K6266-B1

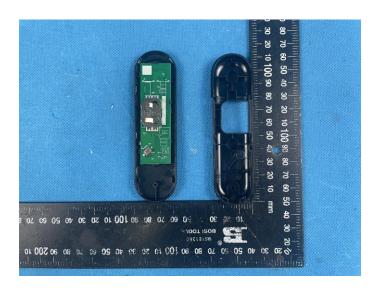


Report No.: CHTEW22100093 Page: 55 of 67 Date of issue: 2022-10-26

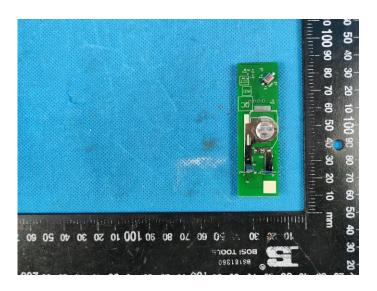


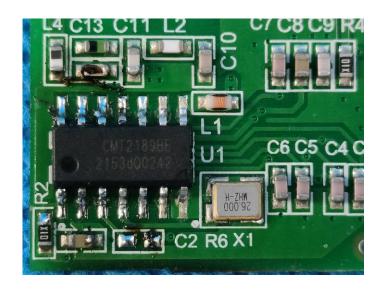

Report No.: CHTEW22100093 Page: 56 of 67 Date of issue: 2022-10-26


K6266-B2

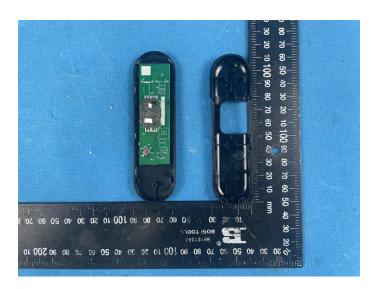


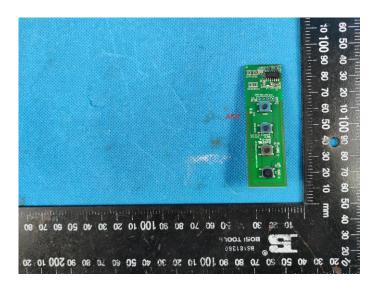


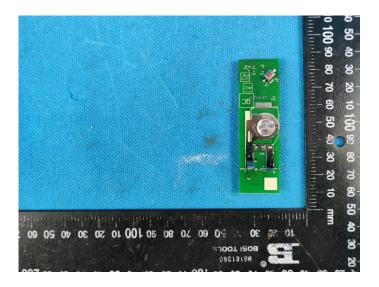

K5579-A1

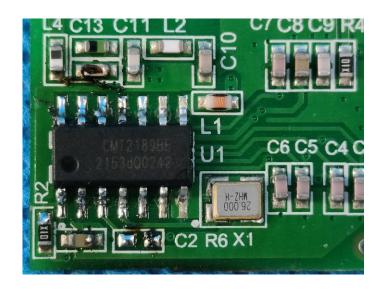


Report No.: CHTEW22100093 Page: 58 of 67 Date of issue: 2022-10-26

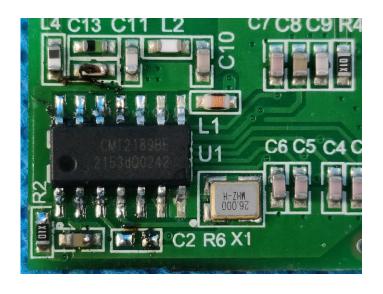




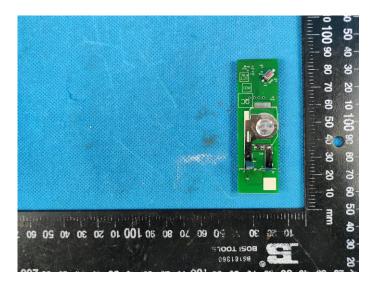

K5580-A4

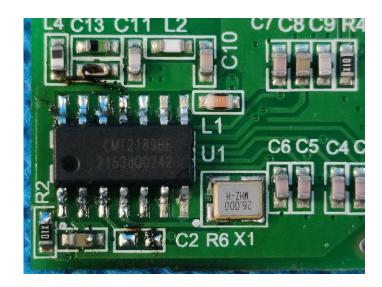


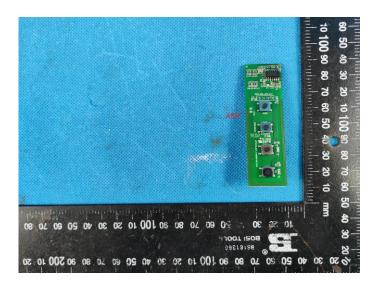
Report No.: CHTEW22100093 Page: 60 of 67 Date of issue: 2022-10-26



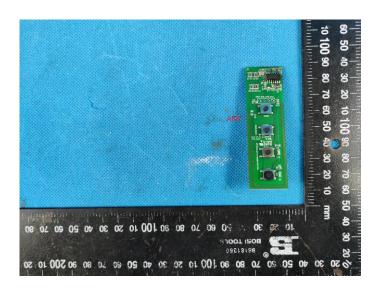
Report No.: CHTEW22100093 Page: 61 of 67 Date of issue: 2022-10-26

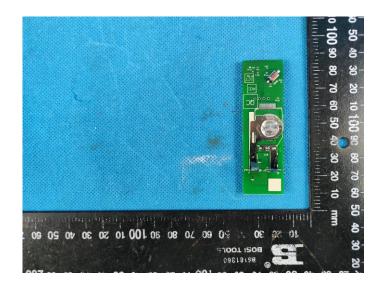

K6019-A1

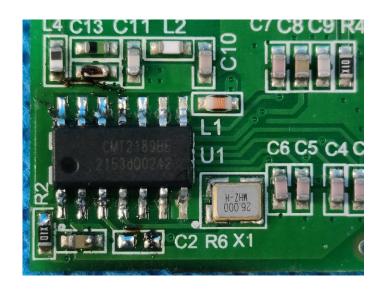



K6019-A4

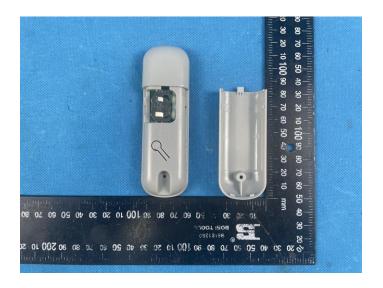
Report No.: CHTEW22100093 Page: 63 of 67 Date of issue: 2022-10-26

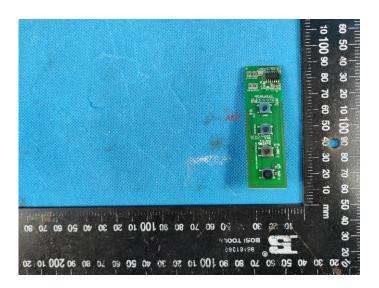



KB283-A1

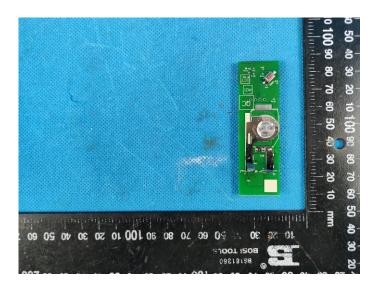


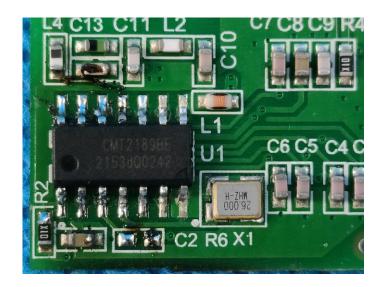
Report No.: CHTEW22100093 Page: 65 of 67 Date of issue: 2022-10-26





Report No.: CHTEW22100093 Page: 66 of 67 Date of issue: 2022-10-26


KB283-A2



Report No.: CHTEW22100093 Page: 67 of 67 Date of issue: 2022-10-26

8. APPENDIX REPORT