

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 102499904ATL-001 **Project Number:** G102499904

Report Issue Date: April 11, 2016

Model(s) Tested: K5579

Standards: 47 CFR Part 15, Subpart C (15.231 - Periodic operation in the band 40.66-40.70 MHz and above 70 MHz) RSS-210, Issue 8, 2010

Tested by: Intertek Testing Services NA, Inc. 1950 Evergreen Blvd, Suite 100 Duluth, GA 30096 USA Client: Hunter Fan Company 7130 Goodlett Farms Parkway, Ste 400 Cordova, TN 38016-4991 USA

Report prepared by

Mary Sampson

Mary Sampson/Senior Project Engineer

Report reviewed by

Krishna Vemuri/Engineering Team Lead

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. Table of Contents

1	Introduction and Conclusion	.3
2	Test Summary	. 3
3	Client Information	.4
4	Description of Equipment Under Test and Variant Models	.4
5	System Setup and Method	6
6	Restrictions	. 7
7	Fundamental Radiated Emissions	9
8	Radiated Spurious Emissions below 1GHz	15
9	Radiated Spurious Emissions Above 1 GHz	21
10	Bandwidth	25
11	RF Exposure	28
12	Revision History	29

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Restrictions (47 CFR Part 15 Subpart C:2016 Section 15.231(a)(2) RSS-210 Issue 8, 2010, Section A1.1.1(b))	Pass
-	AC Mains Conducted Emissions (Battery operated device	N/A
7	Fundamental Radiated Emissions (47 CFR Part 15 Subpart C:2016 Section 15.231(b) RSS-210 Issue 8, 2010, Section A1.1.2)	Pass
8	Radiated Spurious Emissions below 1GHz (47 CFR Part 15 Subpart C:2016 Section 15.231(b) RSS-210 Issue 8, 2010, Section A1.1.2)	Pass
9	Radiated Spurious Emissions Above 1 GHz (47 CFR Part 15 Subpart C:2016 Section 15.231(b) RSS-210 Issue 8, 2010, Section A1.1.2)	Pass
10	Bandwidth (47 CFR Part 15 Subpart C:2014 Section 15.231(c) RSS-210 Issue 8, 2010, Section A1.1.3)	Pass
11	RF Exposure Compliance (47 CFR Part 2 Subpart J: 2014 Section 2.1091)	Pass
12	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:	Hunter Fan Company 7130 Goodlett Farms Parkway, Ste 400 Cordova, TN 38016-4991 USA
Contact:	Julian Martin
Telephone:	+1 (901) 248-2810
Fax:	+1 (901) 248-2382
Email:	imartin@hunterfan.com

4 Description of Equipment Under Test and Variant Models

Manufacturer:	Shenzhen H and T Intelligent Control, Ltd.
	H&T Industrial Park
	TianLiao Road, TianLiao Community,
	GongMing Stree, GuangMing District
	China

Equipment Under Test					
Description	Manufacturer	Model Number	Serial Number		
Hunter SIMPLEconnect	Shenzhen H and T	K5579	Intertek Assigned		
4-Button Handheld	Intelligent Control, Ltd.		Number:		
Remote	_		ATL1603041430-001 –		
			Normal Transmission		
			Sample		
Hunter SIMPLEconnect	Shenzhen H and T	K5579	Intertek Assigned		
4-Button Handheld	Intelligent Control, Ltd.		Number:		
Remote			ATL1603041430-002 –		
			Continuous		
			Transmission Sample		

Receive Date:	03/04/2016
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

A hand held wireless transmitter used for remote control of a ceiling fan and light assembly.

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
3Vdc	20mA (Max)/	N/A	N/A		
	0.2 uA (Standby)				

Operating modes of the EUT:

No. I	Descriptions of EUT Exercising
1 (Continuous transmission
2	Normal transmission

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	None

Radio/Receiver Characteristics		
Frequency Band(s)	433 MHz	
Modulation Type(s)	ASK	
Maximum Output Power	N/A	
Test Channels	One (433 MHz)	
Occupied Bandwidth	682.69 kHz	
Frequency Hopper: Number of Hopping	N/A	
Channels		
Frequency Hopper: Channel Dwell Time	N/A	
Frequency Hopper: Max interval between	N/A	
two instances of use of the same channel		
MIMO Information (# of Transmit and	N/A	
Receive antenna ports)		
Equipment Type	Standalone	
ETSI LBT/Adaptivity	N/A	
ETSI Adaptivity Type	N/A	
ETSI Temperature Category (I, II, III)	N/A	
ETSI Receiver Category (1, 2, 3)	N/A	
Antenna Type and Gain	Integral, 0.0 dBi	

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

N/A

5 System Setup and Method

Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
None					

Support Equipment					
Description Manufacturer Model Number Serial Number					
None					

5.1 Method:

Configuration as required by ANSI C63.10:2013.

5.2 EUT Block Diagram:

6 Restrictions

6.1 Method

Tests are performed in accordance with 47 CFR Part 15 Subpart C: 2016 Section 15.231(a)(2) and RSS-210 Issue 8, 2010, Section A1.1.1(b).

TEST SITE: 10m Semi-Anechoic Chamber Control Room

10 Meter Semi-Anechoic Chamber The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Barometric Pressure, Temperature and Humidity					
200127;	Monitor	Omega	IBTHX-W	8190327	10/30/2015	10/30/2016
13389;	EMI Receiver	Agilent Tech.	MXE/N9038A	MY50010160	11/13/2015	11/13/2016

Software Utilized:

Name	Manufacturer	Version
None (Receiver software)		

6.3 Results:

§ 15.231 Periodic operation in the band 40.66–40.70 MHz and above 70 MHz. (a) The provisions of this section are restricted to periodic operation within the band 40.66–40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation: A transmitter activated automatically shall cease transmission within 5 seconds after activation.

RSS-210, A1.1.1 Types of Momentary Signals

The following conditions shall be met to comply with the provisions for momentary operation: (a) A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all transmission times. When released, the transmitter shall cease transmission (holdover time of up to 5 seconds is permitted).

The sample tested was found to Comply.

6.4 Plots/Data:

enter Fred	433.940000 MH	Trig Fri No: Wale + Trig Fri Ubain Low Atten 1	Avg T _{ap} re Run 0 dB		P23456 Frequency
0 dBldiv	tef 116.99 dBµV	Section Cont		AMkr1	560.0 ms Auto Tu -0.14 dB
107	+				Center Fri 433 940000 Mr
97.0	\downarrow				Start Free 433 940000 MHz
77.0	v 1 ^{1Δ2}				Stop Freq 433.940000 MHz
57.0		+			CF Step 75.000 kHz Auto Man
47.0 37.0			1	ور الم	Freq Offset 0 Hz

Test Personnel:	Mary T Sampson MTS	Test Date:	03/24/2016
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	47 CFR Part 15 Subpart	Limit Applied:	See Section 6.3
	C:2016 Section 15.231(a)(2)		
	and RSS-210 Issue 8, 2010,		
Product Standard:	Section A1.1.1(b)		
Input Voltage:	One 3Vdc CR2032 battery		
Pretest Verification w/		Ambient Temperature:	24.2 °C
Ambient Signals or	N/A	Relative Humidity:	31.7 %
DD Source.		Atmospharic Prossura:	081.1 mbars

Deviations, Additions, or Exclusions: None

7 Fundamental Radiated Emissions

7.1 Method

Tests are performed in accordance with 47 CFR Part 15 Subpart C: 2016 Section 15.231(b) and RSS-210 Issue 8, 2010, Section A1.1.2.

TEST SITE: 10m Semi-Anechoic Chamber

<u>10 Meter Semi-Anechoic Chamber</u> The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

Measurement Uncertainty

Macauramant	Frequency	Expanded Uncertainty	Uniona
measurement	Range	(K=Z)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.9 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field \ Strength \ in \ dB\mu V/m \\ RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V \\ CF = Cable \ Attenuation \ Factor \ in \ dB \\ AF = Antenna \ Factor \ in \ dB \\ AG = Amplifier \ Gain \ in \ dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $\label{eq:result} \begin{array}{l} {\sf RA} = 52.0 \ d{\sf B}\mu{\sf V} \\ {\sf AF} = \ 7.4 \ d{\sf B}/{\sf m} \\ {\sf CF} = \ 1.6 \ d{\sf B} \\ {\sf AG} = 29.0 \ d{\sf B} \\ {\sf FS} = 32 \ d{\sf B}\mu{\sf V}/{\sf m} \end{array}$

To convert from $dB\mu V$ to μV or mV the following was used:

 $UF = 10^{(NF / 20)} \text{ where } UF = Net \text{ Reading in } \mu V$ $NF = Net \text{ Reading in } dB \mu V$

Example:

$$\begin{split} FS &= RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ UF &= 10^{(32 \ \text{dB}_{\mu}\text{V} \, / \, 20)} = 39.8 \ \mu\text{V/m} \end{split}$$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Barometric Pressure, Temperature and Humidty					
200127;	Monitor	Omega	IBTHX-W	8190327	10/30/2015	10/30/2016
			G919-NKNK-			
MP3;	Cable MP3, 18 GHz, N, 10m	Megaphase	394	MP3	05/07/2015	05/07/2016
			A81-0303-			
ST-6;	RF Coax Cable - Rated 9 kHz to 18 GHz.	Megaphase	275	16-01-801	02/10/2016	02/10/2017
			TM18-N1N1-	14065201-		
E207;	RF Coax Cable	Megaphase	120	001	05/07/2015	05/07/2016
			TM18-N1N1-			
E212;	RF Coax Cable	Megaphase	120	15055601002	06/10/2015	06/10/2016
13389;	EMI Receiver	Agilent Tech.	MXE/N9038A	MY50010160	11/13/2015	11/13/2016
10060;	Antenna Bilog 30-2000MHz	Chase	CBL6112B	2520	02/02/2016	02/05/2018

Software Utilized:

Name	Manufacturer	Version
None (Receiver Firmware)		

7.3 Results:

47CFR Part 15 §15.231(b)

In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under §15.231 shall not exceed the following:

Fundamental	Field strength of	Field strength of spurious
Frequency	fundamental	emissions
(MHz)	(microvolts/meter)	(microvolts/com)
40.66 - 40.7	2,250	225
70 - 130	1,250	125
130- 174	¹ 1,250 to 3,750	¹ 125 to 375
174 - 260	3,750	375
260 - 470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250
¹ Linear Interpolations		

RSS-210, Annex A1.1 Momentarily Operated Devices

The frequency bands and field strength limits in tables A and B of this annex are only for the transmission of a control signal, such as that used with alarm systems, door openers, remote switches, etc. Radio control of toys or model aircraft, and continuous transmissions, such as voice or video, are not permitted except as provided in Section A1.1.5 below. Data may be sent with a control signal.

Fundamental Frequency		
(MHz), excluding	Field Strength of the	Field Strength of Unwanted
restricted band	Fundamental ^(Note 1)	Emissions ^(Note 1)
frequencies of RSS-GEN	(microvolts/m at 3 metres)	(microvolts/m at 3 meters)
40.66 - 40.70	See Section A2.7	
70 - 130	1,250	125
130- 174	1,250 to 3,750*	125 to 375
174 - 260 ^(Note 2)	3,750	375
260 - 470 ^(Note 2)	3,750 to 12,500*	¹ 375 to 1,250
Above 470	12,500	1,250

Note 1: Limits on the field strength of emissions, as shown in this table, are based on the average value of the measured emissions. As an alternative, compliance with the limits in this table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector.

Intertek

* Linear interpolation with frequency F in MHz: For 130-174 MHz: FS (microvolts/m) = (56.82 x F)-6136 For 260-470 MHz: FS (microvolts/m) = (41.67 x F)-7083

Note 2: The frequency band 225-399.9 MHz is allocated for Government of Canada usage. There are different types of operations in different parts of this band of frequencies, including communications with aircraft and operations using high-power transmitters. Besides avoiding the restricted frequency bands listed in RSS-Gen, it is recommended that the entire 225-399.9 MHz band be avoided.

The sample tested was found to Comply.

7.4 Setup Photographs:

7.5 Plots/Data:

Client: Hunter Fan Company Receiver: Agilent MXE Antenna: Chase Liberty_2520 Model Number: K5579 Project Number: G102499904 Cables: ST-6+MP3+E-207+E-212 Tested By: MTS Preamp: ZKL-2 200069 Date: 03/24/2016 Test Distance (m): 3 Frequency Range (MHz): Fundamental Input power: 3Vdc Battery (CR2032) Limit: FCC15 Class B-3m Modifications for compliance (y/n): n В Е A С D G Η Ι J F Pre-amp Ant. Antenna Cable 3m Detectors / Bandwidths Reading Factor Factor Limit Pol. Frequency Loss Net Margin dB(uV) dB(uV/m) Det/RBW dB(1/m) dB dB dB(uV/m) dB (V/H) MHz X-Axis QP/120kHz v 433.922 65.5 16.5 3.9 40.2 45.7 80.8 -35.1 н 433.940 82.1 16.9 3.9 40.2 62.7 80.8 -18.1 QP/120kHz Y-Axis 433.921 74.0 40.2 -26.6 QP/120kHz 16.5 3.9 54.2 80.8 v QP/120kHz 433.935 81.4 16.9 3.9 40.2 80.8 -18.8 н 62.0 Z-Axis 433.936 77.2 3.9 40.2 57.4 -23.4 QP/120kHz v 16.5 80.8 433.936 -29.9 QP/120kHz н 70.3 16.9 3.9 40.2 50.9 80.8 Calculations G=C+D+E-F I=G-H

Test Personnel:	Mary T Sampson MTS	Test Date:	03/24/2016
Supervising/Reviewing Engineer			
(Where Applicable)	N/A		
	47 CFR Part 15 Subpart C:2016 Section 15.231(b) RSS-210 Issue 8, 2010,	Limit Applied:	See Section 7.3
Product Standard:	Section A1.1.2		
Pretest Verification w/	One of the One of State of Sta	Ambient Temperature:	24.2 °C
Ambient Signals or BB Source:	BB Source	Relative Humidity:	31.7 %
		Atmospheric Pressure:	984.4 mbars

Deviations, Additions, or Exclusions: None

8 Radiated Spurious Emissions below 1GHz

8.1 Method

Tests are performed in accordance with 47 CFR Part 15 Subpart C: 2016 Section 15.231(b) and RSS-210 Issue 8, 2010, Section A1.1.2.

TEST SITE: 10 m Semi-Anechoic Chamber

<u>10 Meter Semi-Anechoic Chamber</u> The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

Measurement Uncertainty

Macauramant	Frequency	Expanded Uncertainty	Uniona
measurement	Range	(K=Z)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.9 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field Strength in dB\mu V/m \\ RA = Receiver Amplitude (including preamplifier) in dB\mu V \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB \\ AG = Amplifier Gain in dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $\label{eq:result} \begin{array}{l} {\sf RA} = 52.0 \ d{\sf B}\mu{\sf V} \\ {\sf AF} = \ 7.4 \ d{\sf B}/{\sf m} \\ {\sf CF} = \ 1.6 \ d{\sf B} \\ {\sf AG} = 29.0 \ d{\sf B} \\ {\sf FS} = 32 \ d{\sf B}\mu{\sf V}/{\sf m} \end{array}$

To convert from $dB\mu V$ to μV or mV the following was used:

 $UF = 10^{(NF / 20)} \text{ where } UF = Net \text{ Reading in } \mu V$ $NF = Net \text{ Reading in } dB \mu V$

Example:

$$\begin{split} FS &= RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ UF &= 10^{(32 \ \text{dB}_{\mu}\text{V} \, / \, 20)} = 39.8 \ \mu\text{V/m} \end{split}$$

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Barometric Pressure, Temperature and Humidity					
200127;	Monitor	Omega	IBTHX-W	8190327	10/30/2015	10/30/2016
			G919-NKNK-			
MP3;	Cable MP3, 18 GHz, N, 10m	Megaphase	394	MP3	05/07/2015	05/07/2016
			A81-0303-			
ST-6;	RF Coax Cable - Rated 9 kHz to 18 GHz.	Megaphase	275	16-01-801	02/10/2016	02/10/2017
			TM18-N1N1-	14065201-		
E207;	RF Coax Cable	Megaphase	120	001	05/07/2015	05/07/2016
			TM18-N1N1-			
E212;	RF Coax Cable	Megaphase	120	15055601002	06/10/2015	06/10/2016
13389;	EMI Receiver	Agilent Tech.	MXE/N9038A	MY50010160	11/13/2015	11/13/2016
10060;	Antenna Bilog 30-2000MHz	Chase	CBL6112B	2520	02/02/2016	02/05/2018

Software Utilized:

Name	Manufacturer	Version
None		

8.3 Results:

47CFR Part 15 §15.231(b)

In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under §15.231 shall not exceed the following:

Fundamental	Field strength of	Field strength of spurious
Frequency	fundamental	emissions
(MHz)	(microvolts/meter)	(microvolts/com)
40.66 - 40.7	2,250	225
70 - 130	1,250	125
130- 174	¹ 1,250 to 3,750	¹ 125 to 375
174 - 260	3,750	375
260 - 470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250
¹ Linear Interpolations		

RSS-210, Annex A1.1 Momentarily Operated Devices

The frequency bands and field strength limits in tables A and B of this annex are only for the transmission of a control signal, such as that used with alarm systems, door openers, remote switches, etc. Radio control of toys or model aircraft, and continuous transmissions, such as voice or video, are not permitted except as provided in Section A1.1.5 below. Data may be sent with a control signal.

Fundamental Frequency		
(MHz), excluding	Field Strength of the	Field Strength of Unwanted
restricted band	Fundamental ^(Note 1)	Emissions ^(Note 1)
frequencies of RSS-GEN	(microvolts/m at 3 metres)	(microvolts/m at 3 meters)
40.66 - 40.70	See Section A2.7	
70 - 130	1,250	125
130- 174	1,250 to 3,750*	125 to 375
174 - 260 ^(Note 2)	3,750	375
260 - 470 ^(Note 2)	3,750 to 12,500*	¹ 375 to 1,250
Above 470	12,500	1,250

Note 1: Limits on the field strength of emissions, as shown in this table, are based on the average value of the measured emissions. As an alternative, compliance with the limits in this table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector.

Intertek

* Linear interpolation with frequency F in MHz: For 130-174 MHz: FS (microvolts/m) = (56.82 x F)-6136 For 260-470 MHz: FS (microvolts/m) = (41.67 x F)-7083

Note 2: The frequency band 225-399.9 MHz is allocated for Government of Canada usage. There are different types of operations in different parts of this band of frequencies, including communications with aircraft and operations using high-power transmitters. Besides avoiding the restricted frequency bands listed in RSS-Gen, it is recommended that the entire 225-399.9 MHz band be avoided.

The sample tested was found to Comply.

8.4 Setup Photographs:

8.5 Plots/Data:

Calculations

	Client: Hunter Fan Company			Company	Receiver: Agilent MXE					
	Mod	el Number:	K5579			Antenna: Chase Liberty_2520				
	Ргојс	ct Number:	G102499904	ļ	Cables: ST-6+MP3+E-207+E-212					2
		Tested By:	MTS			Preamp: ZKL-2 200069				
		Date:	03/24/2016							
F	Frequency Range (MHz): 30 to 1000				Test Distance (m): 3					
	I	nput power:	3Vdc Batter	y (CR2032)	Limit: FCC15 Class B-3m					
					Modificatio	ns for comp	liance (y/n):	n		
	А	В	C	D	Е	F	G	Н	Ι	J
	Ant.			Antenna	Cable	Pre-amp		3m		Detectors /
	Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW
	X-Axis					•				
	Н	403.935	46.9	16.2	3.7	40.2	26.7	46.0	-19.3	QP/120kHz
	Y-Axis	•								•
	Н	403.926	45.0	16.2	3.7	40.2	24.7	46.0	-21.3	QP/120kHz
	Н	867.851	44.7	20.7	5.7	40.6	30.6	46.0	-15.4	QP/120kHz
	Z-Axis									
	V	403.954	43.2	16.0	3.7	40.2	22.8	46.0	-23.2	QP/120kHz

I=G-H

Test Personnel:	Mary T Sampson MTS
Supervising/Reviewing	
Engineer:	
(Where Applicable)	N/A
	47 CFR Part 15 Subpart
	C:2016 Section 15.231(b)
	RSS-210 Issue 8, 2010,
Product Standard:	Section A1.1.2
Input Voltage:	One 3Vdc CR2032 battery
Pretest Verification w/	
Ambient Signals or	
BB Source:	BB Source

G=C+D+E-F

Deviations, Additions, or Exclusions: None

Test Date: 03/24/2016

Limit Applied: See Section 8.3

Ambient Temperature:	24.2 °C
Relative Humidity:	31.7 %
Atmospheric Pressure:	984.4 mbars

9 Radiated Spurious Emissions Above 1 GHz

9.1 Method

Tests are performed in accordance with 47 CFR Part 15 Subpart C: 2016 Section 15.231(b) RSS-210 Issue 8, 2010, Section A1.1.2.

TEST SITE: 10m Semi-Anechoic Chamber

10 Meter Semi-Anechoic Chamber The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200127;	Barometric Pressure, Temperature and Humidty Monitor	Omega	IBTHX-W	8190327	10/30/2015	10/30/2016
213061;	Antenna, Horn, <18 GHz	EMCO	3115	9208-3919	07/22/2014	07/22/2015
200162;	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	11/21/2013	11/21/2014
MP10;	RF Coax Cable - DC to 18 GHz, Type N connectors.	Megaphase	G919-N1N1-	15163901001	11/17/2015	11/17/2016
			310			
MP3;	Cable MP3, 18 GHz, N, 10m	Megaphase	G919-NKNK-394	MP3	05/07/2015	05/07/2016
E207;	RF Coax Cable	Megaphase	TM18-N1N1-120	14065201-001	05/07/2015	05/07/2016
E212;	RF Coax Cable	Megaphase	TM18-N1N1-120	15055601002	06/10/2015	06/10/2016
1172984;	Pre-Amp 20MHz-18GHz	A.H. System	PAM-0118P	393	01/27/2016	01/27/2017

Software Utilized:

Name	Manufacturer	Version
None (Receiver firmware)		

9.3 Results:

47CFR Part 15 §15.231(b)

Fundamental	Field strength of	Field strength of spurious
Frequency	fundamental	emissions
(MHz)	(microvolts/meter)	(microvolts/com)
40.66 - 40.7	2,250	225
70 - 130	1,250	125
130- 174	¹ 1,250 to 3,750	¹ 125 to 375
174 - 260	3,750	375
260 - 470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250
¹ Linear Interpolations		

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

Fundamental		Measurement				
Frequency	Field strength	distance				
(MHz)	(microvolts/meter)	(meters)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
30–88	100**	3				
88–216	150**	3				
216-960	200**	3				
Above 960	500	3				
**Except as provided i from intentional radial shall not be located in 88 MHz, 174–216 MHz c within these frequenc of this part, e.g., §§ 15.	Above 960 500 3 **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76– 88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permItted under other sections of this part e.g., 58 15–231 and 15–211					

RSS-210 A1.1.2 Field Strengths and Frequency Bands

(1) The field strength of emissions from momentarily operated intentional radiators shall not exceed the limits in Table A of RSS-210.

(2) Intentional radiators shall demonstrate compliance with the field strength limits shown in Table A of RSS-210, based on the average value of the measured emissions.

•Alternatively, compliance with the limit in Table A of RSS-210 may be demonstrated using a CISPR quasi-peak detector. If average measurements are employed, the requirements of Pulsed Operation of RSS-Gen apply regarding pulsed operation for averaging pulsed emissions and for limiting peak emissions.

(3) The field strength limits shown in Table A of RSS-210 are based on the fundamental frequency of the intentional radiator. Unwanted emissions shall be attenuated to the limits listed in RSS-Gen or to the limits shown in Table A of RSS-210, whichever are less stringent.

The sample tested was found to Comply.

9.4 Setup Photographs

9.5 Plots/Data:

		Client:	Hunter Fan	Company			Receiver:	Agilent M2	Œ		
	Mod	el Number:	K5579				Antenna:	EMCO 311:	5		
	Proie	ct Number:	G102499904		Cables: MP10+MP3+E-207+E-212					212	
		Tested By:	MTS		Preamn: PAM-0118-rental						
		Dete:	03/24/2016				r i camp.	17101 0110	ionun		
Fr	emency Ra	nge (MHz):	1000 to 5000)		Test Di	istance (m):	3			
	equency rea	nge (minz).	3Vde Batter	, v (CD2032)		103010	I imit-	FCC15 Clas	e B_3m		
NO	Modifications for compliance (v/n): n						n n	зъ-зш			
		B	C	D	F		G	ц	Т	T	
	Ant	D	C	Antonno	Cabla	Dro amp	0	3m	1	Detectors /	
	Aut. Del	Encouran	Deading	Factor	Loss	Fastan	Not	Jim Timit	Mangin	Detectors /	
	POI.	rrequency	Reading	Factor		Factor			Margin		
	(V/H)	MHZ	dB(uV)	dB(1/m)	qB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW	
	Н	1301.830	57.1	25.5	8.3	43.0	47.9	74.0	-26.1	PK/1MHz/3MHz	
	Н	1301.830	57.1	25.5	8.3	43.0	47.9	54.0	-6.1	PK/1MHz/3MHz	
	Н	1735.820	53.1	25.8	9.7	43.0	45.6	74.0	-28.4	PK/1MHz/3MHz	
	Н	1735.820	53.1	25.8	9.7	43.0	45.6	54.0	-8.4	PK/1MHz/3MHz	
	Calcu	lations	G=C+3	D+E-F	Ħ	Ъ-Н					
	Test Personnel: Mary T Sampson MTS						Tes	st Date: 0	3/24/2016		
Supervising/Reviewing Engineer: (Where Applicable) N/A 47 CFR Part 15 Subpart C:2016 Section 15.231(b) RSS-210 Issue 8, 2010, Product Standard:					Limit A	opplied: S	ee Section 9	.3			
D .	Input \	Voltage: <u>C</u>	one 3Vdc CR	2032 battery	/	۸	biont Torres	roturo. 0	1 2 00		
PI	Ambient Si	anals or				Am			+.∠ °U		
	BB	Source: E	B Source				Relative Hu	umidity: 3	31.7 %		

Atmospheric Pressure: 984.4 mbars

Deviations, Additions, or Exclusions: None

10 Bandwidth

10.1 Method

Tests are performed in accordance with 47 CFR Part 15 Subpart C: 2016 Section 15.231(c) and RSS-210 Issue 8, 2010, Section A1.1.3.

TEST SITE: 10m Semi-Anechoic Chamber Control Room

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200162;	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	11/21/2013	11/21/2014

Software Utilized:

Name	Manufacturer	Version
None (Spectrum Analyzer		
Firmware)		

10.3 Results:

47CFR Part 15 §15.231(c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

RSS-210 A1.1.3 Bandwidth of Momentary Signals

For the purpose of Section A1.1, the 99% bandwidth shall be no wider than 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency.

The sample tested was found to Comply.

10.4 Data:

Date: 24.MAR.2016 16:55:47

Occupied Bandwidth

Date: 24.MAR.2016 16:59:12

Intertek									
Report Number: 102499904ATL-002		Issued: 04/11/2010							
Test Personnel:	Mary T Sampson MTS	Test Date:	03/24/2016						
Supervising/Reviewing									
(Where Applicable)	N/A								
	47 CFR Part 15 Subpart	Test Levels:	See Section 10.3						
	C:2014 Section 15.231(c) and RSS-210 Issue 8, 2010.								
Product Standard:	Section A1.1.3								
Input Voltage:	One 3Vdc CR2032 battery		24.2.90						
		Ambient Temperature:	24.2 °C						
		Relative Humidity:	31.7 %						
		Atmospheric Pressure:	984.4 mbars						
	-								

Deviations, Additions, or Exclusions: None

11 RF Exposure

SAR test exclusion threshold formula according to FCC KDB 447898 D01 v05r02 is

P*√f/d < 3

where

P is max. power of channel, including tune-up tolerance, mW f is operating frequency in GHz d is min. test separation distance, mm

The maximum measured radiated power is 0.0000558 mW (-32.53 dBm). The antenna gain, G is 0.0 dBi (0.0 numerical). Therefore, the conducted power (P) is 0.00000055847019474 W.

At 5mm distance the condition for SAR exclusion threshold is

 $0.00000055847019474 \times \sqrt{0.433 \div 5} = 0.00000007$ which is less than 3.

Therefore, SAR testing is not required as the SAR Test Exclusion Threshold condition is satisfied.

SAR Exemption limit according to IC RSS-102 Issue 5, at 5 mm separation distance = 68.5 mW Routine evaluation is not required since the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time averaged output power is below the exemption limit.

12 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	04/11/2016	102499904ATL-002	MTS MTS	KV	Original Issue