

Testing and certification of electric, electronic and radio equipment/installations including telecommunication systems

TEST REPORT OF A 2.4/5 GHZ IEEE 802.11g/a WLAN CARDBUS CARD, BRAND AGERE, MODEL 1106, IN CONFORMITY WITH 47 CFR PART 15 (July 22, 2003).

FCC listed: 90828Industry Canada: IC3501VCCI registered: R-1518, C-1598

TNO Electronic Products & Services (EPS) B.V. P.O. Box 15 9822 ZG Niekerk (NL) Smidshornerweg 18 9822 TL Niekerk (NL)

Telephone: +31 594 505005 Telefax: +31 594 504804

E-mail: info@eps.tno.nl Web: www.eps.tno.nl

Project number: 04061405.r06

Agere Systems Nederland B.V.

Model : 1106

FCC ID: IMR1106CB

July 30, 2004

This report concerns: Equipment type:		Original grant/certification Class 2 change Verification Digital Transmission System							
Deferred grant requested per	47 CFR 0.457(d)(1)(ii) ?	Yes No							
Report prepared by:	Name Company name Address Postal code/city Mailing address Postal code/city Country Telephone number Telefax number E-mail	 P.A.J.M. Robben, B.Sc.E.E. TNO Electronic Products & Services (EPS) B.V. Smidshornerweg 18 9822 ZG Niekerk P.O. Box 15 9822 TL Niekerk The Netherlands + 31 594 505 005 + 31 594 504 804 info@eps.tno.nl 							

The data taken for this test and report herein was done in accordance with 47 CFR Part 15 and the measurement procedures of ANSI C63.4-1992. TNO Electronic Products & Services (EPS) B.V. at Niekerk, The Netherlands, certifies that the data is accurate and contains a true representation of the emission profile of the Equipment Under Test (EUT) on the date of the test as noted in the test report. I have reviewed the test report and find it to be an accurate description of the test(s) performed and the EUT so tested.

Date: July 30, 2004

Signature:

TAR

P. de Beer TNO Electronic Products & Services (EPS) B.V.

Description of test item

Test item	:	2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card
Manufacturer	:	Agere Systems Nederland B.V.
Brand	:	Agere
Model	:	1106 (16-bits Cardbus interface)
Serial numbers	:	04NG3100004
Revision	:	D2
Receipt number	:	1
Receipt date	:	July 28, 2004

Applicant information

Applicant's representative	:	Mr. F. Hoekstra
Company	:	Agere Systems Nederland B.V.
Address	:	Zadelstede 1-10
Postal code	:	3431 JZ
City	:	Nieuwegein
PO-box	:	755
Postal code	:	3430 AT
City	:	Nieuwegein
Country	:	The Netherlands
Telephone number	:	+31 30 609 7406
Telefax number	:	+31 30 609 7556

Test(s) performed

Location	:	Niekerk
Test(s) started	:	July 28, 2004
Test(s) completed	:	July 29, 2004
Purpose of test(s)	:	Type approval /
Test specification(s)	:	47 CFR Part 15

:

:

:

Test engineer

O.H. Hoekstra

H.J. Pieters

Report written by

P.A.J.M. Robben, B.Sc.E.E.

Project leader

H.J. Pieters

certification

(July 22, 2003)

This report is in conformity with NEN-EN-ISO/IEC 17025: 2000.

This report shall not be reproduced, except in full, without the written permission of TNO Electronic Products & Services (EPS) B.V. The test results relate only to the item(s) tested.

Table of contents

1 (General information	
1.1	Product description	5
1.2	Related submittal(s) and/or Grant(s)	5
1.3	Tested system details	5
1.4	Test methodology	6
1.5	Test facility	6
1.6	Product labeling	6
1.7	System test configuration	7
1	1.7.1 Justification	7
1	1.7.2 EUT test software	8
1.8	Special accessories	8
1.9	Equipment modifications	8
1.1	0 Configuration of the tested system	8
1.1	1 Block diagram(s) of the EUT	8
2 F	Radiated emission data	
2.1	Test results with EUT operating in receive mode on channel 149	9
2.2	Test results with EUT operating in receive mode on channel 157	10
2.3	$\mathbf{I} = \mathbf{I} = \mathbf{I}$	
2.4	Test results with EUT operating in transmit mode on channel 149	12
2.5	Test results with EUT operating in transmit mode on channel 157	13
2.6	Test results with EUT operating in transmit mode on channel 165	14
3 (Conducted emission data	15
3.1	AC mains with EUT operating in transmit and receive mode	15
4 I	List of utilized test equipment	16

1 General information

1.1 Product description

The 2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card, brand Agere, model 1106, is designed to operate in the 5 GHz frequency band (5.725 GHz – 5.850 GHz), as specified by the Federal Communications Commission in the USA. The equipment version marketed in the USA is limited to operation in the frequency band of 5.725 GHz – 5.850 GHz.

The 2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card, brand Agere, model 1106, utilizes Direct Sequence Spread Spectrum (DSSS) and OFDM modulation techniques.

The 2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card, brand Agere, model 1106, incorporates an integral antenna.

This version of the 2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card, brand Agere, model 1106, is equipped with a 16-bits Cardbus interface. Only radiated and conducted emission tests have been carried out since the difference with the 32-bits Cardbus interface version of the 2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card, brand Agere, model 1106, is limited to changes in the non-intentional radiator part of the device.

1.2 Related submittal(s) and/or Grant(s)

Not applicable.

1.3 Tested system details

Details and an overview of the system and all its components, as it has been tested, can be found in table 1 below. FCC ID's are stated in this overview where applicable. The EUT is listed in the first row of this table 1.

Description	Model number	Serial number	FCC ID	Cable descriptions
2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card	1106	04NG3100004	IMR1106CB	None.
Dell notebook computer	D600	CN-03U652-48643-39K-5806	n.a. (DoC)	-Unshielded DC power cord to AC/DC adapter; -Shielded parallel cable to printer; -Shielded mouse cable to mouse.
Dell AC/DC power adapter 100-240 VAC/1.5 Amps to +20 VDC/3.5 Amps	AA20031, PA-6 family	CN-09T215-48010-36N-631A	n.a. (DoC)	-Unshielded DC power cord to notebook computer; -Unshielded power cord to AC mains.
Hewlett-Packard Mouse	C3751B	LZA73702141	n.a. (DoC)	-Shielded mouse cable to notebook computer.
HP DeskJet 895Cxi	C6410A	ES8B42307H	n.a. (DoC)	-Unshielded DC power cord to AC/DC adapter; -Shielded parallel cable to notebook computer.
HP AC/DC power adapter 100-240 VAC/1 Amps to +18 VDC/1.1 Amps	C6409-60014	n.a.	n.a. (DoC)	-Unshielded DC power cord to printer; -Unshielded power cord to AC mains.

Table 1 - Tested system details overview.

1.4 Test methodology

The test methodology used is based on the requirements of 47 CFR Part 15 (July 22, 2003), sections 15.107, 15.207, 15.109, 15.209 and 15.205.

The test methods, which have been used, are based on ANSI C63.4: 1992.

Radiated emission tests above 30 MHz were performed at a measurement distance of 3 meters. Below 30 MHz the radiated emission tests were carried out at measurement distances of 3 and 10 meters. The test results regarding the radiated emission tests on frequencies below 30 MHz have been extrapolated in order to determine the field strength of the measured values at measurement distances of 30 and 300 meters (as required by 47 CFR Part 15).

The bandwidth of the receiver is switching automatically to the right bandwidth in accordance with CISPR 16. This is implemented in the receiver. The antenna factors are programmed in the test receiver. The receiver automatically calculates the appropriate correction factor for the utilized antenna and also the appropriate antenna factor for the cable loss. The total correction is automatically added to the measured value.

Radiated emission tests in the frequency range of 1 GHz - 40 GHz were performed with appropriate pre-amplifiers, antennas and a spectrum analyzer. At frequencies on which radiated emissions were found the level at the input of the pre-amplifier was reproduced by means of a RF signal generator. The output level of the signal generator was then increased with the antenna factor in order to obtain the actual field strength value for each individual frequency on which radiated emissions were found.

1.5 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at TNO Electronic Products & Services (EPS) B.V., located in Niekerk, 9822 TL Smidshornerweg 18, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 23, 2000.

The description of the test facilities has been filed under registration number 90828 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

1.6 Product labeling

In accordance with 47 CFR Part 15.19 (a)(3) the following text shall be placed on a label, which is attached to the EUT:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

In accordance with 47 CFR Part 2.925 (a)(1), the FCC ID shall be placed on a label, which is attached to the EUT.

For further details about the labeling requirements (size, legibility, etc.) as set by the Federal Communications Commission see 47 CFR Part 15.19 (a)(3), 47 CFR Part 15.19 (b)(2), 47 CFR Part 15.19 (b)(4), 47 CFR Part 2.925 and 47 CFR Part 2.926.

1.7 System test configuration

1.7.1 Justification

The EUT was mounted inside the Cardbus slot of the host system. The EUT was tested while using the integral antenna of the EUT.

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.4: 1992.

Tests were performed at the lowest operating frequency (channel 149: 5745 MHz), the operating frequency in the middle of the specified frequency band (channel 157: 5785 MHz) and the highest operating frequency (channel 165: 5825 MHz). Further details may be found in table 2 below.

Channel	Operating frequencies (MHz)	Rated output power (dBm)	Test performed
149	5745	+20.2	yes
153	5765	+20.2	no
157	5785	+20.2	yes
161	5805	+20.2	no
165	5825	+20.2	yes

Table 2 - Specification of channels and rated maximum output power.

The EUT is able to transmit at various transmission bit-rates and utilizes a number of modulation techniques and modulation schemes. Table 3 lists all possible transmission bit-rates, modulation techniques and modulation schemes the EUT may utilize. The choice of the various transmission bit-rates which should be selected during all tests is based on the results of pre-scans from which the worst-case behavior of the EUT at certain transmission bit-rates could be determined.

Transmission bit-rate (Mbit/s)	Modulation technique	Modulation	Test performed
6	OFDM	BPSK	yes
9	OFDM	BPSK	yes
12	OFDM	QPSK	no
18	OFDM	QPSK	yes
24	OFDM	16 QAM	no
36	OFDM	16 QAM	yes
48	OFDM	64 QAM	no
54	OFDM	64 QAM	yes

Table 3 - Specification of transmission bit-rates, modulation techniques and modulation schemes.

1.7.2 EUT test software

The EUT could be enabled to transmit or receive continuously on channels 149 (5745 MHz), 157 (5785 MHz) and 165 (5825 MHz) by means of test software, which was supplied by the manufacturer of the EUT.

Furthermore, the utilized test software also enables access to transmission bit-rate settings in the range of: 6 Mbit/s, 9 Mbit/s, 12 Mbit/s, 18 Mbit/s, 24 Mbit/s, 36 Mbit/s, 48 Mbit/s and 54 Mbit/s (OFDM mode).

The test software enabled operation of the device with a duty-cycle of 100% in continuous transmit mode.

1.8 Special accessories

No special accessories are used and/or needed to achieve compliance with the appropriate sections of 47 CFR Part 15.

1.9 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the appropriate sections of 47 CFR Part 15.

1.10 Configuration of the tested system

Not applicable. See table 1 in section 1.3 of this test report.

1.11 Block diagram(s) of the EUT

The block diagram is available as part of the documentation which is to be submitted to the FCC.

2 Radiated emission data

2.1 Test results with EUT operating in receive mode on channel 149

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15.109 and 47 CFR Part 15.209 with the EUT operating in receive mode on channel 149 (5745 MHz), are depicted in table 4.

Frequency	Test results quasi peak (dBµV/m)		Test re avera (dBµV	age	Test results peak (dBµV/m)		Resolution bandwidth	Quasi peak limits	Average limits	Peak limits
(MHz)	V	н	V	н	V	Н	(kHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)
300.00	< 25.2	30.4	-	-	-	-	120	46.0	-	-
454.00	33.3	26.1	-	-	-	-	120	46.0	-	-
567.00	< 25.2	29.4	-	-	-	-	120	46.0	-	-
600.00	28.1	33.6	-	-	-	-	120	46.0	-	-
679.00	28.7	29.4	-	-	-	-	120	46.0	-	-
1911.00	-	-	n.t.	n.t.	< 40.0	< 40.0	1000	-	54.0	74.0
3823.00	-	-	n.t.	n.t.	< 40.0	< 40.0	1000	-	54.0	74.0
7646.00	-	-	n.t.	n.t.	42.3	< 42.0	1000	-	54.0	74.0

Table 4 - Test results with the EUT operating in receive mode on channel 149 (5745 MHz).

Note: Above 1 GHz, all measured values of the spurious emissions with the detector in peak mode, are below the applicable limits, which are valid when using an average detector. Therefore, all spurious emissions above 1 GHz have been measured with the peak detector only (n.t. = not tested), unless otherwise noted.

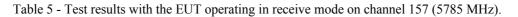
Note: Field strength values of radiated emissions at frequencies not listed in table 4 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name

: H.J. Pieters


Date : July 29, 2004

2.2 Test results with EUT operating in receive mode on channel 157

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15.109 and 47 CFR Part 15.209 with the EUT operating in receive mode on channel 157 (5785 MHz), are depicted in table 5.

Frequency	Test results quasi peak (dBµV/m)		Test results average (dBµV/m)		Test results peak (dBµV/m)		Resolution bandwidth	Quasi peak limits	Average limits	Peak limits
(MHz)	V	н	V	Н	v	Н	(kHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)
300.00	< 25.2	30.4	-	-	-	-	120	46.0	-	-
454.00	33.3	26.1	-	-	-	-	120	46.0	-	-
567.00	< 25.2	29.4	-	-	-	-	120	46.0	-	-
600.00	28.1	33.6	-	-	-	-	120	46.0	-	-
679.00	28.7	29.4	-	-	-	-	120	46.0	-	-
1925.00	-	-	n.t.	n.t.	< 40.0	< 40.0	1000	-	54.0	74.0
3850.00	-	-	n.t.	n.t.	< 40.0	< 40.0	1000	-	54.0	74.0
7700.00	-	-	n.t.	n.t.	42.6	< 42.0	1000	-	54.0	74.0

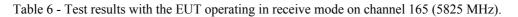
Note: Above 1 GHz, all measured values of the spurious emissions with the detector in peak mode, are below the applicable limits, which are valid when using an average detector. Therefore, all spurious emissions above 1 GHz have been measured with the peak detector only (n.t. = not tested), unless otherwise noted.

Note: Field strength values of radiated emissions at frequencies not listed in table 5 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name : H.J. Pieters


Date

2.3 Test results with EUT operating in receive mode on channel 165

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15.109 and 47 CFR Part 15.209 with the EUT operating in receive mode on channel 165 (5825 MHz), are depicted in table 6.

Frequency	Test results quasi peak (dBµV/m)		Test results average (dBµV/m)		Test results peak (dBµV/m)		Resolution (Quasi peak limits	Average limits	Peak limits
(MHz)	V	н	V	Н	v	Н	(kHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)
300.00	< 25.2	30.4	-	-	-	-	120	46.0	-	-
454.00	33.3	26.1	-	-	-	-	120	46.0	-	-
567.00	< 25.2	29.4	-	-	-	-	120	46.0	-	-
600.00	28.1	33.6	-	-	-	-	120	46.0	-	-
679.00	28.7	29.4	-	-	-	-	120	46.0	-	-
1938.00	-	-	n.t.	n.t.	< 40.0	< 40.0	1000	-	54.0	74.0
3876.00	-	-	n.t.	n.t.	< 40.0	< 40.0	1000	-	54.0	74.0
7753.00	-	-	n.t.	n.t.	44.2	< 42.0	1000	-	54.0	74.0

Note: Above 1 GHz, all measured values of the spurious emissions with the detector in peak mode, are below the applicable limits, which are valid when using an average detector. Therefore, all spurious emissions above 1 GHz have been measured with the peak detector only (n.t. = not tested), unless otherwise noted.

Note: Field strength values of radiated emissions at frequencies not listed in table 6 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name : H.J. Pieters

Date

2.4 Test results with EUT operating in transmit mode on channel 149

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15.109, 47 CFR Part 15.209 and 47 CFR Part 15.205 (restricted bands of operation) with the EUT operating in transmit mode on channel 149 (5745 MHz), are depicted in table 7.

Frequency	Test results quasi peak (dBµV/m)		Test results average (dBµV/m)		pe	results ak ,V/m)	Resolution bandwidth	Quasi peak limits	Average limits	Peak limits
(MHz)	V	н	V	н	V	Н	(kHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)
454.00	32.6	27.7	-	-	-	-	120	46.0	-	-
567.00	31.2	< 25.2	-	-	-	-	120	46.0	-	-
600.00	28.4	33.2	-	-	-	-	120	46.0	-	-
656.00	25.6	25.6	-	-	-	-	120	46.0	-	-
679.00	27.8	30.4	-	-	-	-	120	46.0	-	-
1911.00	-	-	n.t.	n.t.	< 35.0	< 35.0	1000	-	54.0	74.0
3823.00	-	-	n.t.	n.t.	< 35.0	34.6	1000	-	54.0	74.0
7646.00	-	-	n.t.	n.t.	39.5	35.9	1000	-	54.0	74.0

Table 7 - Test results with the EUT operating in transmit mode on channel 149 (5745 MHz).

Note: Above 1 GHz, all measured values of the spurious emissions with the detector in peak mode, are below the applicable limits, which are valid when using an average detector. Therefore, all spurious emissions above 1 GHz have been measured with the peak detector only (n.t. = not tested), unless otherwise noted.

Note: Radiated emission tests have been performed with all possible transmission bit-rates (6/9 Mbit/s, 12/18 Mbit/s, 24/36 Mbit/s and 48/54 Mbit/s) in transmit mode. The highest values measured of the spurious emission components are reported by means of table 7.

Note: Field strength values of radiated emissions at frequencies not listed in table 7 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name : H.J. Pieters

Date

2.5 Test results with EUT operating in transmit mode on channel 157

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15.109, 47 CFR Part 15.209 and 47 CFR Part 15.205 (restricted bands of operation) with the EUT operating in transmit mode on channel 157 (5785 MHz), are depicted in table 8.

Frequency	Test results quasi peak (dBµV/m)		Test results average (dBµV/m)		Test results peak (dBµV/m)		Resolution bandwidth	Quasi peak limits	Average limits	Peak limits	
(MHz)	V	н	V	н	V	Н	(kHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	
454.00	32.6	27.7	-	-	-	-	120	46.0	-	-	
567.00	31.2	< 25.2	-	-	-	-	120	46.0	-	-	
600.00	28.4	33.2	-	-	-	-	120	46.0	-	-	
656.00	25.6	25.6	-	-	-	-	120	46.0	-	-	
679.00	27.8	30.4	-	-	-	-	120	46.0	-	-	
1925.00	-	-	n.t.	n.t.	< 35.0	< 35.0	1000	-	54.0	74.0	
3850.00	-	-	n.t.	n.t.	< 35.0	36.2	1000	-	54.0	74.0	
7700.00	-	-	n.t.	n.t.	40.3	36.1	1000	-	54.0	74.0	

Table 8 - Test results with the EUT operating in transmit mode on channel 157 (5785 MHz).

Note: Above 1 GHz, all measured values of the spurious emissions with the detector in peak mode, are below the applicable limits, which are valid when using an average detector. Therefore, all spurious emissions above 1 GHz have been measured with the peak detector only (n.t. = not tested), unless otherwise noted.

Note: Radiated emission tests have been performed with all possible transmission bit-rates (6/9 Mbit/s, 12/18 Mbit/s, 24/36 Mbit/s and 48/54 Mbit/s) in transmit mode. The highest values measured of the spurious emission components are reported by means of table 8.

Note: Field strength values of radiated emissions at frequencies not listed in table 8 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name : H.J. Pieters

Date : July 29, 2004

2.6 Test results with EUT operating in transmit mode on channel 165

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15.109, 47 CFR Part 15.209 and 47 CFR Part 15.205 (restricted bands of operation) with the EUT operating in transmit mode on channel 165 (5825 MHz), are depicted in table 9.

Frequency	Test results quasi peak (dBµV/m)		Test results average (dBμV/m)		Test results peak (dBµV/m)		Resolution bandwidth	Quasi peak limits	Average limits	Peak limits	
(MHz)	V	н	V	н	V	н	(kHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	
454.00	32.6	27.7	-	-	-	-	120	46.0	-	-	
567.00	31.2	< 25.2	-	-	-	-	120	46.0	-	-	
600.00	28.4	33.2	-	-	-	-	120	46.0	-	-	
656.00	25.6	25.6	-	-	-	-	120	46.0	-	-	
679.00	27.8	30.4	-	-	-	-	120	46.0	-	-	
1938.00	-	-	n.t.	n.t.	< 35.0	< 35.0	1000	-	54.0	74.0	
3876.00	-	-	n.t.	n.t.	< 35.0	36.0	1000	-	54.0	74.0	
7753.00	-	-	n.t.	n.t.	39.5	35.5	1000	-	54.0	74.0	

Table 9 - Test results with the EUT operating in transmit mode on channel 165 (5825 MHz).

Note: Above 1 GHz, all measured values of the spurious emissions with the detector in peak mode, are below the applicable limits, which are valid when using an average detector. Therefore, all spurious emissions above 1 GHz have been measured with the peak detector only (n.t. = not tested), unless otherwise noted.

Note: Radiated emission tests have been performed with all possible transmission bit-rates (6/9 Mbit/s, 12/18 Mbit/s, 24/36 Mbit/s and 48/54 Mbit/s) in transmit mode. The highest values measured of the spurious emission components are reported by means of table 9.

Note: Field strength values of radiated emissions at frequencies not listed in table 9 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name : H.J. Pieters

Date

3 Conducted emission data

3.1 AC mains with EUT operating in transmit and receive mode

The (worst-case) results of the conducted emission tests at the 110 Volts AC mains connection terminals of the AC/DC power adapter of the notebook computer in which the EUT is mounted, carried out in accordance with 47 CFR Part 15.107 and 47 CFR Part 15.207 with the EUT operating in transmit and receive mode on channels 149 (5745 MHz), 157 (5785 MHz) and 165 (5825 MHz) while utilizing all possible transmission bit-rates (OFDM mode: 6/9 Mbit/s, 12/18 Mbit/s, 24/36 Mbit/s and 48/54 Mbit/s), are depicted in table 10.

Frequency (MHz)	Measurement results dB(µV) Neutral		Measurement results dB(μV) Line 1		Limits dB(µV)		Margin (dB) Neutral		Margin (dB) Line 1		Result
	QP	AV	QP	AV	QP	AV	QP	AV	QP	AV	
0.15	41.4	12.9	41.6	12.8	66.0	56.0	-24.6	-43.1	-24.4	-43.2	PASS
0.28	36.4	26.9	36.4	26.6	60.8	50.8	-24.4	-23.9	-24.4	-24.2	PASS
0.52	34.1	29.8	34.0	29.8	56.0	46.0	-21.9	-16.2	-22.0	-16.2	PASS
1.00	28.0	25.9	29.1	27.2	56.0	46.0	-28.0	-20.1	-26.9	-18.8	PASS
1.70	29.8	27.0	30.8	28.1	56.0	46.0	-26.2	-19.0	-25.2	-17.9	PASS
2.50	34.4	29.7	35.8	30.2	56.0	46.0	-21.6	-16.3	-20.2	-15.8	PASS
4.75	30.0	24.4	30.6	24.9	56.0	46.0	-26.0	-21.6	-25.4	-21.1	PASS
7.45	28.5	23.2	28.3	23.1	60.0	50.0	-31.5	-26.8	-31.7	-26.9	PASS
13.75	19.6	14.1	18.8	13.4	60.0	50.0	-40.4	-35.9	-41.2	-36.6	PASS
17.00	14.5	8.2	12.5	6.4	60.0	50.0	-45.5	-41.8	-47.5	-43.6	PASS
24.85	21.5	15.9	20.2	14.6	60.0	50.0	-38.5	-34.1	-39.8	-35.4	PASS
29.95	12.3	6.5	13.9	7.9	60.0	50.0	-47.7	-43.5	-46.1	-42.1	PASS

Table 10 - Test results with the EUT operating in transmit and receive mode.

Note: Disturbance voltage values of conducted emissions at frequencies not listed in table 10 are more than 20 dB below the applicable limit.

Test engineer

Signature

Name

Date

: July 29, 2004

: H.J. Pieters

4 List of utilized test equipment

Inventory number	Description	Brand	Model		
12471	Biconical antenna 20MHz-200MHz	EATON	94455-1		
12471 12473	Log-per antenna 200-1000MHz	EATON	96005		
12475	Antenna mast	EMCO	70003 TR3		
12470	Antenna mast 1-4 mtr	Poelstra			
12477 12482		EMCO	6507		
12482	Loop antenna Guidehorn	EMCO	3115		
12485	Guidehorn	EMCO	3115		
12488	Guidehorn 18 - 26.5 GHz	EMCO	RA42-K-F-4B-C		
12533	Signalgenerator	MARCONI	2032		
12559	Digital storage oscilloscope	Le Croy	9310M		
12561	DC Power Supply 20A/70V	DELTA	SM7020D		
12567	Plotter	HP	7440A		
12605	calibrated dipole 28MHz-1GHz	Emco	3121c		
12608	HF milliwattmeter	Hewlett Packard	HP435a		
12609	Power sensor 10MHz-18GHz	Hewlett Packard	HP8481A		
12636	Polyester chamber	Polyforce			
12640	Temperature chamber	Heraeus	VEM03/500		
13664	Spectrum analyzer	HP	HP8593E		
13078	Preamplifier 0.1 GHz - 12 GHz	Miteq	AMF-3D-001120-35-14p		
13452	Digital multi meter	HP	34401A		
13526	Signalgenerator 20 GHz	Hewlett & Packard	83620A		
13594	Preamplifier 10 GHz - 25 GHz	Miteq	AMF-6D-100250-10p		
13886	Open Area testsite	Comtest			
14051	Anechoic room	Comtest			
14450	2.4 GHz bandrejectfilter	BSC	XN-1783		
15633	Biconilog Testantenna	Chase	CBL 6111B		
15667	Measuring receiver	R&S	ESCS 30		
99045	DC Power Supply 3A/30V	DELTA	E030/3		
99055	Non-conducting support	NMi			
99061	Non-conducting support 150cm	NMi			
99068	Detector N-F/BNC-F	Radiall	R451576000		
99069	Cable 5m RG214	NMi			
99071	Cable 10m RG214	NMi			
99076	Bandpassfilter 4 - 10 GHz	Reactel	7AS-7G-6G-511		
99077	Regulating trafo	RFT	LTS006		
99112	Tripod	Chase			
99136	Bandpassfilter 10 - 26.5 GHz	Reactel	9HS-10G/26.5G-S11		