

Elliott Laboratories Inc. www.elliotlabs.com 684 West Maude Avenue Sutinyvale, CA 94086-3518 408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Proxim, Inc. Model: 4110-05

FCC ID:	IMK-ILCPCI
GRANTEE:	Proxim, Inc. 295 North Bernardo Avenue Mountain View, CA 94043
Attention:	Keith Glover, Finance Vice President
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
REPORT DATE:	March 11, 1999
FINAL TEST DATE:	February 24, 1999 and February 25, 1999

Mark

AUTHORIZED SIGNATORY:

Mark Briggs Manager, EMC Consulting Services

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, inc.

File: R30698 Page 1 of 17

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	. I
TABLE OF CONTENTS	
SCOPE	
OBJECTIVE	.4
STATEMENT OF COMPLIANCE	
EMISSION TEST RESULTS	. 5
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	. 5
LIMITS OF ANTENNA CONDUCTED POWER	
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH	. 5
MEASUREMENT UNCERTAINTIES	
COMPLIANCE EXPLANATION	
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL.	8
INPUT POWER	
PRINTED WIRING BOARDS	
SUBASSEMBLIES	
ENCLOSURE	
ANTENNA	
EMI SUPPRESSION DEVICES	
MODIFICATIONS	
SUPPORT EQUIPMENT	.9
EXTERNAL I/O CABLING	10
TEST SOFTWARE	10
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	13
FILTERS/ATTENUATORS	
ANTENNAS.	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	14
RADIATED EMISSIONS	14
CONDUCTED EMISSIONS FROM ANTENNA PORT	14
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	15
RADIATED EMISSIONS SPECIFICATION LIMITS SECTION 15 200	15
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	17
SAIVII LE CALCULATIONS - NADIATED LIVIISSIONS $\dots \dots \dots$	1/

TABLE OF CONTENTS Continued

EXHIBIT 1:	Test Equipment Calibration Data	1
EXHIBIT 2:	Test Data Log Sheets	2
EXHIBIT 3:	Radiated Emissions Test Configuration Photographs	3
EXHIBIT 4:	Conducted Emissions Test Configuration Photographs	4
EXHIBIT 5:	Proposed FCC ID Label & Label Location	5
EXHIBIT 6:	Detailed Photographs of Proxim Model 4110-05 Construction	6
EXHIBIT 7:	Operator's Manual for Proxim Model 4110-05	7
EXHIBIT 8:	Block Diagram of Proxim Model 4110-05	8
EXHIBIT 9:	Schematic Diagrams for Proxim Model 4110-05	9
EXHIBIT 10:	Theory of Operation for Proxim Model 4110-051	0

SCOPE

An electromagnetic emissions test has been performed on the Proxim Spread Spectrum Wireless LAN Adapter model 4110-05 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Proxim model 4110-05 and therefore apply only to the tested sample. The sample was selected and prepared by Pete Garcia of Proxim, Inc..

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Proxim model 4110-05 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Proxim model 4110-05. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

0.45 - 50 WHZ, 120 V/00112								
Frequency MHz	Level dBuV	Power Lead	FCC B Limit	FCC B Margin	Detector QP/Ave	Comments		
8.675	41.0	Neutral	48.0	-7.0	QP			

0.45 - 30 MHz, 120V/60Hz

LIMITS OF ANTENNA CONDUCTED POWER

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The highest out-of-band (Un-restricted) emission recorded in any 100 kHz band was more than 20 dB below the highest in-band level. The actual test data and any correction factors are contained an exhibit of this report.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Restricted build measurements								
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1201.730	50.6	V	54.0	-3.4	Avg	210	1.0	

Restricted band measurements

LIMITS OF POWER AND BANDWIDTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The maximum power output was 19.8 dBm on high channel. The minimum 20 dB bandwidth was between 925 KHz (low Channel) and 958 KHz (high Channel). The actual test data and any correction factors are contained in an exhibit of this report.

CHANNEL OCCUPANCY MEASUREMENTS

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

Channel separation was measured to be 995.3 KHz. Channel occupancy was 395mS in a 30 second period.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

COMPLIANCE EXPLANATION

When the measurement uncertainties (see above section) associated with the emission test methods and equipment used are taken into consideration there are four possible results as detailed below:

<u>Complied</u>

All measurements recorded were below the specification limit by a margin greater than the measurement uncertainty.

Probably Complied

One or more measurements recorded were below the specification limit by a margin less than the measurement uncertainty. It is not possible to determine that the unit complied with a 95% confidence level from the results. There is a high probability that the product tested does comply.

Probably Did Not Comply

One or more measurements recorded were above the specification limit by a margin less than the measurement uncertainty. It is not possible to determine that the unit failed to comply with a 95% confidence level from the results. There is a high probability that the product tested does not comply.

Did Not Comply

One or more measurements recorded exceeded the specification limit by a margin greater than the measurement uncertainty.

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Proxim model 4110-05 is a wireless LAN adapter with a low Power frequency hopping spread spectrum (FHSS) radio system operating in the 2400-2483.5 MHz band. The Symphony PCI Card uses 79 channels, each 1 MHz wide. The system hops over one of 15 pseudo random sequences. On the average, each channel is used equally. Please refer to "RANGELAN2 Frequency Hopping Theory of Operation" attached to this submission. (Note that confidentiality has been requested for the Theory of Operation exhibit) The sample was received on February 24, 1999 and tested on February 24, 1999 and February 25, 1999. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	FCC ID Number
Proxim, 4110-05, Symphony PCI, Spread Spectrum Wireless LAN Adapter	A30392835	IMK-ILCPCI

INPUT POWER

The EUT input is rated at 120/240, 50/60 Hz. The EUT contained the following input power components during emissions testing:

Description	Manufacturer	Model
None	-	-

The EUT power input is derived from the internal host computer power supply.

PRINTED WIRING BOARDS

The EUT contained the following printed wiring boards during emissions testing:

Manufacturer/Description	Assembly #	Rev.	Serial #	Crystals (MHz)
Proxim PCI Card	8400-0163	01	A30392835	8, 32

SUBASSEMBLIES

The EUT contained the following subassembly modules during emissions testing:

Manufacturer/Description	Assembly #	Rev.	Serial Number
None	-	-	-

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

ANTENNA

The EUT was uses reversed polarity SMB coxial connector to meet the 15.103 requirements.

EMI SUPPRESSION DEVICES

The EUT contained the following EMI suppression devices during emissions testing:

Description	Manufacturer	Part Number
None	-	-

MODIFICATIONS

No modifications were made to the EUT in order to comply with the requirements.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell, Dimension P133v, PC	8Q28F	E2JHANNIBAD
Dell, D1728D-LS, Monitor	04036A8M60	A3LCMG737
Dell, SK-1000REW, Keyboard	12741-71H-9024	GYUR26SK
Dell, M-S34, Mouse	LZA70606597	DZL210472
HP, 2225C+, Printer	3028\$76892	DS16XU2225
Proxim, Antenna 1900.0051	-	-

The following equipment was used as remote support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
None	-	-

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
Shielded Parallel Cable	2.5	PC/ Parralel	Printer
Shielded Keyboard Cable	2.0	PC/ Keyboard Port	Keyboard
Shielded Mouse Cable	2.0	PC/ Mouse Port	Mouse
Shielded Video Cable	1.5	PC/ Video Port	Monitor
Shielded Antenna Cable	1.5	PC/EUT RF Port	Antenna

TEST SOFTWARE

The host PC contained test software running during testing which continuously exercised the EUT.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 24, 1999 and February 25, 1999 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers, allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors which are programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	$87.6-20*\log_{10}(F_{KHz}) @ 30m$
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

^{*} Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Test Equipment List - SVOATS#2

January 19, 1999

Manufacture	r/Description	Model	Asset #	<u>(nterval</u>	Last Cal	<u>Cal Due</u>
🔲 A.N. Systems	D. Ridge Hom Antonna, .7-18GHz	SAS200-571	Metric, 135	12	12/28/98	12/28/99
🔲 Ellicat Laboratories	2 x (Solar 8028 USN + 6512 (laps)	LISN-5,	. 379	12	6/26/98	6/26/99
🔲 Ellicet Laboratories	300×1000 MHz Log Periodic	EL300.1020	297, (F113)	12	11/30/98	11/30/99
Ellicit Laboratories	FOC / CISPR LISN	LISN-4, OATS	362	E3	6/30/98	6/30/99
	Biconical Antonna, 30-300 MHz	31108	801	12	(2/12/98	12/12/99
EMCO	D. Ridge Hom Antenna, 1-18GHz .	3125	487	12	6/18/98	6/18/99
EMCO	D. Ridge Hom Antenna, 4-18GHz	3125	866	12	9/22/98	9/22/99
📑 Hewlett Packard	EMC Receiver /Analyzer	8595EM	780	52	1/4/99	i/4/2000
🔲 Elewieit Packard	BMC Receiver /Analyzer	8595EM	787	12	11/23/98	11/23/99
🔲 Howlest Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263. (F303)	12	6/8/98	6/8/99
Hewlett Packard	Microwave Presimplifier, 1-26.5GHz	84496	785	12	11/25/98	11/25/99
Herviett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12	\$1/12/98	15/12/99
📋 Hewlett Packard	Power Meter	432A	259, (F304)	12	3/10/98	3/10/99
Hewlett Packard	Spectrum Analyzer	8563B	284, (F194)	12	1/18/99	1/18/2000
🔲 Hewlert Packard	Spectrum Analyzer, 9 KHz-6.5 GHz	8595E-041-103-	Metric, 885	12	5/11/98	5/11/99
🔲 Howlett Packard	Thermistor Mount	478A	652	12	3/10/98	3/10/59
Nardz-West	BMI Filter 2.4 GHz, High Pass	60583 HPF-161	248	12	4/27/98	4/27/99
E Narda-West	EMI Filter 5.6 GHz, High Pass	60583 NXF370	247	12	4127198	4/27/99
📋 Rolide& Schwarz	Polse Limiter	ESH322	811	12	12/8/98	[2/8/99
🔲 Rolids & Schwarz	Tess Receiver	ESN	775	12	6/22/98	6/22/99

File Number: <u>730505</u>

All galibration of equipment is traceable to a national standard of measurement such as NIST.

Date: 2/24/99 Engr: Rudy

Test Equipment List - SVOATS#2

January 19, 1999

.....

Manufacture	r/Description	Madel	Asset #	Interval	Last Cal	<u>Çal Due</u>
🔲 A.H. Systems	D. Ridge Hom Antenna, .7-18GHz	SAS200-571	Metric, 135	12	12/28/98	12/28/99
Ellion Laboratories	2 x (Solar 8028 LISN + 6512 Caps)	LISN-5.	379	12	6/26/98	6/26/99
🔝 Ellioit Laboratories	300-1000 MHz Log Periodic	EE300.1000	297, (F113)	12	11/30/98	11/30/99
🔀 Elliott Laboratories	FCC / CISPR LISN	LISN-4, OATS	362	12	6/30/98	6/30/99
K CMCO	Biconical Antenna, 30-300 MHz	31108	801	12	12/12/98	12/12/99
🗖 BMCO	D. Ridge Hom Antenna, 1-18GHz	3115	487	12	6/18/98	6/18/99
EMCO	D. Ridge Hom Anlenna, I-18GHz	3115	868	12	9/22/98	9/22/99
🛄 Hewlett Packard	EMC Receiver /Analyzer	8595.EM	780	[2	1/4/99	3/4/2000
📑 Howlett Packard	EMC Reactives /Analyzer	8595EM	287	12	L1/23/98	[1/23/99
Hewler, Packard	Microwave Preamplifier, 1-26.5GHz	2449B	263, (P303)	12	6/8/98	6/8/99
- Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	12	11/25/98	11/25/99
🔲 Elevvieit Packard.	Microwave Preamplifier, 1-26.5GHz	8 4 49B	870	12	1/12/98	11/12/99
Howley Packard	Power Meter	432A	259, (F304)	12	3/10/98	3/10/99
Hewlett Packard	Spectrum Analyzer	8563E	284, (F194)	:2	1/18/99	3/18/2000
Hewlest Psekard	Spectrum Analyzer, 9 KHz-6.5 GHz	8595B-041-103-	Metric, 885	12	5/18/98	5/11/99
🔲 Howlett Packard	Thermistor Mount	478A	652	12	3/10/98	3/10/99
📑 Nerde-West	EMI Filter 2.4 GHz, High Pass	60583 HPF-161	248	[<u>3</u>	4/27/98	4/27/99
🛄 Narda-West	EMI Filter 5.6 Gelz, High Pass	60583 HXP370	247	[2	4/27/98	4/27/99
🔀 Rojučež Schwarz 🦂	Polse Limiter	580322	811	12	12/8/98	12/8/99
🗶 Rohde & Sofiwarz	Test Receiver	ESN	775	. 12	6/22/98	6/22/99

.

Date: 2/25/99 Engr: Mehran M Birgeni

All cationation of equipment is traceable to a national standard of measurement such as NIST.

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS,

MEASUREMENT DATA

AND

RESOLUTION BANDWIDTH WAIVER

Contained in files: R30698data.pdf, R30698data1.pdf

EXHIBIT 3: Radiated Emissions Test Configuration Photographs

Contained in file: R30698TestPhoto.pdf

EXHIBIT 4: Conducted Emissions Test Configuration Photographs

Contained in file: R30698TestPhoto.pdf

EXHIBIT 5: Proposed FCC ID Label & Label Location

Contained in file: R30698Labelloc.pdf

EXHIBIT 6: Detailed Photographs of Proxim Model 4110-05 Construction

Contained in file: R30698Detail.pdf

EXHIBIT 7: Operator's Manual for Proxim Model 4110-05

This is provided as a "read me" file on the installation CD-ROM with the exception of the DoC which is provided as a single sheet in the packaging.

Contained in file: R30698Usersguide.pdf

EXHIBIT 8: Block Diagram of Proxim Model 4110-05

Contained in file: *R30698conf.pdf* This Exhibit is to be held confidential.

EXHIBIT 9: Schematic Diagrams for Proxim Model 4110-05

Contained in file: *R30698conf.pdf* This Exhibit is to be held confidential.

EXHIBIT 10: Theory of Operation for Proxim Model 4110-05

Contained in file: *R30698conf.pdf* This Exhibit is to be held confidential.