

FCC CFR47 PART 15 SUBPART E CERTIFICATION

TEST REPORT

FOR

PROXIM HARMONY 802.11a ACCESS POINT

MODEL: 8571

FCC ID: IMK-AP5C

REPORT NUMBER: 02U1141-1

ISSUE DATE: FEBRUARY 27, 2002

Prepared for PROXIM 510 DE GUIGNE DRIVE SUNNYVALE, CA 94085 USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENT

1.	TE	ST RESULT CERTIFICATION	3
2.	EU	T DESCRIPTION	1
3.	TE	ST METHODOLOGY	1
4.	ТЕ	ST FACILITY	1
5.	AC	CREDITATION AND LISTING	1
5	5.1.	Laboratory Accreditations and Listings	5
6.	ME	EASURING INSTRUMENT CALIBRATION	5
Ć	<i>б.1</i> .	Measurement Uncertainty	5
7.	SU	PPORT EQUIPMENT / TEST DIAGRAM	7
8.	AP	PLICABLE RULES AND BRIEF TEST RESULT9)
9.	ТЕ	ST SETUP, PROCEDURE AND RESULT 10	5
9	9.1.	EMISSION BANDWIDTH 16	5
9	9.2.	PEAK POWER20)
ç	9.3.	PEAK POWER SPECTRAL DENSITY24	4
ç	9.4.	PEAK EXCURSION 28	8
9	9.5.	UNDESIRABLE EMISSION - BAND EDGE 32	2
9	9.6.	FREQUENCY STABILITY30	5
9	9.7.	UNDESIRABLE EMISSION32	7
9	9.8.	POWER LINE CONDUCTED EMISSION60)
9	9.9.	RADIATED EMISSION64	4
-	•] •] •] •] •]	SETUP PHOTOS69 MENTS EUT PHOTOGRAPHS PROPOSED FCC ID LABEL AGENT AUTHORIZATION LETTER REQUEST FOR CONFIDENTIALITY ANTENNA SPECIFICATION USER'S MANUAL PART LIST PRODUCT SPECIFICATION	2

- THEORY OF OPERATION
- BLOCK DIAGRAM & SCHEMATIC DIAGRAM

Page 2 of 75

1. TEST RESULT CERTIFICATION

COMPANY NAME:	PROXIM
	510 DE GUIGNE DRIVE
	SUNNYVALE, CA 94085 USA
CONTACT PERSON:	MIKE REILLY / RF DESIGN ENGINEER
TELPHONE NO:	408-731-2613
EUT DESCRIPTION:	PROXIM HARMONY 802.11A ACCESS POINT
MODEM NAME:	8571
DATE TESTED:	JANUARY 21 – FEBRUARY 26, 2002

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	5.25 – 5.35 GHz TRANSCEIVER
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 15.E

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirements set forth in CFR 47, PART 15, Subpart E. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

M. H

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES

Kenni Chipuy

KERWIN CORPUZ ASSOCIATE EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 75

2. EUT DESCRIPTION

The product is a WLAN adapter operating in the 5.25-5.35GHz band with a maximum TX output power of 20mW. It is a small desktop box with associated wall plug mount 12 VDC power supply, dual external antenna connectors and a 10/100 baseT port for connection to standard wired LAN. There are four antennas available, two Omni antennas each with a 5dBi gain and two Patch antennas, one with 7dBi gain and one with 12dBi gain. The two tested antennas are Omni antenna with 5dBi gain, and Patch antenna with 12dBi gain.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, and 15.407.

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885This report shall not be reproduced except in full, without the written approval of CCS. This document may
be altered or revised by Compliance Certification Services personnel only, and shall be noted in the
revision section of the document.

Page 4 of 75

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}
Taiwan	BSMI	CNS 13438	(本) SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F

5.1. Laboratory Accreditations and Listings

Page 5 of 75

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6.1. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

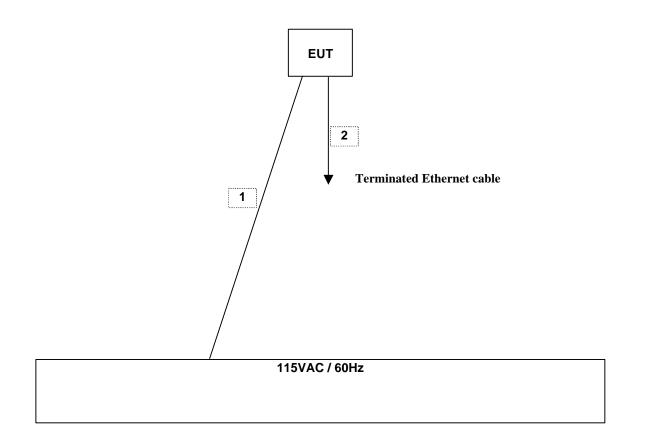
Radiated Emission				
30MHz – 200 MHz	+/- 3.3dB			
200MHz – 1000MHz	+4.5/-2.9dB			
1000MHz - 2000MHz	+4.6/-2.2dB			
Power Line Conducted Emission				
150kHz – 30MHz	+/-2.9			

Any results falling within the above values are deemed to be marginal.

Page 6 of 75

7. SUPPORT EQUIPMENT / TEST DIAGRAM

Support Equipment


No support equipment was used during the test.

Test Equipment

TEST EQUIPMENTS LIST				
Name of Equipment	Model No.	Serial No.	Due Date	
Spectrum Analyzer	HP100Hz - 22GHz	8566B	2140A01296	5/4/02
Spectrum Display	НР	85662A	2152A03066	5/10/02
Quasi-Peak Detector	HP9K - 1GHz	85650A	2811A01155	5/4/02
Pre-Amplifier, 25 dB	HP 0.1 - 1300MHz	8447D (P_1M)	2944A06833	8/21/02
Antenna, BiLog	Chase 30 - 2000MHz	CBL6112	2049	8/2/02
Line Filter	Lindgren 10k - 10GHz	LMF-3489	497	N.C.R.
LISN	Fisher Cus. Comm.	LISN-50/250-25-2	2023	8/2/02
EMI Test Receiver	Rohde & Schwarz	ESHS 20	827129/006	4/2/02
Pre-amplifier,35.5 dB (1 - 26.5GHz)	НР	8449B	3008A00369	5/30/02
Horn Antenna(1 - 18GHz)	EMCO	3115	9001-3245	6/20/02
Horn Antenna,(18 - 26GHz)	Antenna Research Associate	MWH 1826/B	1013	7/26/02
Harmonic Mixer (26.5-40GHz)	HP	11970A	3003A04190	9/23/02
Horn Antenna(26.5 - 40GHz)	Dico	1149	2	9/22/02
High Pass Filter(7.6GHz)	FSY Microwave	7600-9SS	1	N.C.R.
10 dB Attenuator	Mini-Circuits	MCL BW-S10W2	0026	In House Cal
Environmental Chamber	Thermotron	SE 600-10-10	29800	3/23/02
Spectrum Analyzer	HP	8593E	3710A00205	6/2/02

Page 7 of 75

Test Diagram

I/O Cables

	TEST I / O CABLES							
Cable	I/O	# of I/O	Connector	Type of	Cable	Data		
No	Port	Port	Туре	Cable	Length	Traffic	Bundled	Remark
1	AC	1	US 115V	Un-shielded	2m	No	No	bundled @ Line Conducted test
2	Ethernet	1	RJ45	Un-shielded	2m	No	Yes	N/A

Page 8 of 75

8. APPLICABLE RULES AND BRIEF TEST RESULT

<u>§15.403- EMISSION BANDWIDTH</u>

(c) <u>Emission bandwidth</u>. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

Test result:

Channel	Frequency (MHz)	Bandwidth(MHz)
56	5280	26.25
60	5300	26.60
64	5320	26.08

Page 9 of 75

<u>§15.407(a)- POWER LIMIT</u>

(2) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Spec limit: As specified above For Channel 56, B is 26.25 MHz and the antenna gain is 12 dBi therefore the limit is 11 dBm + 10log(26.25) dB - 6 dB = 19.19 dBm For Channel 60, B is 26.60 MHz and the antenna gain is 12 dBi therefore the limit is 11 dBm + 10log(26.60) dB - 6 dB = 19.25 dBm For Channel 64, B is 26.08 MHz and the antenna gain is 12 dBi therefore the limit is 11 dBm + 10log(26.08) dB - 6 dB = 19.16 dBm

Channel	Frequency (MHz)	Power Limit
56	5280	82.99 mW (19.19 dBm)
60	5300	84.14 mW (19.25 dBm)
64	5320	82.41 mW (19.16 dBm)

Test result: No non-compliance noted. 10logB + measured = Measured Power

Channel	Frequency (MHz)	Measured Power
56	5280	13.84 mW (11.41 dBm)
60	5300	18.28 mW (12.62 dBm)
64	5320	14.87 mW (11.72 dBm)

Page 10 of 75

§15.407(a)- PEAK POWER SPECTRAL DENSITY

(2) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Spec limit: the antenna gain is 12 dBi, therefore the limit is 5 dBm. Test result: No non-compliance noted.

Channel	Frequency (MHz)	Results (dBm)
56	5280	-7.61
60	5300	-6.29
64	5320	-6.62

§15.407(a)- PEAK EXCURSION

(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Spec limit: <13 dB Test result: No non-compliance noted.

Channel	Frequency (MHz)	Results (dBm)
56	5280	5.48
60	5300	5.63
64	5320	5.04

Page 11 of 75

<u>§15.407(b)- UNDESIRABLE EMISSION – BAND EDGE</u>

(2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

Spec limit: < -27 dBm/MHz EIRP outside the 5.15 to 5.35 GHz band. <-27 dBm/MHz EIRP within 5.15 to 5.25 GHz band Test result: No non-compliance noted.

Band Edge	Reading	Antenna Gain	EIRP	Limit	Margin
	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
below 5.15 GHz	-48.70	12	-36.70	-27	-9.7
5.15 to 5.25 GHz	-40.84	12	-28.82	-27	-1.82
above 5.35 GHz	-42.00	12	-30.00	-27	-3.00

<u>§15.407(g)- FREQUENCY STABILITY</u>

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Spec limit: Emission remains within the range of 5.25 to 5.35 GHz over the temperature range of -30°C to +50°C. Test result: No non-compliance noted.

Page 12 of 75

§15.205- RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Spec limit: As specified above,. Test result: No non-compliance noted.

Page 13 of 75

<u>§15.207- CONDUCTED LIMITS</u>

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

FCC PART 15.207			
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH	
	(Microvolts)	(dBuV)/QP	
450kHz-30MHz	250	48	

Spec limit: As specified above. Test result: No non-compliance noted.

Page 14 of 75

§15.209- RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

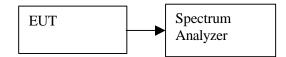
(b) In the emission table above, the tighter limit applies at the band edges.

FCC FART 13.209			
MEASURING DISTANCE OF 3 METER			
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH	
(MHz)	(Microvolts/m)	(dBuV/m)	
30-88	100	40	
88-216	150	43.5	
216-960	200	46	
Above 960	500	54	

FCC PART 15.209

Spec limit: As specified above. Test result: No non-compliance noted.

Page 15 of 75

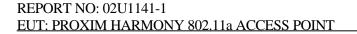

9. TEST SETUP, PROCEDURE AND RESULT

9.1. EMISSION BANDWIDTH

Detector Function Setting of Test Receiver
--

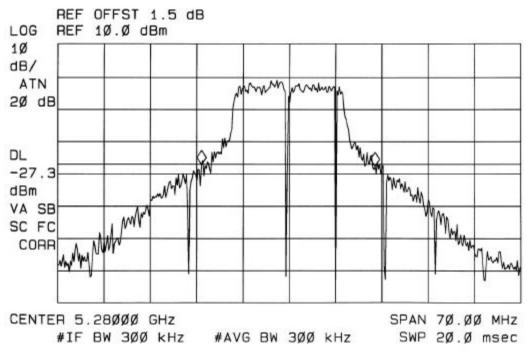
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	⊠ 300 kHz □ 1 MHz	⊠ 300 kHz □ 1 MHz

TEST SETUP


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to approximately 1% of the emission bandwidth. The 26 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 26 dB.

RESULT


Channel	Frequency (MHz)	Bandwidth(MHz)
56	5280	26.25
60	5300	26.60
64	5320	26.08

Page 16 of 75

10:59:11 FEB 26, 2002 LOW PROXIM 8571, occupied BW, MID CH

ACTV DET: PEAK MEAS DET: PEAK GP AVG MKR 26.25 MHz -.52 dB

Page 17 of 75

dBm VA SB SC FC

CORR

MM

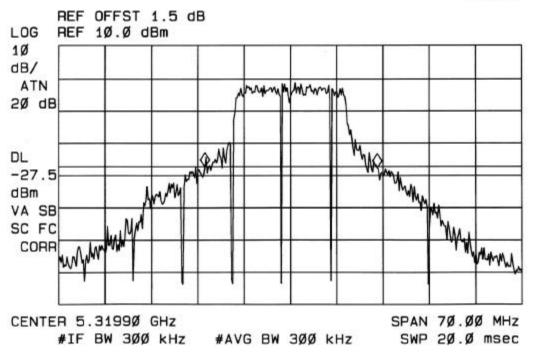
CENTER 5.30000 GHz

#IF BW 300 kHz

NWW

SPAN 70.00 MHz

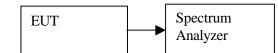
SWP 20.0 msec


11: 13: 32 FEB 26, 2002 /P PROXIM 8571, occupied BW, MID CH ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 26.60 MHz .18 dB REF OFFST 1.5 dB LOG REF 1Ø.Ø dBm 10 dB/ winn ATN 2Ø dB MAG DL WILIM -26.7

#AVG BW 300 kHz

Page 18 of 75

10:46:11 FEB 26, 2002 PROXIM 8571, occupied BW, HIGH CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 26.Ø8 MHz -.35 dB

Page 19 of 75

9.2. PEAK POWER

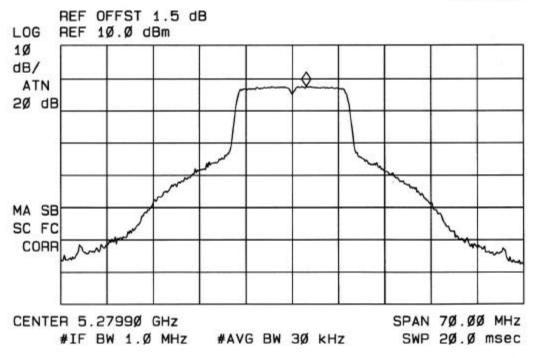
TEST SETUP

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak Peak	1 MHz	30 kHz

TEST PROCEDURE

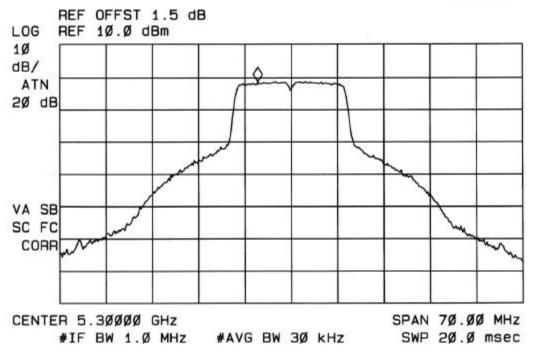
The EUT is configured on a test bench as shown above in a continuously transmitting / receiving mode. For each channel measured, the highest reading is corrected for the emissions bandwidth of that channel to yield the peak power.


Peak Power = measured reading + $10 \log (B)$, B as measured in Section 9.1.

Channel	Frequency	Measured Power	В	Peak Power
	(MHz)	(dBm)	(MHz)	
56	5280	-2.78	26.25	13.84 mW (11.41 dBm)
60	5300	-1.63	26.60	18.28 mW (12.62 dBm)
64	5320	-2.44	26.08	14.87 mW (11.72 dBm)

Page 20 of 75

10:36:38 FEB 26, 2002 PROXIM 8571, Power Output, LOW CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 5.282ØØ GHz -2.78 dBm

Page 21 of 75

10:32:28 FEB 26, 2002 PROXIM 8571, Power Output, MID CH

> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 5.29493 GHz -1.63 dBm

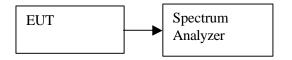
Page 22 of 75

#IF BW 1.Ø MHz

1Ø: 4Ø: 53 FEB 26, 2ØØ2 / PROXIM 8571, Power Output, HIGH CH ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 5.32218 GHz -2.44 dBm REF OFFST 1.5 dB LOG REF 1Ø.Ø dBm 10 dB/ ATN 2Ø dB VA SB SC FC CORR A CENTER 5.3199Ø GHz SPAN 70.00 MHz

#AVG BW 30 KHz

SWP 20.0 msec


Page 23 of 75

9.3. PEAK POWER SPECTRAL DENSITY

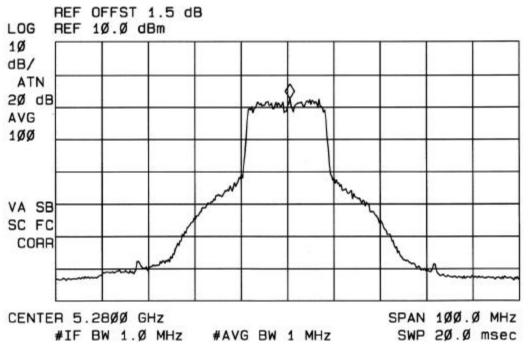
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	1 MHz 1 MHz	☐ 1 MHz ☐ 10 Hz

Detector Function Setting of Test Receiver

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the maximum level in a 1 MHz bandwidth was measured with the spectrum analyzer using 1 MHz RESOLUTION BW and 1 MHz VIDEO BW.

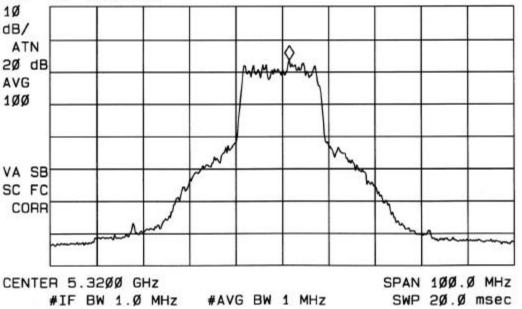

Result:

No non-compliance noted. See plots:

Channel	Frequency (MHz)	Results (dBm)
56	5280	-7.61
60	5300	-6.29
64	5320	-6.62

Page 24 of 75

11:37:34 FEB 26, 2002 PROXIM 8571, Power Density, LOW CH ACTV DET: SMPL MEAS DET: PEAK OP AVG MKR 5.2805 GHz -7.61 dBm

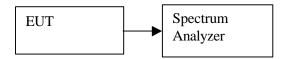


Page 25 of 75

11: 36: 23 FEB 26, 2002 / PROXIM 8571, Power Density, MID CH ACTV DET: SMPL MEAS DET: PEAK QP AVG MKR 5.3025 GHz -6.29 dBm REF OFFST 1.5 dB LOG REF 1Ø.Ø dBm 1Ø dB/ Ŷ ATN 2Ø dB AVG 100 VA SB SC FC CORR CENTER 5.3000 GHz SPAN 100.0 MHz #IF BW 1.Ø MHz SWP 20.0 msec #AVG BW 1 MHz

Page 26 of 75

11: 39: 31 FEB 26, 2002 PROXIM 8571, Power Density, HIGH CH ACTV DET: SMPL MEAS DET: PEAK QP AVG MKR 5.3215 GHz -6.62 dBm REF OFFST 1.5 dB LOG REF 10.0 dBm


Page 27 of 75

9.4. PEAK EXCURSION

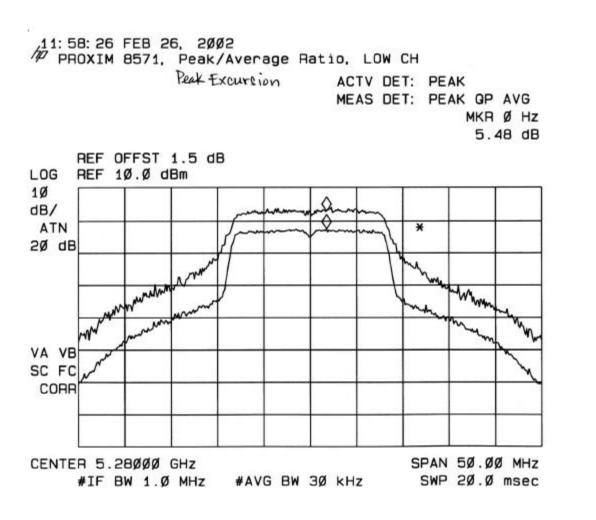
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth			
Above 1000	⊠ Peak ⊠ Average	⊠ 1 MHz ⊠ 1 MHz	∑ 1 MHz ∑ 30 Hz			

Detector Function Setting of Test Receiver

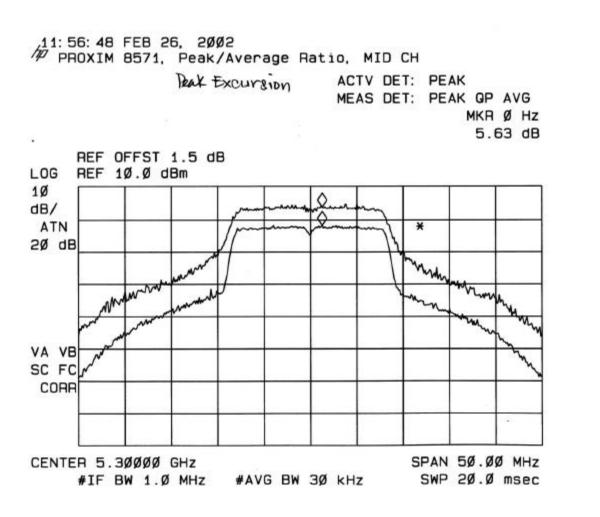
TEST SETUP

TEST PROCEDURE

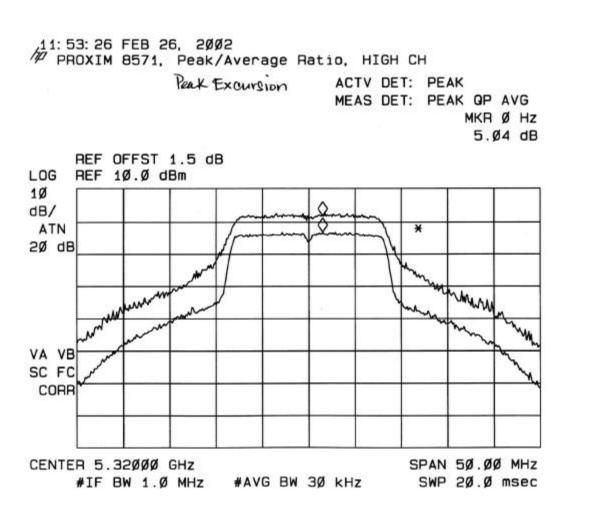
The transmitter output is connected to the spectrum analyzer through an attenuator. The spectrum analyzer is set to 1 MHz RESOLUTION BW and 1MHz VIDEO BW. Trace A is set to Max Hold, then to View. The VIDEO BW is readjusted to 30 kHz, and the signal under this measurement condition is captured in Trace B.


The difference between the traces is investigated. The marker is placed at the frequency which shows the largest difference. The amplitude delta between the traces at this frequency is the peak excursion.

Result:

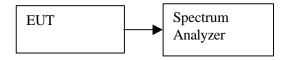

No non-compliance noted. See plots:

Channel	Frequency (MHz)	Results (dBm)	
56	5280	5.48	
60	5300	5.63	
64	5320	5.04	


Page 28 of 75

Page 29 of 75

Page 30 of 75



Page 31 of 75

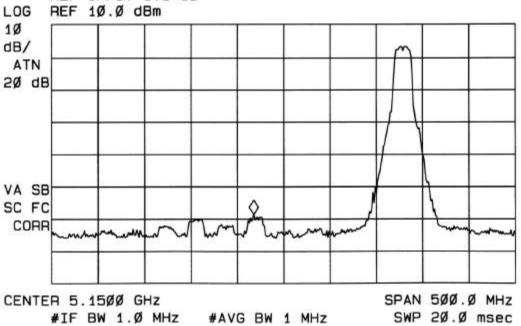
9.5. UNDESIRABLE EMISSION - BAND EDGE

Detector Function Setting of Test Receiver							
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth				
Above 1000	⊠ Peak □ Average	1 MHz 1 MHz	☐ 1 MHz ☐ 10 Hz				

TEST SETUP

TEST PROCEDURE

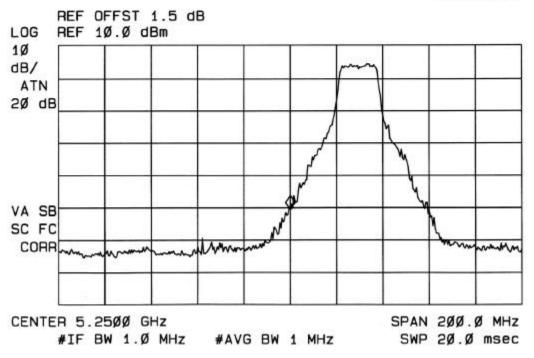
The transmitter output was connected to the spectrum analyzer. The resolution and video bandwidth were set to 1MHz. The lower and upper band edge is investigated.


RESULT

No non-compliance noted. See plots:

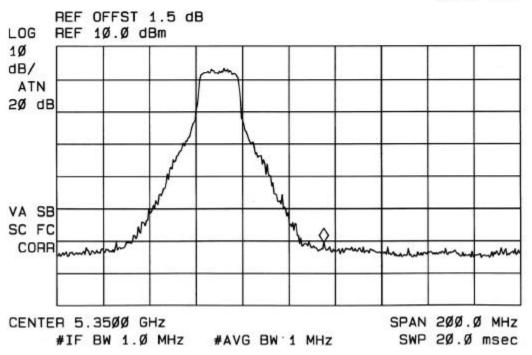
Band Edge	Reading	Antenna Gain	EIRP	Limit	Margin
	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
below 5.15 GHz	-48.70	12	-36.70	-27	-9.7
5.15 to 5.25 GHz	-40.84	12	-28.82	-27	-1.82
above 5.35 GHz	-42.00	12	-30.00	-27	-3.00

Page 32 of 75


12:04:55 FEB 26, 2002 PROXIM 8571, Bandedge <5.15 GHz, LOW CH ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 5.1175 GHz -48.70 dBm REF OFFST 1.5 dB

Page 33 of 75

13:40:26 FEB 26, 2002 PROXIM 8571, Bandedge 5.15-5.25 GHz, LOW CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 5.2500 GHz -40.84 dBm

Page 34 of 75

12: Ø9: Ø1 FEB 26, 2ØØ2 PROXIM 8571, Bandedge >5.35 GHz, HIGH CH

> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 5.365Ø GHz -5Ø.57 dBm

* THE AMPLITUDE VALUE AT 5.35 GHz IS -42 dBm

Page 35 of 75

9.6. FREQUENCY STABILITY

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Refer to Theory of Operations for compliance.

Theory of Operations

The Proxim Harmony 8570 Access Point device uses 8 channels between 5.28 GHz and 5.32 GHz. The bandwidth is at most 26.6 MHz wide centered at these frequencies, or a peak deviation of ± 13.3 MHz.

The Proxim Harmony 8570 Access Point device also requires a +/- 20 ppm XTAL over temperature and with aging. This required per the 802.11a specification. This yields a stability of ± 106.4 kHz at the highest channel (5.32 GHz). The peak deviation including modulation and stability is ± 13.4064 MHz. The lowest channel (5.28 MHz) is centered 30 MHz above the lower band limit. The highest channel (5.32 MHz) is centered 30 MHz above the lower band limit. The highest channel (5.32 MHz) is centered 30 MHz above the lower band limit. The highest channel (5.32 MHz) is centered 30 MHz above the lower band limit. The highest channel (5.32 MHz) is centered 30 MHz above the lower band limit. The highest channel (5.32 MHz) is centered 30 mHz above the lower band limit.

DISCONTINUE TRANSMITTING WITH ABSENCE OF DATA OR OPERATIONAL FAILURE 15.407 (C)

(c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Refer to Theory of Operations for compliance.

Theory of Operations

Data transmission is always initiated by software, which is then passed down through the MAC, through the digital and analog baseband, and finally to the RF chip. Several special packets (ACKs, CTS, PSPoll, etc...) are initiated by the MAC. These are the only ways the digital baseband portion will turn on the RF transmitter, which it then turns off at the end of the packet. Therefore, the transmitter will be on only while one of the aforementioned packets is being transmitted.

Page 36 of 75

9.7. UNDESIRABLE EMISSION

Conducted RF measurements of the transmitter output were made over the 0 to 2.9 GHz band and the 2.75 to 26 GHz band in order to identify any spurious signals that require further investigation or measurements on the radiated emissions site. Signals that are outside the 15.205 restricted bands are measured for compliance with the out-of-band EIRP limit using the substitution method. Signals that are within the 15.205 restricted bands are measured for compliance with 15.209 limits.

MEASUREMENT PROCEDURE (Substitution Method)

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a tuned dipole (substitution antenna). For frequencies above 1 GHz, at which a tuned dipole is impracticable, a horn antenna shall be used.

10). The substitution antenna shall be oriented for vertical polarization and the length of the dipole substitution antenna shall be adjusted to correspond to the frequency of the transmitter.

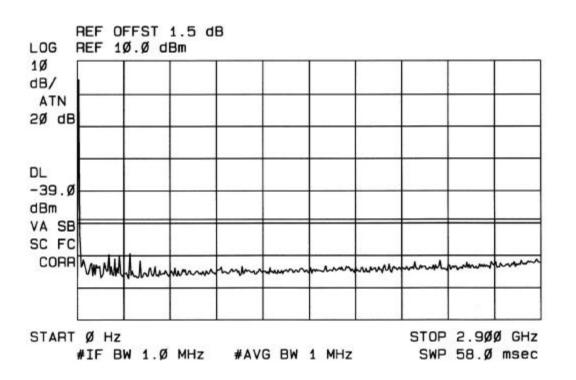
11). The substitution antenna shall be connected to a calibrated signal generator.

Page 37 of 75

12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.


15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

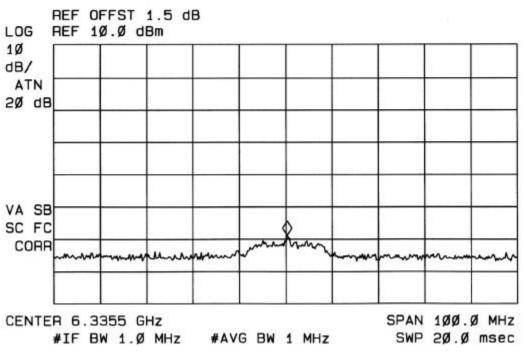
17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

Page 38 of 75

16: 14: 22 FEB 26, 2002 PROXIM 8571, Conducted Spurious, LOW CH ACTV DET: PEAK MEAS DET: PEAK OP AVG

Page 39 of 75

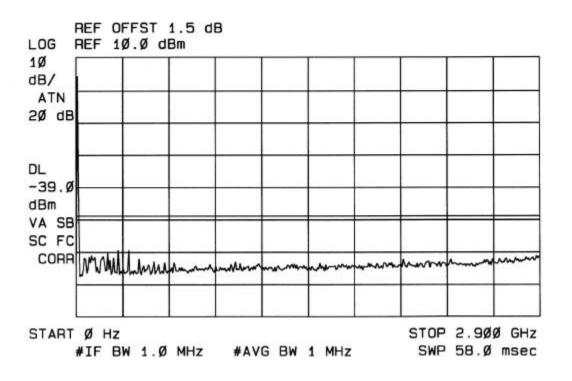
14: 4Ø: 57 FEB 26, 2ØØ2 / PROXIM 8571, Conducted Spurious, LOW CH ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 317.5 MHz -49.28 dBm REF OFFST 1.5 dB REF 1Ø.Ø dBm LOG 1Ø dB/ ATN 2Ø dB DL -39.Ø dBm VA SB SC FC CORR m h hm ~hn CENTER 255.Ø MHz SPAN 500.0 MHz #IF BW 1.Ø MHz #AVG BW 1 MHz SWP 20.0 msec


Page 40 of 75

14: Ø2: 55 FEB 26, 2ØØ2 / PROXIM 8571, Conducted Spurious, LOW CH ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 6.24 GHz -5Ø.38 dBm REF OFFST 1.5 dB REF 1Ø.Ø dBm LOG 10 dB/ ATN 2Ø dB VA SB unh SC FC CORR START 2.75 GHz STOP 26.00 GHz SWP 483 msec #IF BW 1.Ø MHz #AVG BW 1 MHz

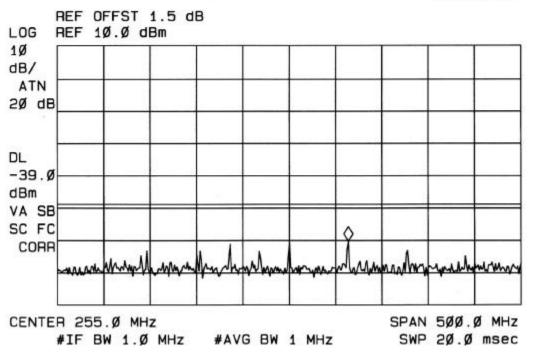
Page 41 of 75

/14:14:59 FEB 26, 2002 PROXIM 8571, Conducted Spurious, LOW CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 6.3358 GHz -48.94 dBm

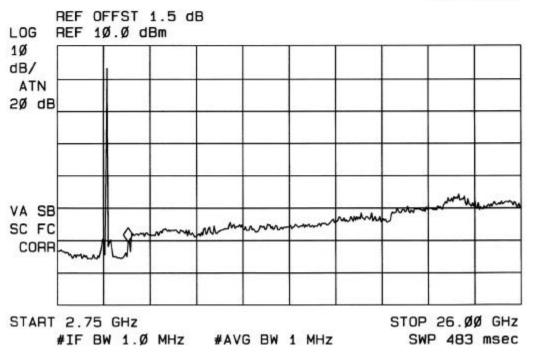
Page 42 of 75

/16:15:37 FEB 26, 2002 // PROXIM 8571, Conducted Spurious, MID CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG

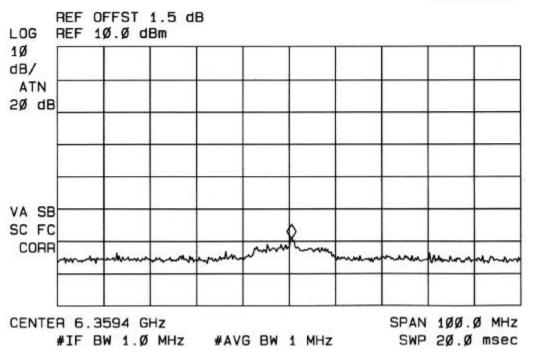
Page 43 of 75

/14:59:45 FEB 26, 2002 // PROXIM 8571, Conducted Spurious, MID CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 318.8 MHz -50.30 dBm

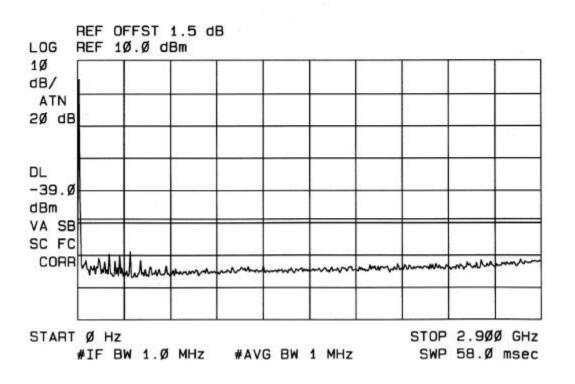
Page 44 of 75

/14:51:41 FEB 26, 2002 PROXIM 8571, Conducted Spurious, MID CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 6.3Ø GHz -5Ø.54 dBm

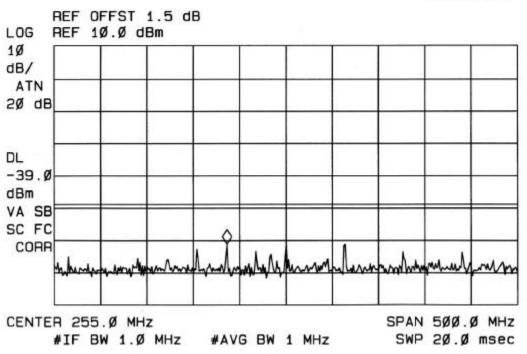
Page 45 of 75

/14:52:41 FEB 26, 2002 // PROXIM 8571, Conducted Spurious, MID CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 6.3599 GHz -49.33 dBm

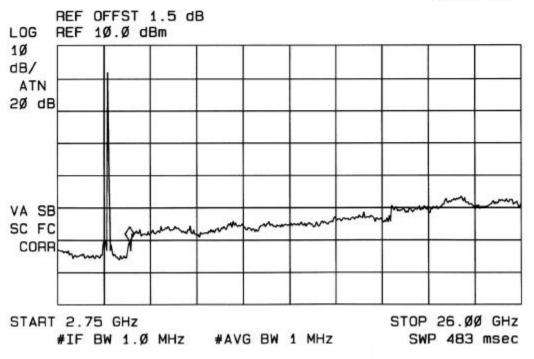
Page 46 of 75

16:16:11 FEB 26, 2002 PROXIM 8571, Conducted Spurious, HIGH CH


> ACTV DET: PEAK MEAS DET: PEAK OP AVG

Page 47 of 75

/15:27:16 FEB 26, 2002 // PROXIM 8571, Conducted Spurious, HIGH CH


> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 191.3 MHz -51.14 dBm

Page 48 of 75

/15:07:35 FEB 26, 2002 // PROXIM 8571, Conducted Spurious, HIGH CH

> ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 6.35 GHz -5Ø.38 dBm

Page 49 of 75

15: Ø8: 16 FEB 26, 2002 / PROXIM 8571, Conducted Spurious, HIGH CH ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 6.3838 GHz -49.75 dBm REF OFFST 1.5 dB LOG REF 1Ø.Ø dBm 1Ø dB/ ATN 2Ø dB VA SB SC FC CORR mon 1.1 CENTER 6.3838 GHz SPAN 100.0 MHz #IF BW 1.Ø MHz #AVG BW 1 MHz SWP 20.0 msec

Page 50 of 75

Signals in the 0 to 2.9 GHz conducted spurious plot that were identified as falling in a 15.205 restricted band were measured to 15.209 limits. Other emissions are limited to -27 dBm with EUT's antenna gain of 12 dBi, this corresponds to a measured value of -39dBm. The signal at approximately 6.3 GHz, in the 2.75 to 26 GHz conducted spurious plot was also limited to -39 dBm.

Below data emissions are identified as restricted band and tested to 15.209 limits.

	FCC UL, 561F MONT PHONE: (40 EUT) Test Con	C, VCCI, C CSA, TUV EREY RO 8) 463-08 <i>Comp</i> Descrip ofigurat Type of	Alspr, CE, A, BSMI, D AD, SAN, B5 F. Dany: Distion: Test:	AX: (408) 4 <u>PROXIN</u>	NZ NP 05037-9001 63-0888 1 / 802.11a /		Proje Repo Date& T Test E	ort #: 'ime: 'ngr:	02U1141 020226A 02/26/02 KERWIN	1	
G	A-Site	O	B-Site	O C-5	Site	O F-Site		6 W orst D	a ta	Descending	
Freq.	Reading			Pre-amp		Limit	Margin		Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_A	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
256.00	41.40	14.55	2.14	27.04	31.04	46.40	-15.36	3mV	270.00	1.00	Р
125.00	45.50	14.20	1.53	27.51	33.72	43.50	-9.78	3mV	270.00	1.00	Р
125.00	45.70	13.80	1.53	27.51	33.52	43.50	-9.98	3mH	90.00	1.50	Р
256.00	46.90	14.03	2.14	27.04	36.02	46.40	-10.38	3mH	45.00	1.50	Р

Verified Mode of Operation using TX and RX that the frequency data above does not change including the amplitude.

Page 51 of 75

REPORT NO: 02U1141-1 EUT: PROXIM HARMONY 802.11a ACCESS POINT

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Below 1000	Peak	⊠100 kHz	∑ 100 kHz
	Q.P.	□ 1 MHz	□ 10 Hz
Above 1000	⊠ Peak	1 MHz	☐ 1 MHz
	□ Average	1 MHz	☐ 10 Hz

Detector Function Setting of Test Receiver

TEST SETUP

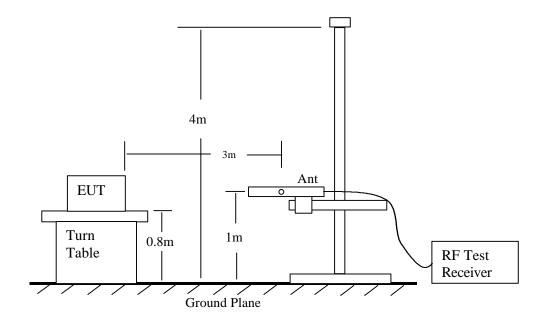


Fig 1: Radiated Emission Measurement 30 to 1000MHz.

Page 52 of 75

TEST SETUP

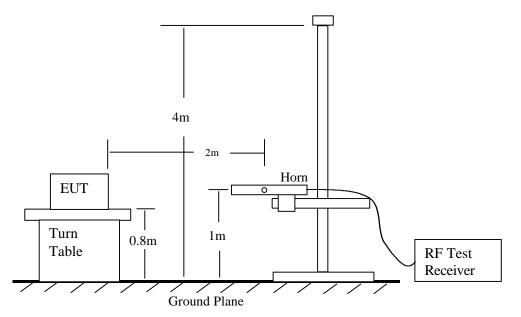


Fig 2: Radiated Emission Above 1000MHz

TEST PROCEDURE

The EUT and all other support equipment were placed on a wooden table 80 cm above the ground screen. The antenna to EUT distance was 10 meters During the test, the table was rotated 360 degrees to maximize emissions and the antenna was positioned from 1 to 4 meters above the ground screen to further maximize emissions. Measurements were made with the antenna polarized in both the vertical and the horizontal positions.

The EUT test configuration was according to Section 8 of ANSI C63.4/1992.

The following procedure was used to make the measurements: The frequency range of interest was monitored at a fixed antenna height and EUT azimuth. The Frequency span was set small enough to easily differentiate between broadcast stations, intermittent ambient signals and EUT emissions. The EUT was rotated through 360 degrees to maximize emissions received. During the rotation if emission increased by more than 1 dB, or if another emission appeared that was greater by 1 dB, the EUT was returned to the azimuth where the maximum occurred, and additional cable manipulation was performed to further maximize received emissions.

The antenna was moved up and down to further maximize the suspected highest amplitude signal. If the emission increased by 1 dB or more, or if another emission appeared that was greater by 1dB or more, the antenna was returned to the height where maximum signal was observed, and, cables were manipulated to produce highest emissions, noting frequency and amplitude.

RESULT No non-compliance noted.

Page 53 of 75

PROXIM

01/21/02

Cable length 16.0 feet Distance to Antenna

3.3

feet

Average Measurements:

1 MHz Resolution Bandwidth 10Hz Video Bandwidth

Peak Measurements: 1MHz Resolution Bandwidth 1MHz Video Bandwidth

Antenna: Patch

Antenna Gain: 12dBi Fo: 5280 MHz

	Low ch	annel:5	6		Fo: 52	80 MHz	-							
f GHz	Peak R. dBuV	-	AF dB/m	CL dB	Amp dB	D Corr dB	HPF dB	Peak dBuV/m	Avg dBuV/m		Avg Lim dBuV/m	Peak Mar dB	Avg Mar dB	Notes
5.15	42.0	33.4	33.3	6.4	-41.7	-9.5	1.0	31.4	22.8	74.0	54.0	-42.6	-31.2	V, bandedge
5.15	50.0	42.3	33.3	6.4	-41.7	-9.5	1.0	39.4	31.7	74.0	54.0	-34.6	-22.3	H,bandedge
10.56	43.3	32.8	38.3	9.5	-39.3	-9.5	1.0	43.3	32.8	74.0	54.0	-30.7	-21.2	Н
10.56	41.1	30.1	38.3	9.5	-39.3	-9.5	1.0	41.1	30.1	74.0	54.0	-32.9	-23.9	V
15.84	47.9	37.9	38.7	12.4	-44.4	-9.5	1.0	46.1	36.1	74.0	54.0	-27.9	-17.9	Н
15.84	48.0	37.7	38.7	12.4	-44.4	-9.5	1.0	46.2	35.9	74.0	54.0	-27.8	-18.1	V
21.12	46.2	36.3	46.6	15.4	-44.3	-9.5	1.0	55.4	45.5	74.0	54.0	-18.6	-8.5	Н
21.12	46.5	36.3	46.6	15.4	-44.3	-9.5	1.0	55.7	45.5	74.0	54.0	-18.3	-8.5	V
26.40	35.6	26.6	44.1	0.0	0.0	-19.9	0.0	59.8	50.8	74.0	54.0	-14.2	-3.2	V
26.40	35.6	26.5	44.1	0.0	0.0	-19.9	0.0	59.8	50.7	74.0	54.0	-14.2	-3.3	Н
31.68	35.6	26.5	44.6	0.0	0.0	-19.9	0.0	60.3	51.2	74.0	54.0	-13.7	-2.8	V
31.68	35.9	26.4	44.6	0.0	0.0	-19.9	0.0	60.6	51.1	74.0	54.0	-13.4	-2.9	Н
36.96	35.6	26.1	44.8	0.0	0.0	-19.9	0.0	60.5	51.0	74.0	54.0	-13.5	-3.0	V
36.96	35.1	26.0	44.8	0.0	0.0	-19.9	0.0	60.0	50.9	74.0	54.0	-14.0	-3.1	Н

f Measurement Frequency Peak R. Analyzer Peak Reading Avg. R. Analyzer Avg.Reading AF Antenna Factor CL Cable Loss Pre amp gain Amp D Corr Discorrections to 3 meter HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar

High Pass filter Calculated peak field Strength Calculated average field Strength

Peak Field Strength Limit Average Field Strength Limit Margin vs. Peak Limit Margin vs. Average Limit

Page 54 of 75

PROXIM

01/21/02

Antenna Gain: 12 dBi

Cable length 16.0 feet Distance to Antenna

3.3

feet

Average Measurements:

Antenna: Patch

1 MHz Resolution Bandwidth 10Hz Video Bandwidth Peak Measurements: 1MHz Resolution Bandwidth 1MHz Video Bandwidth

	/		•		/	ia Cain								
	Mid Ch	annel: 6	60		Fo= 53	300 MH	z							
f	Peak R.	Avg. R.	AF	CL	Amp	D Corr	HPF	Peak	Avg	Pk Lim	Avg Lim	Peak Mar	Avg Mar	Notes
GHz	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
10.60	43.9	32.3	38.2	9.5	-39.2	-9.5	1.0	43.9	32.3	74.0	54.0	-30.1	-21.7	Н
10.60	40.3	31.3	38.2	9.5	-39.2	-9.5	1.0	40.3	31.3	74.0	54.0	-33.7	-22.7	V
15.90	47.8	37.5	38.7	12.4	-44.4	-9.5	1.0	46.0	35.7	74.0	54.0	-28.0	-18.3	Н
15.90	47.9	37.5	38.7	12.4	-44.4	-9.5	1.0	46.1	35.7	74.0	54.0	-27.9	-18.3	V
21.20	46.3	35.6	46.6	15.4	-44.3	-9.5	1.0	55.5	44.8	74.0	54.0	-18.5	-9.2	Н
21.20	46.2	35.6	46.6	15.4	-44.3	-9.5	1.0	55.4	44.8	74.0	54.0	-18.6	-9.2	V
26.50	37.2	26.6	44.1	0.0	0.0	-19.9	0.0	61.4	50.8	74.0	54.0	-12.6	-3.2	V
26.50	37.4	26.5	44.1	0.0	0.0	-19.9	0.0	61.6	50.7	74.0	54.0	-12.4	-3.3	Н
31.80	36.5	26.1	44.7	0.0	0.0	-19.9	0.0	61.3	50.9	74.0	54.0	-12.7	-3.1	V
31.80	35.5	26.2	44.7	0.0	0.0	-19.9	0.0	60.3	51.0	74.0	54.0	-13.7	-3.0	Н
37.10	35.9	26.1	44.8	0.0	0.0	-19.9	0.0	60.8	51.0	74.0	54.0	-13.2	-3.0	V
37.10	36.1	26.0	44.8	0.0	0.0	-19.9	0.0	61.0	50.9	74.0	54.0	-13.0	-3.1	Н

fMeasurement FrequencyPeak R. Analyzer Peak ReadingAvg. R. Analyzer Avg.ReadingAFAntenna FactorCLCable LossAmpPre amp gainD CorrDiscorrections to 3 meter

HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar

High Pass filter Calculated peak field Strength Calculated average field Strength Peak Field Strength Limit Average Field Strength Limit Margin vs. Peak Limit Margin vs. Average Limit

Page 55 of 75

PROXIM

01/21/02

Cable length 16.0 feet Distance to Antenna

3.3

feet

Average Measurements:

1 MHz Resolution Bandwidth 10Hz Video Bandwidth

Peak Measurements: 1MHz Resolution Bandwidth 1MHz Video Bandwidth

Antenna: Patch

Antenna Gain: 12 dBi Fo= 5320 MHz

	High C	hannel:	64		Fo= 53	320 MH	z							
f GHz	Peak R. dBuV	Avg. R. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF dB	Peak dBuV/m	Avg dBuV/m		Avg Lim dBuV/m	Peak Mar dB	Avg Mar dB	Notes
5.35	28.0	18.7	33.8	6.5	0.0	-9.5	0.0	58.8	49.5	74.0	54.0	-15.2	-4.5	V,bandedge
5.35	28.5	17.7	33.8	6.5	0.0	-9.5	0.0	59.3	48.5	74.0	54.0	-14.7	-5.5	H,bandedge
10.56	43.3	32.8	38.3	9.5	-39.3	-9.5	1.0	43.3	32.8	74.0	54.0	-30.7	-21.2	Н
10.56	41.1	30.1	38.3	9.5	-39.3	-9.5	1.0	41.1	30.1	74.0	54.0	-32.9	-23.9	V
15.84	47.9	37.9	38.7	12.4	-44.4	-9.5	1.0	46.1	36.1	74.0	54.0	-27.9	-17.9	Н
15.84	48.0	37.7	38.7	12.4	-44.4	-9.5	1.0	46.2	35.9	74.0	54.0	-27.8	-18.1	V
21.12	46.2	36.3	46.6	15.4	-44.3	-9.5	1.0	55.4	45.5	74.0	54.0	-18.6	-8.5	Н
21.12	46.5	36.3	46.6	15.4	-44.3	-9.5	1.0	55.7	45.5	74.0	54.0	-18.3	-8.5	V
26.40	36.7	26.7	44.1	0.0	0.0	-19.9	0.0	60.9	50.9	74.0	54.0	-13.1	-3.1	V
26.40	38.3	26.8	44.1	0.0	0.0	-19.9	0.0	62.5	51.0	74.0	54.0	-11.5	-3.0	Н
31.68	37.5	26.2	44.4	0.0	0.0	-19.9	0.0	62.0	50.7	74.0	54.0	-12.0	-3.3	V
31.68	26.8	26.3	44.4	0.0	0.0	-19.9	0.0	51.3	50.8	74.0	54.0	-22.7	-3.2	Н
36.96	36.9	26.1	41.7	0.0	0.0	-19.9	0.0	58.7	47.9	74.0	54.0	-15.3	-6.1	V
36.96	37.2	26.1	41.7	0.0	0.0	-19.9	0.0	59.0	47.9	74.0	54.0	-15.0	-6.1	Н

f Measurement Frequency Peak R. Analyzer Peak Reading Avg. R. Analyzer Avg.Reading AF Antenna Factor CL Cable Loss Pre amp gain Amp D Corr Discorrections to 3 meter HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar

High Pass filter

Calculated peak field Strength Calculated average field Strength Peak Field Strength Limit Average Field Strength Limit Margin vs. Peak Limit Margin vs. Average Limit

Page 56 of 75

PROXIM

01/21/02

Cable length 16.0 feet Distance to Antenna

3.3

feet

Average Measurements:

1 MHz Resolution Bandwidth 10Hz Video Bandwidth Peak Measurements: 1MHz Resolution Bandwidth 1MHz Video Bandwidth

Antenna: Omni

Antenna Gain: 5dBi Fo: 5280 MHz

	Low ch	annel:5	6		Fo: 52	80 MHz								
f	Peak R.	Avg. R.	AF	CL	Amp	D Corr	HPF	Peak	Avg	Pk Lim	Avg Lim	Peak Mar	Avg Mar	Notes
GHz	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
5.15	28.6	18.6	33.3	6.4	0.0	-9.5	0.0	58.8	48.8	74.0	54.0	-15.2	-5.2	V, bandedge
5.15	29.5	18.7	33.3	6.4	0.0	-9.5	0.0	59.7	48.9	74.0	54.0	-14.3	-5.1	H.bandedge
10.56	41.6	29.6	38.3	9.5	-39.3	-9.5	1.0	41.6	29.6	74.0	54.0	-32.4	-24.4	Н
10.56	40.1	28.9	38.3	9.5	-39.3	-9.5	1.0	40.1	28.9	74.0	54.0	-33.9	-25.1	V
15.84	47.6	37.1	38.7	12.4	-44.4	-9.5	1.0	45.8	35.3	74.0	54.0	-28.2	-18.7	Н
15.84	46.9	37.1	38.7	12.4	-44.4	-9.5	1.0	45.1	35.3	74.0	54.0	-28.9	-18.7	V
21.12	45.9	35.3	46.6	15.4	-44.3	-9.5	1.0	55.1	44.5	74.0	54.0	-18.9	-9.5	Н
21.12	46.0	35.4	46.6	15.4	-44.3	-9.5	1.0	55.2	44.6	74.0	54.0	-18.8	-9.4	V
26.40	35.6	26.7	44.1	0.0	0.0	-19.9	0.0	59.8	50.9	74.0	54.0	-14.2	-3.1	V
26.40	35.6	26.6	44.1	0.0	0.0	-19.9	0.0	59.8	50.8	74.0	54.0	-14.2	-3.2	Н
31.68	35.9	26.6	44.6	0.0	0.0	-19.9	0.0	60.6	51.3	74.0	54.0	-13.4	-2.7	V
31.68	36.5	26.5	44.6	0.0	0.0	-19.9	0.0	61.2	51.2	74.0	54.0	-12.8	-2.8	Н
36.96	35.6	26.1	44.8	0.0	0.0	-19.9	0.0	60.5	51.0	74.0	54.0	-13.5	-3.0	V
36.96	35.1	26.0	44.8	0.0	0.0	-19.9	0.0	60.0	50.9	74.0	54.0	-14.0	-3.1	Н

f Measurement Frequency Peak R. Analyzer Peak Reading Avg. R. Analyzer Avg.Reading AF Antenna Factor CL Cable Loss Amp Pre amp gain D Corr Discorrections to 3 meter HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar

High Pass filter

Calculated peak field Strength Calculated average field Strength Peak Field Strength Limit Average Field Strength Limit Margin vs. Peak Limit Margin vs. Average Limit

Page 57 of 75

PROXIM

01/21/02

Antenna Gain: 5 dBi

Cable length 16.0 feet Distance to Antenna

3.3

feet

Average Measurements:

Antenna: Omni

1 MHz Resolution Bandwidth 10Hz Video Bandwidth Peak Measurements: 1MHz Resolution Bandwidth 1MHz Video Bandwidth

		/		•		,									
_		Mid Ch	annel: 6	60		Fo= 53	300 MH	z							
Γ	f	Peak R.	Avg. R.	AF	CL	Amp	D Corr	HPF	Peak	Avg	Pk Lim	Avg Lim	Peak Mar	Avg Mar	Notes
	GHz	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
Γ															
	10.60	41.5	29.8	38.2	9.5	-39.2	-9.5	1.0	41.5	29.8	74.0	54.0	-32.5	-24.2	Н
	10.60	44.3	33.4	38.2	9.5	-39.2	-9.5	1.0	44.3	33.4	74.0	54.0	-29.7	-20.6	V
	15.90	47.9	37.3	38.7	12.4	-44.4	-9.5	1.0	46.1	35.5	74.0	54.0	-27.9	-18.5	Н
	15.90	48.7	37.4	38.7	12.4	-44.4	-9.5	1.0	46.9	35.6	74.0	54.0	-27.1	-18.4	V
	21.20	45.9	35.3	46.6	15.4	-44.3	-9.5	1.0	55.1	44.5	74.0	54.0	-18.9	-9.5	Н
	21.20	45.3	35.3	46.6	15.4	-44.3	-9.5	1.0	54.5	44.5	74.0	54.0	-19.5	-9.5	V
	26.50	37.2	26.6	44.1	0.0	0.0	-19.5	0.0	61.8	51.2	74.0	54.0	-12.2	-2.8	V
	26.50	37.4	26.7	44.1	0.0	0.0	-19.5	0.0	62.0	51.3	74.0	54.0	-12.0	-2.7	Н
	31.80	36.5	26.1	44.6	0.0	0.0	-19.5	0.0	61.6	51.2	74.0	54.0	-12.4	-2.8	V
	31.80	35.5	26.1	44.6	0.0	0.0	-19.5	0.0	60.6	51.2	74.0	54.0	-13.4	-2.8	Н
	37.10	35.9	26.0	44.8	0.0	0.0	-19.5	0.0	61.2	51.3	74.0	54.0	-12.8	-2.7	V
	37.10	36.1	26.0	44.8	0.0	0.0	-19.5	0.0	61.4	51.3	74.0	54.0	-12.6	-2.7	Н

f Measurement Frequency Peak R. Analyzer Peak Reading Avg. R. Analyzer Avg.Reading AF Antenna Factor CL Cable Loss Amp Pre amp gain D Corr Discorrections to 3 meter HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar

High Pass filter Calculated peak field Strength Calculated average field Strength Peak Field Strength Limit Average Field Strength Limit Margin vs. Peak Limit Margin vs. Average Limit

Page 58 of 75

PROXIM

01/21/02

Cable length 16.0 feet Distance to Antenna

3.3

feet

Average Measurements:

1 MHz Resolution Bandwidth 10Hz Video Bandwidth Peak Measurements: 1MHz Resolution Bandwidth 1MHz Video Bandwidth

10Hz Video Bandwidth Antenna: Omni

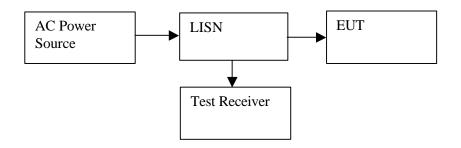
Antenna Gain: 5 dBi Fo= 5320 MHz

	High C	hannel:	64		Fo= 53	320 MH:	z							
f GHz	Peak R. dBuV	Avg. R. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF dB	Peak dBuV/m	Avg dBuV/m		Avg Lim dBuV/m		Avg Mar dB	Notes
5.35	30.8	19.3	33.8	6.5	0.0	-9.5	0.0	61.6	50.1	74.0	54.0	-12.4	-3.9	V,bandedge
5.35	28.9	19.0	33.8	6.5	0.0	-9.5	0.0	59.7	49.8	74.0	54.0	-14.3	-4.2	H,bandedge
10.64	41.6	31.4	38.2	9.5	-39.2	-9.5	1.0	41.6	31.4	74.0	54.0	-32.4	-22.6	Н
10.64	44.9	32.1	38.2	9.5	-39.2	-9.5	1.0	44.9	32.1	74.0	54.0	-29.1	-21.9	V
15.96	48.9	38.9	38.6	12.5	-44.3	-9.5	1.0	47.1	37.1	74.0	54.0	-26.9	-16.9	Н
15.96	48.8	37.8	38.6	12.5	-44.3	-9.5	1.0	47.0	36.0	74.0	54.0	-27.0	-18.0	V
21.28	46.1	35.9	46.6	15.5	-44.3	-9.5	1.0	55.4	45.2	74.0	54.0	-18.6	-8.8	Н
21.28	46.3	35.9	46.6	15.5	-44.3	-9.5	1.0	55.6	45.2	74.0	54.0	-18.4	-8.8	V
26.60	35.6	26.7	44.1	0.0	0.0	-19.9	0.0	59.8	50.9	74.0	54.0	-14.2	-3.1	V
26.60	35.6	26.6	44.1	0.0	0.0	-19.9	0.0	59.8	50.8	74.0	54.0	-14.2	-3.2	Н
31.92	35.9	26.5	44.6	0.0	0.0	-19.9	0.0	60.6	51.2	74.0	54.0	-13.4	-2.8	V
31.92	36.5	26.4	44.6	0.0	0.0	-19.9	0.0	61.2	51.1	74.0	54.0	-12.8	-2.9	Н
37.24	35.6	26.2	44.8	0.0	0.0	-19.9	0.0	60.5	51.1	74.0	54.0	-13.5	-2.9	V
37.24	35.1	26.1	44.8	0.0	0.0	-19.5	0.0	60.4	51.4	74.0	54.0	-13.6	-2.6	Н

f Measurement Frequency Peak R. Analyzer Peak Reading Avg. R. Analyzer Avg.Reading AF Antenna Factor CL Cable Loss Amp Pre amp gain D Corr Discorrections to 3 meter HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar

High Pass filter Calculated peak field Strength Calculated average field Strength Peak Field Strength Limit

Average Field Strength Limit Margin vs. Peak Limit Margin vs. Average Limit


Page 59 of 75

9.8. POWER LINE CONDUCTED EMISSION

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
450 KHz to 30 MHz	➢ Peak ☐ CISPR Quasi Peak	9 KHz	9 KHz

Detector Function Setting of Test Receiver

TEST SETUP

TEST PROCEDURE

1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in a continuous mode.

2. Line conducted data was recorded for both NEUTRAL and HOT lines.

<u>RESULT</u>

No non-compliance noted. See plot Line Conduction.

Page 60 of 75

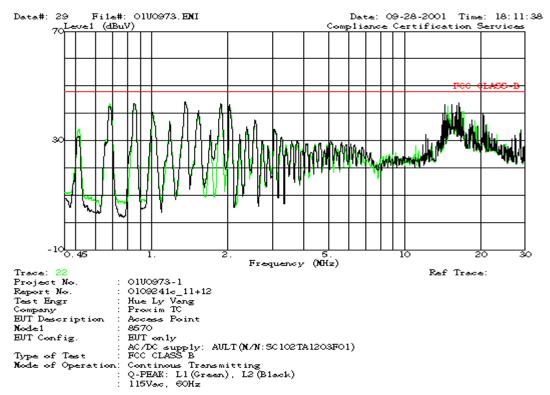
<u>BuV) AV (dBuV</u>) (dB) 0.00 0.00 0.00	OP 48.00 48.00 48.00	AV 	-5.69 -12.39	AV (dB) 	L1 / L2 L1 L1
	0.00	48.00		-12.39		
						L1
	0.00	10 00				
	0.00	40.00		-19.84		L1
	0.00	48.00		-9.12		L2
	0.00	48.00		-13.39		L2
	0.00	48.00		-18.63		L2

Data from AC/DC adaptor model # P48121000A140G:

Data from AC/DC Adaptor model # SC102TA1203F01

Freq.		Reading		Closs	Limit	FCC_B	Mar	gin	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2
0.88	45.60	45.27		0.00	48.00		-2.73		L1
1.37	51.20	46.75		0.00	48.00		-1.25		L1
15.52	46.82	46.75		0.00	48.00		-1.25		L1
0.88	44.33	43.71		0.00	48.00		-4.29		L2
1.34	46.58	44.21		0.00	48.00		-3.79		L2
15.54	46.66	43.02		0.00	48.00		-4.98		L2
6 Worst]	 Data								

Page 61 of 75


561 F Nonterey Road, Route 2 Norgan Hill, CA 95037-9001 USA Tel: (408) 463-0885 Fax: (408) 463-0888

Page 62 of 75

Page 63 of 75

9.9. RADIATED EMISSION

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
30 to 1000	🛛 Peak 🔲 Quasi Peak	⊠ 100 KHz □ 120 KHz	 ☐ 100 KHz ☐ 120 KHz
Above 1000	Peak Average	1 MHz 1 MHz	∑ 1 MHz □ 10 Hz

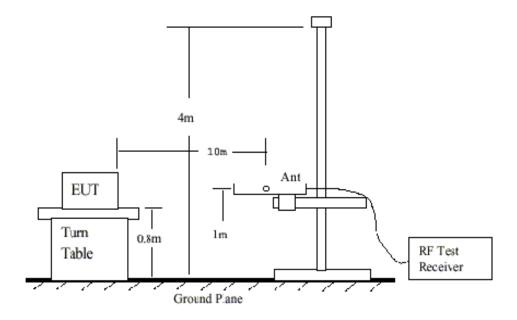


Fig 1: Radiated Emission Measurement 30 to 1000 MHz

Page 64 of 75

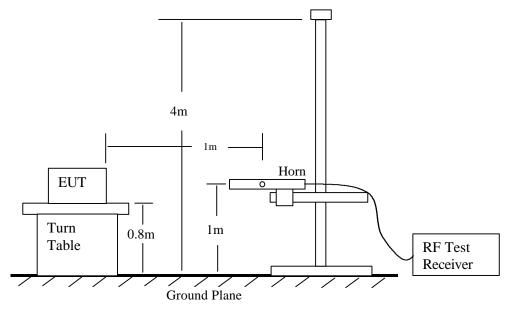


Fig 2: Radiated Emission Above 1000MHz

TEST SETUP & PROCEDURE

1. The EUT was placed on the turn table 0.8 meter above ground in 3 meter open area test site.

2. Set the resolution bandwidth to 120KHz in the test receiver and select Peak function to scan the frequency below 1 GHz.

3. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.

4. Locate the interference-receiving antenna at the position where the local peak reach the maximum emission.

5. Rotate the turn table and stop at the angle where the measurement device has maximum reading

6. Shift the interference-receiving antenna again to detect the maximum emission of the local peak

7. If the reading of the local peak under Peak function is lower than limit by 6dB, then Quasi Peak detection is not needed and this reading should be recorded. And if it is higher than Peak limit, then the test is fail. Others, switch the receiver to Quasi Peak function, set the resolution bandwidth to 100kHz and repeat the procedures C ~ F. If the reading is lower than limit, this reading should be recorded, otherwise, the test is fail.

8. Set the resolution and video bandwidth of the spectrum analyzer to 1MHz and repeat procedures C ~ F for frequency band from 1 GHz to 10 times carrier frequency.

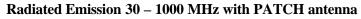
Page 65 of 75

9. If the reading for the local peak is lower than the Average limit, no further testing is needed in this local peak and this reading should be recorded. If it is higher than Average limit but lower than Peak limit, then set the resolution bandwidth to 1MHz and video bandwidth to 300Hz. Repeat procedures C ~ F. If the maximum reading is lower than Average limit, then this reading should be recorded. If it is higher, then the test is fail.

RESULT

No non-compliance noted, as shown below.

Page 66 of 75


FCC, VCCI, CISPR, CE, AUSTEL, NZ Test Engr: UL, CSA, TUV, BSMI, DHHS, NVLAP Test Engr: 561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888 Company: Proxim EUT Description: Proxim Test Configuration : Proxim Harmony Model #8571 FCC ID: IMK-AP5 EUT/PC/Mouse/KB FCC Class B Mode of Operation: TX/RX/OMNI ANTENNA											
Freq.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)		(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
240.00 240.00 450.00 959.90 399.60 6 Worst	54.90 54.80 49.00 49.00 41.66 48.20	13.71 13.49 17.91 17.87 22.61 17.19	2.06 2.06 3.05 3.05 4.87 2.83	27.08 27.08 28.11 28.11 28.28 27.81	43.59 43.27 41.86 41.81 40.86 40.41	46.00 46.00 46.00 46.00 46.00 46.00	-2.41 -2.73 -4.15 -4.19 -5.14 -5.59	3mV 3mH 3mV 3mH 3mV	90.00 90.00 90.00 90.00 90.00 90.00	1.00 1.00 1.00 1.00 1.00	QP P P QP P

Page 67 of 75

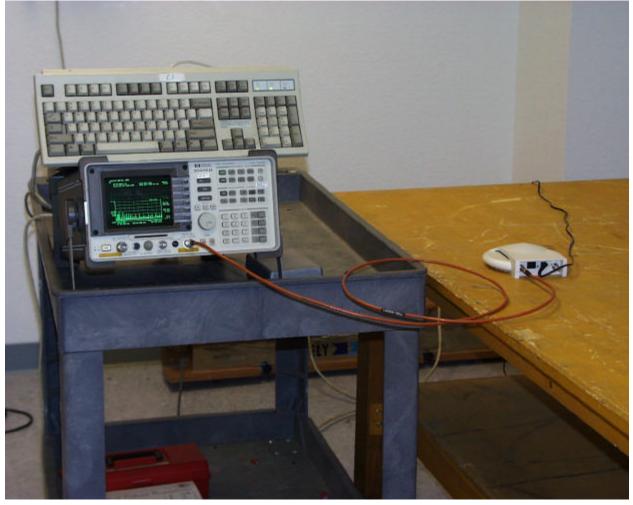
Company: EUT Description: Test Configuration : Type of Test: Mode of Operation: Company: Type Test: Mode of Operation: Company: Type Test: Mode of Operation: Company: Type Test: Mode of Operation: Company: Company: Proxim Proxim Harmony Mode Company: Type Additional Company: Company: Company: Type Of Test: Mode of Operation: Company: Compa						lodel 857 [,] B/mouse					
Freq.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
500.00 450.00 240.00 499.90 240.00 375.00 6 Worst	49.90 49.90 54.00 48.40 51.20 48.00	18.62 17.87 13.49 18.63 13.71 16.64	3.27 3.05 2.06 3.27 2.06 2.72	28.40 28.11 27.08 28.40 27.08 27.62	43.39 42.71 42.47 41.90 39.89 39.74	46.00 46.00 46.00 46.00 46.00 46.00	-2.61 -3.29 -3.53 -4.10 -6.11 -6.26	3mV 3mH 3mH 3mV 3mV 3mV	90.00 90.00 90.00 90.00 90.00 90.00	1.00 1.00 1.00 1.00 1.00 1.00	P P P P P

Page 68 of 75

9.10. SETUP PHOTOS

Page 69 of 75

With OMNI antenna


Page 70 of 75

Radiated Emission above 1 GHz

Page 71 of 75

Antenna Terminal Port Measurement

Page 72 of 75

Line Conduction Emission

Page 73 of 75

Page 74 of 75

Page 75 of 75

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS. This document may
be altered or revised by Compliance Certification Services personnel only, and shall be noted in the
revision section of the document.

REPORT NO: 02U1141-1 EUT: PROXIM HARMONY 802.11a ACCESS POINT