

FCC PART 15, SUBPART C TEST REPORT

for

FM AUDIO TRANSMITTER M/N: IPTRNS01 FCC ID: IKQIPTRNS01

Prepared for

SCOSCHE INDUSTRIES INC. 1550 PACIFIC AVENUE OXNARD, CA 93033

Prepared by: _	
	REYNALD O. RAMIREZ
Approved by:	
	RUBY A. HALL

COMPATIBLE ELECTRONICS INC. 2337 TROUTDALE DRIVE AGOURA, CALIFORNIA 91301 (818) 597-0600

DATE: MARCH 16, 2005

	REPORT		APPENDICES			TOTAL	
	BODY	\boldsymbol{A}	В	С	D	E	
PAGES	17	2	2	2	11	17	51

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. DESCRIPTION OF TEST CONFIGURATION	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Photograph of Test Configuration - EMI	8
4.1.2 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 EMI Test Equipment	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
7.1.4 Sample Calculations	16
8. TEST PROCEDURE DEVIATIONS	17
9. CONCLUSIONS	17

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Accreditations		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts and Photos		
	Test Setup Diagrams		
	Antenna and Amplifier Gain Factors		
	Radiated Emissions Photos		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: FM Audio Transmitter

Model Number: IPTRNS01

SN: Sample 1

Product Description: This is an FM Audio Transmitter.

Modifications: The EUT was not modified during the testing.

Manufacturer: Scosche Industries Inc.

1550 Pacific Avenue Oxnard, CA 93033

Test Dates: March 11, 14 & 16, 2005

Test Specifications: EMI requirements

FCC CFR Title 47, Part 15 Subpart A, B and C sections 15.31 (e), 15.109, 15.205, 15.209 and

15.239

Test Procedure: ANSI C63.4: 2003.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION RESULTS	
1	Conducted RF Emissions, 150 kHz - 30 MHz.	This is a DC powered device that does not plug into AC Mains therefore this test was deemed unnecessary.
2	Radiated RF Emissions, 9 kHz – 1000 MHz.	Complies with the limits of FCC CFR Title 47, Part 15 Subpart C 15.205, 15.209 and 15.239 and the requirements of 15.31(e).

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the FM Audio Transmitter Model Number: IPTRNS01. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined in FCC CFR Title 47, Part 15 Subpart A (15.31e), Subpart B, 15.109 Subpart C 15.205, 15.209 and 15.239.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 2337 Troutdale Drive, Agoura, California 91301.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Scosche Industries Inc.

Jack DeBiasio Project Manager

Compatible Electronics Inc.

Andre D. Khan Test Technician Reynald O. Ramirez Sr. Test Engineer Ruby A. Hall Lab Manager

2.4 Date Test Sample was Received

The test sample was received on March 11, 2005.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics Inc.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

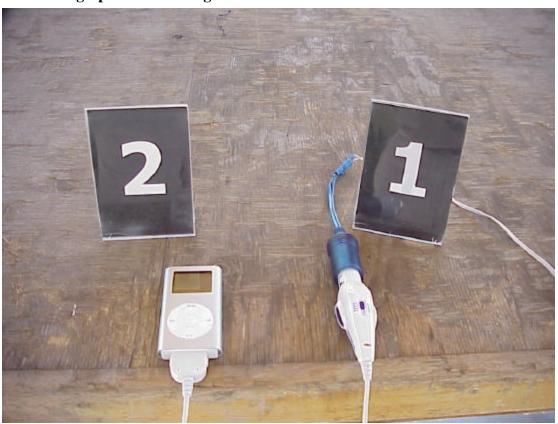
CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC CFR Title 47, Part 15 Subpart C.	FCC Rules – Intentional Radiators.
CISPR 16 1993	Specification for radio disturbance and immunity measuring apparatus and methods.
ANSI C63.4 2003	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.


4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The EUT was set-up in a tabletop configuration. The EUT was connected to an iPod via the dock connector port. The input connector of the EUT allows the audio device, an iPod in this case, to be charged by the vehicle battery while connected. The input signal was adjusted to the maximum output that the EUT will allow. The EUT was continuously transmitting in this mode throughout the test. The output was monitored through a radio which was located with the test equipment inside the lab. The EUT transmitting antenna is a fixed element; which connects directly to the PCB board.

The highest emissions were found when the EUT was running in the above configuration. The EUT was tested in X, Y and Z axis even though it is intended for use in a dashboard mounted cigarette lighter port. The cables were moved to maximize the emissions. The final radiated data was taken in this mode of operation. All initial investigations were performed with the spectrum analyzer in manual mode scanning the frequency range continuously. The cables were routed as shown in the photographs in Appendix D.

4.1.1 Photograph of Test Configuration - EMI

Page 9 of 17

4.1.2 Cable Construction and Termination

<u>Cable 1</u> This is a 1 meter unshielded round cable that connects the EUT to the iPod. The cable is hardwired into the EUT and has a 30 pin inline locking connector at the iPod end.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

#	EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
1	FM AUDIO TRANSMITTER (EUT)	SCOSCHE INDUSTRIES INC.	PN: IPTRNS01	S/N: SAMPLE 1 FCC ID: IKQIPTRNS01
2	I-POD	APPLE	A1051	S/N: 4U452WKMPFW

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	2729A04566	Dec. 24, 2004	Dec. 24, 2005
Quasi-Peak Adapter	Hewlett Packard	85650A	2521A00682	Dec. 24, 2004	Dec. 24, 2005
Preamplifier	Com Power	CPPA-102	1018	Jul. 12, 2004	Jul. 12, 2005
Loop Antenna	Com Power	AL-130	17067	Mar. 11, 2005	Mar. 11, 2006
Biconical Antenna	Com Power	AB-100	01535	Jan. 13, 2005	Jan. 13, 2006
Log Periodic Antenna	Com Power	AL-100	01116	Dec. 28, 2004	Dec. 28, 2005
Antenna Mast	Com Power	AM-400	N/A	N/A	N/A
Turntable	Com Power	TTW-595	N/A	N/A	N/A
Computer	Hewlett Packard	Pavilion 4530	US91912022	N/A	N/A
Printer	Hewlett Packard	C6427B	MY066160TW	N/A	N/A
Radiated Emissions Test Software	Compatible Electronics	Vcap1A	2.3	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The Spectrum Analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the Spectrum Analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the Spectrum Analyzer input stage, and the Spectrum Analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the Spectrum Analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 150 kHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The EUT is DC powered and does not connect to AC Mains therefore this test was deemed unnecessary.

7.1.2 Radiated Emissions Test

The spectrum analyzer was used as a measuring meter along with a quasi-peak adapter. A Preamplifier was used to increase the sensitivity of the instrument. The Spectrum Analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. This final reading is then recorded into the a Computer data recording program, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. The quasi-peak was used only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (200 Hz for 9kHz-150kHz, 9 kHz for 0.150kHz-30MHz and 120 kHz for 30-1000MHz).

Broadband loop, biconical and log periodic antennas were used as transducers during the measurement. The loop antenna was used from 9 kHz to 30 MHz, the biconical antenna was used from 30 MHz to 300 MHz and the log periodic antenna was used from 300 MHz to 1000 MHz. The frequency spans were wide (30 MHz to 88 MHz, 88 MHz to 216 MHz, 216 to 300 MHz and 300 MHz to 1 GHz) during preliminary investigations. The final data was taken with a frequency span of 1 MHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a test distance of 3 meters to obtain final test data. The final test data is located in Appendix E.

Page 15 of 17

7.1.3 RF Emissions Test Results

The fundamental and up to the 10^{th} harmonic emissions are within the specifications.

SCOSCHE INDUSTRIES INC.

FM Audio Transmitter

RADIATED EMISSIONS – SPURIOUS

The Frequency Band from 9 kHz to 1 GHz was specifically scanned. Please see data in Appendix E.

RF Energy from the EUT at 3 meters ($\mu V/m$) is below the limits in the following ranges listed below.

0.090-0.110	< 70	16.69475-16.69525	< 70
0.495-0.505	<70	16.80425-16.80475	<70
2.1735-2.1905	< 70	25.5-25.67	< 70
4.125-4.128	< 70	37.5-38.25	<100
4.17725-4.17775	< 70	73-74.6	<100
4.20725-4.20775	< 70	74.8-75.2	<100
6.215-6.218	< 70	108-121.94	<100
6.26775-6.26825	< 70	123-138	<150
6.31175-6.31225	< 70	149.9-150.05	<150
8.291-8.294	< 70	156.52-156.52	<150
8.362-8.366	< 70	162.01-167.17	<150
8.37625-8.38675	< 70	167.72-173.2	<150
8.41425-8.41475	< 70	240-285	< 200
12.29-12.293	< 70	322-335.4	< 200
12.51975-12.52025	< 70	399.9-410	< 200
12.57675-12.57725	< 70	608-614	< 200
13.36-13.41	< 70	960-1240	< 500
16.42-16.423	< 70		

RADIATED EMISSION – BAND EDGE 15.239 (a)

The emission from the intentional radiator are confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band lies wholly within the frequency range of 88-108 MHz. See Appendix E for the plots.

RADIATED EMISSION - OCCUPIED BANDWIDTH

The 26 dB bandwidth of the channel tested (88.3 MHz) is 71.9 kHz. See Appendix E for the plot.

7.1.4 Sample Calculations

A correction factor for the antenna, cable and a distance factor (if any) must be applied to the meter reading before a true field strength reading can be obtained. This Corrected Meter Reading is then compared to the specification limit in order to determine compliance with the limits.

The equation can be derived in the following manner:

Specification limit (μ V/m) log x 20 = Specification Limit in dBuV

(Specification distance / test distance) $\log x \, 40 = \text{distance factor}$

Note: When using an Active Antenna, the Antenna factor shall be subtracted due to the combination of the internal amplification and antenna loss. At lower frequencies the cable loss is negligible.

OR

Corrected Meter Reading = meter reading + F - A + C

where: F = antenna factor

A= amplifier gain C = cable loss

The correction factors for the antenna and the amplifier gain are attached in Appendix D of this report. The data sheets are attached in Appendix E.

The distance factor D is 0 when the test is performed at the required specification distance.

8. TEST PROCEDURE DEVIATIONS

There were no deviations from the test procedures.

9. CONCLUSIONS

The FM Audio Transmitter Model Number: IPTRNS01 meets all of the requirements of the FCC CFR, Title 47, Part 15 Subpart A, Section 15.31(e), Subpart B 15.109, Subpart C 15.205, 15.207, 15.209 and 15.239.

APPENDIX A

LABORATORY ACCREDITATIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

Silverado/Lake Forest Division: http://ts.nist.gov/ts/htdocs/210/214/scopes/2005270.htm

Brea Division: http://ts.nist.gov/ts/htdocs/210/214/scopes/2005280.htm
Agoura Division: http://ts.nist.gov/ts/htdocs/210/214/scopes/2000630.htm

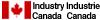
Compatible Electronics has been accredited by ANSI and appointed by the FCC to serve as a Telecommunications Certification Body (TCB). Compatible Electronics ANSI TCB listing can be found at: http://www.ansi.org/public/ca/ansi cp.html

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/EU CAB listing can be found at: http://ts.nist.gov/ts/htdocs/210/gsig/emc-cabs-mar02.pdf

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/APEC CAB listing can be found at: http://ts.nist.gov/ts/htdocs/210/gsig/apec/bsmi-cabs-may02.pdf

Compatible Electronics has been validated by NEMKO against ISO/IEC 17025 under the NEMKO EMC Laboratory Authorization (ELA) program to all EN standards required by the European Union (EU) EMC Directive 89/336/EEC. Please follow the link to the Compatible Electronics' web site for each of our facilities NEMKO ELA certificate and scope of accreditation. http://www.celectronics.com/certs.htm

We are also certified/listed for IT products by the following country/agency:


Compatible Electronics VCCI listing can be found at: http://www.vcci.or.jp/vcci_e/member/tekigo/setsubi_index_id.html

Just type "Compatible Electronics" into the Keyword search box.

Compatible Electronics FCC listing can be found at: https://gullfoss2.fcc.gov/prod/oet/index_ie.html

Just type "Compatible Electronics" into the Test Firms search box.

Compatible Electronics IC listing can be found at: http://spectrum.ic.gc.ca/~cert/labs/oats lab c e.html

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

There were no modifications made to the EUT during the test.

APPENDIX C

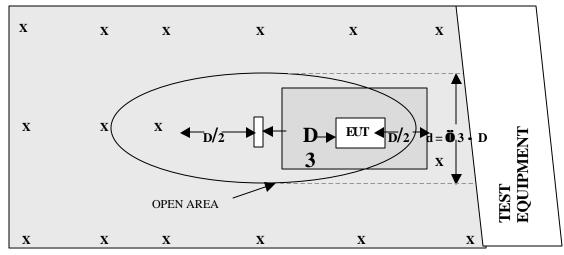
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

FM Audio Transmitter M/N: IPTRNS01 S/N: Sample 1

There were no additional models covered under this report.


APPENDIX D

DIAGRAMS, CHARTS AND PHOTOS

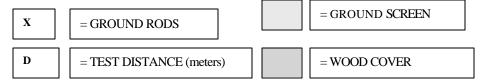

OPEN LAND > 15 METERS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

COM-POWER AL-130

ACTIVE LOOP ANTENNA

S/N: 17067

CALIBRATION DATE: MARCH 11, 2005

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
0.009	9.46	1	10.51
0.01	10.19	2	10.9
0.02	10.36	3	11.07
0.03	10.04	4	11.06
0.04	10.6	5	10.89
0.05	10.39	6	10.8
0.06	10.16	7	10.94
0.07	9.99	8	10.96
0.08	9.89	9	11.49
0.09	10.29	10	11.23
0.1	10.09	15	12.1
0.2	10.26	20	11.31
0.3	10.19	25	10.73
0.4	10.56	30	9.44
0.5	10.24		
0.6	10.9		
0.7	10.1		
0.8	10.27		
0.9	10.3		

COM-POWER AB-100

BICONICAL ANTENNA

S/N: 1535

CALIBRATION DATE: JAN. 13, 2005

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	16.0	120	10.7
35	13.8	125	11.2
40	13.6	140	11.7
45	13.2	150	12.6
50	12.4	160	13.6
55	11.2	175	14.3
60	10.6	180	13.7
65	9.7	200	15.8
70	9.5	225	16.7
80	7.7	250	15.8
90	8.4	275	16.5
100	9.3	300	18.9

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 01116

CALIBRATION DATE: DEC. 28, 2004

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
300	12.1	650	19.8
330	16.7	700	20.5
340	15.2	725	21.4
350	14.0	750	23.0
360	14.1	800	25.2
370	13.2	850	24.7
400	13.9	900	25.0
425	13.5	925	24.4
450	13.9	950	25.6
500	15.6	975	25.3
550	16.9	1000	24.4
600	16.5		

COM-POWER PA-102

PREAMPLIFIER

S/N: 1018

CALIBRATION DATE: JULY 12, 2004

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	35.7	300	34.5
40	36.7	350	34.6
50	35.7	400	34.5
60	35.6	450	34.2
70	35.6	500	34.4
80	35.5	550	34.4
90	35.1	600	33.9
100	35.5	650	34.0
125	35.4	700	34.0
150	35.2	750	34.2
175	35.0	800	33.8
200	35.1	850	33.4
225	35.0	900	33.4
250	34.9	950	33.4
275	34.7	1000	32.5

FRONT VIEW

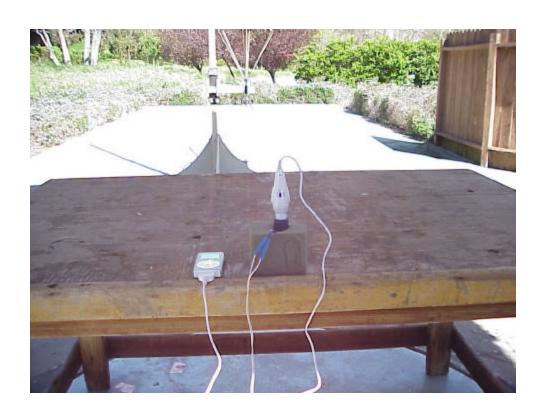
SCOSCHE INDUSTRIES INC.
FM AUDIO TRANSMITTER
MODEL NUMBER: IPTRNS01
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 3-11-05

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

SCOSCHE INDUSTRIES INC.
FM AUDIO TRANSMITTER
MODEL NUMBER: IPTRNS01
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 3-11-05

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



X AXIS

SCOSCHE INDUSTRIES INC.
FM AUDIO TRANSMITTER
MODEL NUMBER: IPTRNS01
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 3-11-05

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

Y AXIS

SCOSCHE INDUSTRIES INC.
FM AUDIO TRANSMITTER
MODEL NUMBER: IPTRNS01
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 3-11-05

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

ZAXIS

SCOSCHE INDUSTRIES INC.
FM AUDIO TRANSMITTER
MODEL NUMBER: IPTRNS01
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 3-11-05

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

COMPANY NAME: Scooche Industries DATE: 3-141-05	
EUT: FM Audio Transmittee EUTS/N:	
EUT MODEL: IPTRNS 01 LOCATION: BREA SILVERADO NAGOU	RA
SPECIFICATION: FCC CLASS: B TEST DISTANCE: 3M LAB: F	
ANTENNA: VLOOP BICONICAL LOG HORN POLARIZATION: VERT HOI	RIZ
QUALIFICATION DENGINEERING DMFG. AUDIT ENGINEER: A. Khan	
NOTES:	
Pol. A Pol. B	

Frequency (MHz)	Peak Reading	Quasi- Peak (dBuV/m)	Antenna Height (meters)	Azimuth (degrees)	Delta * (dB)	Corrected Limit (dBuV/m)	Comments
(WHZ)	(dDa 1111)	(dDd v/iii)	(meters)	(degrees)	(ub)	(dbd (m)	
The E	UT W	ias To	sted	From	9KH	<u>to3</u>	OMHZ
NO F	Leadi.	ngs 1	Foun	e/			OMHZ

* DELTA = METER READING - CORRECTED LIMIT

Test Location : Compatible Electronics Page : 1/1

Customer: Jack DeBiasioDate: 03/10/2005Manufacturer: Scosche Industries Inc.Time: 04:00:12 PM

Eut name : FM Audio Transmitter Lab : F

Model : IPTRNS01 Test Distance : 3.00 Meters

Serial # : Sample 1

Specification : FCC Pt. 15- Class B

Distance correction factor (20 * log(test/spec)) : 0.00

Test Mode : Qualification (verified x, y, & z axis)
Spurious Emissions 30MHz.-1GHz.

Clock: 7.6MHz.

Sr. Test Engineer: R. Ramirez

Pol	Freq MHz	Reading dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Limit = L dBuV/m	Delta R-L dB
	MHZ	авич	ав	ав	ав	abuv/III	abuv/III	ав
1V	30.428	38.30	1.90	15.80	35.70	20.30	40.00	-19.70
2V	68.428	45.30	2.41	9.56	35.60	21.68	40.00	-18.32
3V	83.628	42.20	2.70	7.96	35.35	17.51	40.00	-22.49
4V	114.028	39.10	2.96	10.31	35.44	16.93	43.50	-26.57
5V	220.428	37.10	3.48	16.54	35.02	22.11	46.00	-23.89
6V	296.428	33.90	3.79	18.57	34.53	21.73	46.00	-24.27
7H	30.456	38.60	1.91	15.78	35.70	20.59	40.00	-19.41
8H	68.428	40.30	2.41	9.56	35.60	16.68	40.00	-23.32
9H	83.628	44.90	2.70	7.96	35.35	20.21	40.00	-19.79
10H	114.028	38.00	2.96	10.31	35.44	15.83	43.50	-27.67
11H	220.428	38.20	3.48	16.54	35.02	23.21	46.00	-22.79
12H	296.428	34.50	3.79	18.57	34.53	22.33	46.00	-23.67
13V	311.600	35.50	3.87	13.93	34.52	18.78	46.00	-27.22
14V	532.000	34.70	4.70	16.45	34.40	21.45	46.00	-24.55
15V	600.400	37.80	5.00	16.53	33.90	25.43	46.00	-20.57
16V	889.200	33.70	5.72	24.91	33.40	30.94	46.00	-15.06
17V	995.600	33.10	4.09	24.56	32.58	29.17	54.00	-24.83
18H	311.600	36.10	3.87	13.93	34.52	19.38	46.00	-26.62
19H	532.000	36.80	4.70	16.45	34.40	23.55	46.00	-22.45
20H	600.400	38.30	5.00	16.53	33.90	25.93	46.00	-20.07
21H	889.200	32.40	5.72	24.91	33.40	29.64	46.00	-16.36
22H	995.600	33.20	4.09	24.56	32.58	29.27	54.00	-24.73

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec	
	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
										0.0	0.0					
										0.0						
										0.0						
										0.0						
										0.0						
										0.0						
88.3000	57.6	A	Н	2.0	0	X		8.3	2.7	35.2	0.0	0.0	33.4	-14.6	48.0	
88.3000	58.9	A	Н	2.0	0	Y		8.3	2.7	35.2	0.0	0.0	34.7	-13.3	48.0	
88.3000	59.4	A	Н	2.0	0	Z		8.3	2.7	35.2	0.0	0.0	35.2	-12.8	48.0	
88.3000	57.7	A	V	1.0	0	X		8.3	2.7	35.2	0.0	0.0	33.5	-14.5	48.0	
88.3000	57.1	A	V	3.0	0	Y		8.3	2.7	35.2	0.0	0.0	32.8	-15.2	48.0	
88.3000	58.3	A	V	4.0	270	Z		8.3	2.7	35.2	0.0	0.0	34.1	-13.9	48.0	
		A	Н							0.0						
		A	Н							0.0						
		A	Н							0.0						
		A	V							0.0						
		A	V							0.0						
		A	V							0.0						

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 1 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)	Antenna			EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.		Azimuth	Axis	Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
IVIIIZ	(uDu v)	Teak (QT)	(V 01 11)	(ineters)	(degrees)	(A,1,L)	Chamie	(uD)	(uD)	(ub)	(ub)	(uD)	(ubu v/III)	(ub)	(uDu v/III)	Comments
	_															
176.6000	39.3	QP	V	1.0	0	X	MED.	14.1	3.3	35.0	0.0	0.0	21.7	-21.8	43.5	
176.6000	37.7	QP	V	1.0	0	Y	MED.	14.1	3.3	35.0	0.0	0.0	20.1	-23.4	43.5	
176.6000	37.9	QP	V	1.0	270	Z	MED.	14.1	3.3	35.0	0.0	0.0	20.3	-23.2	43.5	
176.6000	35.5	QP	Н	3.0	0	X	MED.	14.1	3.3	35.0	0.0	0.0	17.9	-25.6	43.5	
176.6000	34.7	QP	Н	3.0	270	Y	MED.	14.1	3.3	35.0	0.0	0.0	17.1	-26.4	43.5	
176.6000	40.5	QP	Н	2.0	270	Z	MED.	14.1	3.3	35.0	0.0	0.0	22.9	-20.6	43.5	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 2 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec	
	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
											0.0					
264.9000	33.8	QP	Н	1.0	0	X	MED.	16.7	3.7	34.8	0.0	0.0	19.4	-26.6	46.0	
264.9000	34.1	QP	Н	2.0	0	Y	MED.	16.7	3.7	34.8	0.0	0.0	19.7	-26.3	46.0	
264.9000	35.9	QP	Н	2.0	0	Z	MED.	16.7	3.7	34.8	0.0	0.0	21.5	-24.5	46.0	
264.9000	33.5	QP	V	1.0	0	X	MED.	16.7	3.7	34.8	0.0	0.0	19.1	-26.9	46.0	
264.9000	34.7	QP	V	1.0	90	Y	MED.	16.7	3.7	34.8	0.0	0.0	20.3	-25.7	46.0	
264.9000	32.0	QP	V	1.0	0	Z	MED.	16.7	3.7	34.8	0.0	0.0	17.6	-28.4	46.0	
																No Readings Found After
																3rd Harmonic

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 3 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta	Spec	
2007	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	a .
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
											0.0					
353.2000		QP	Н			X	MED.	14.0	4.1	34.6	0.0				46.0	No reading found
353.2000		QP	Н			Y	MED.	14.0	4.1	34.6	0.0				46.0	
353.2000		QP	Н			Z	MED.	14.0	4.1	34.6	0.0				46.0	
353.2000		QP	V			X	MED.	14.0	4.1	34.6	0.0				46.0	
353.2000		QP	V			Y	MED.	14.0	4.1	34.6	0.0				46.0	
353.2000		QP	V			Z	MED.	14.0	4.1	34.6	0.0				46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V													
		QP	V													

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 4 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec	
	Reading	or Quasi-	Polar.		Azimuth		Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
											0.0					
441.5000		QP	Н			X	MED.	13.9	4.5	34.3	0.0				46.0	no reading found
441.5000		QP	Н			Y	MED.	13.9	4.5	34.3	0.0				46.0	
441.5000		QP	Н			Z	MED.	13.9	4.5	34.3	0.0				46.0	
441.5000		QP	V			X	MED.	13.9	4.5	34.3	0.0				46.0	
441.5000		QP	V			Y	MED.	13.9	4.5	34.3	0.0				46.0	
441.5000		QP	V			Z	MED.	13.9	4.5	34.3	0.0				46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V													
		QP	V													

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 5 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec	
	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
											0.0					
529.8000		QP	Н			X	MED.	16.4	4.7	34.4	0.0				46.0	no reading found
529.8000		QP	Н			Y	MED.	16.4	4.7	34.4					46.0	
529.8000		QP	Н			Z	MED.	16.4	4.7	34.4					46.0	
529.8000		QP	V			X	MED.	16.4	4.7	34.4	0.0				46.0	
529.8000		QP	V			Y	MED.	16.4	4.7	34.4					46.0	
529.8000		QP	V			Z	MED.	16.4	4.7	34.4					46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V													
		QP	V													

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 6 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.		Azimuth (degrees)		Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
IVIIIZ	(ubu v)	Teak (QT)	((meters)	(degrees)	(21, 1, 21)	Chamici	(uD)	(uD)	(uD)	0.0	(uD)	(ubu v/III)	(uD)	(uDu v/III)	Comments
											0.0					
618.1000		QP	Н			X	MED.	17.7	5.1	33.9	0.0				46.0	no reading found
618.1000		QP	Н			Y	MED.	17.7	5.1	33.9					46.0	
618.1000		QP	Н			Z	MED.	17.7	5.1	33.9					46.0	
618.1000		QP	V			X	MED.	17.7	5.1	33.9	0.0				46.0	
618.1000		QP	V			Y	MED.	17.7	5.1	33.9					46.0	
618.1000		QP	V			Z	MED.	17.7	5.1	33.9					46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V													
		QP	V													

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 7 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.		Azimuth	Axis	Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)		Limit (dBuV/m)	Comments
IVIIIE	(ubu v)	T Cak (QT)	((meters)	(degrees)	(21,1,21)	Chamici	(uD)	(uD)	(uD)	0.0	(uD)	(ubu v/III)	(uD)	(uDu v/III)	Commences
											0.0					
706.4000		QP	Н			X	MED.	20.8	5.4	34.0	0.0				46.0	no reading found
706.4000		QP	Н			Y	MED.	20.8	5.4	34.0					46.0	
706.4000		QP	Н			Z	MED.	20.8	5.4	34.0					46.0	
706.4000		QP	V			X	MED.	20.8	5.4	34.0	0.0				46.0	
706.4000		QP	V			Y	MED.	20.8	5.4	34.0					46.0	
706.4000		QP	V			Z	MED.	20.8	5.4	34.0					46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V									_				
		QP	V		_							_				

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 8 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

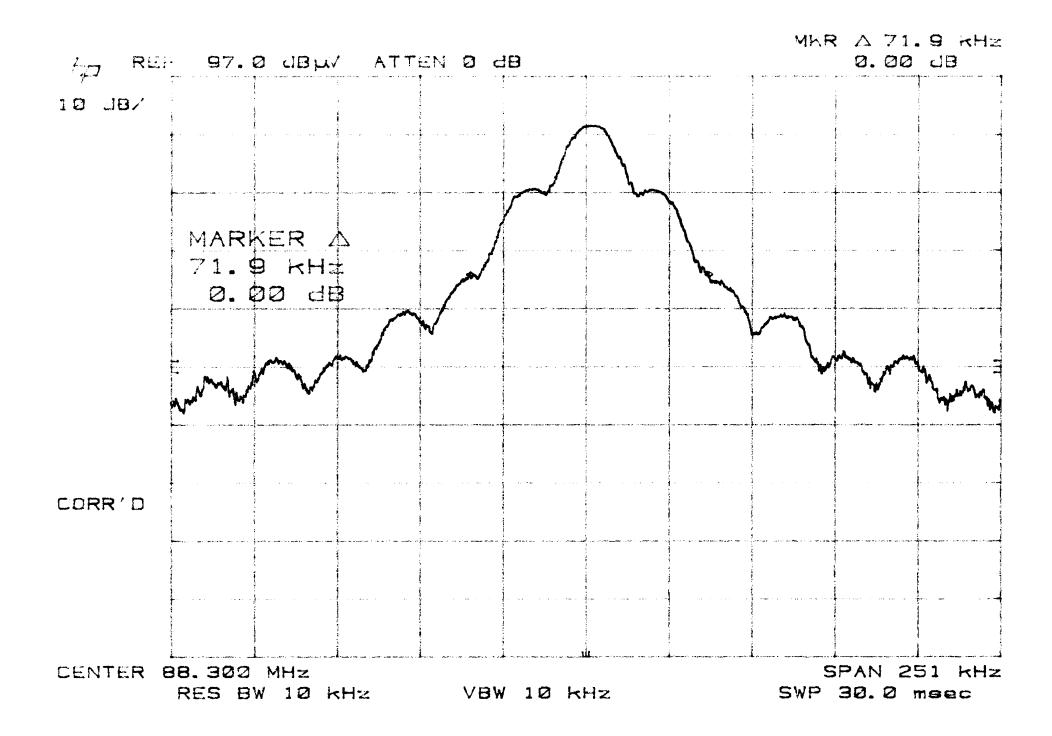
COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec	
	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
											0.0					
794.7000		QP	Н			X	MED.	25.0	5.6	33.8	0.0				46.0	no reading found
794.7000		QP	Н			Y	MED.	25.0	5.6	33.8					46.0	
794.7000		QP	Н			Z	MED.	25.0	5.6	33.8					46.0	
794.7000		QP	V			X	MED.	25.0	5.6	33.8	0.0				46.0	
794.7000		QP	V			Y	MED.	25.0	5.6	33.8					46.0	
794.7000		QP	V			Z	MED.	25.0	5.6	33.8					46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V													
		QP	V													

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 9 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING


COMPANY	Scosche Industries	DATE	3/11/05	
EUT	FM Audio Transmitter	DUTY CYCLE	N/A	%
MODEL	IPTRNS01	PEAK TO AVG	N/A	dB
S/N	1	TEST DIST.	3	Meters
TEST ENGINEER	R. Ramirez	LAB	F	

Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec	
	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
											_					
883.0000		QP	Н			X	MED.	24.9	5.7	33.4					46.0	no reading found
883.0000		QP	Н			Y	MED.	24.9	5.7	33.4					46.0	
883.0000		QP	Н			Z	MED.	24.9	5.7	33.4					46.0	
883.0000		QP	V			X	MED.	24.9	5.7	33.4					46.0	
883.0000		QP	V			Y	MED.	24.9	5.7	33.4					46.0	
883.0000		QP	V			Z	MED.	24.9	5.7	33.4					46.0	
		QP	Н													
		QP	Н													
		QP	Н													
		QP	V													
		QP	V													
		QP	V													

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 10 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

Test Location : Compatible Electronics Page : 1/1

Customer: Jack DeBiasioDate: 03/16/2005Manufacturer: Scosche Industries Inc.Time: 08:39:10 AM

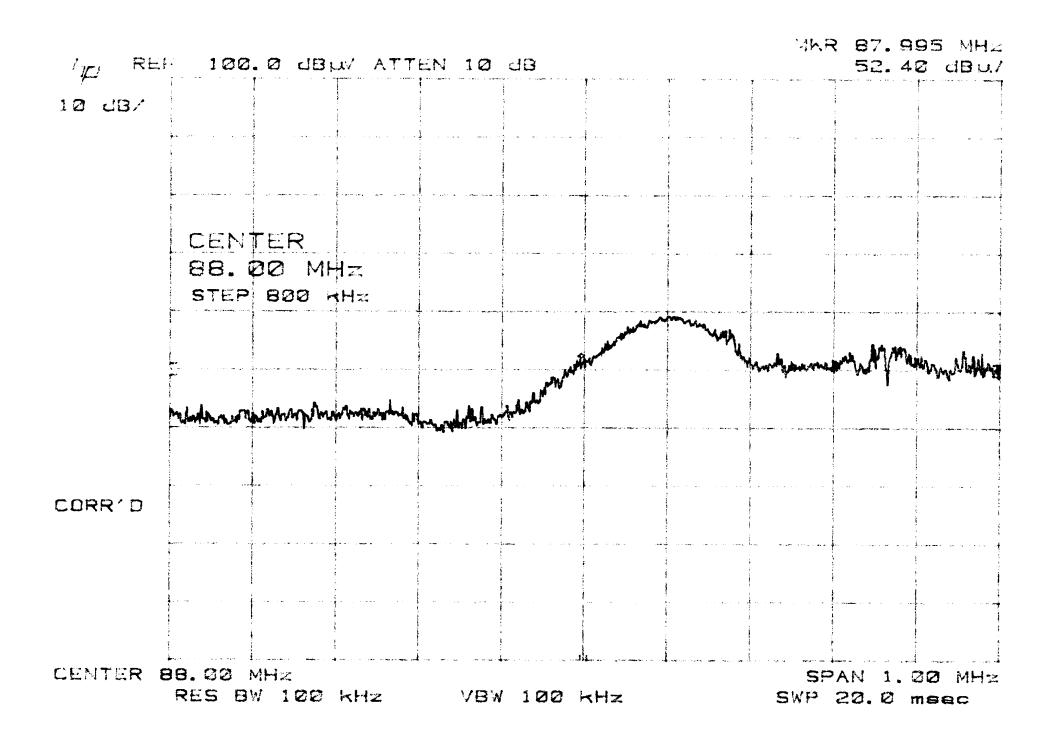
Eut name : FM Audio Transmitter Lab : F

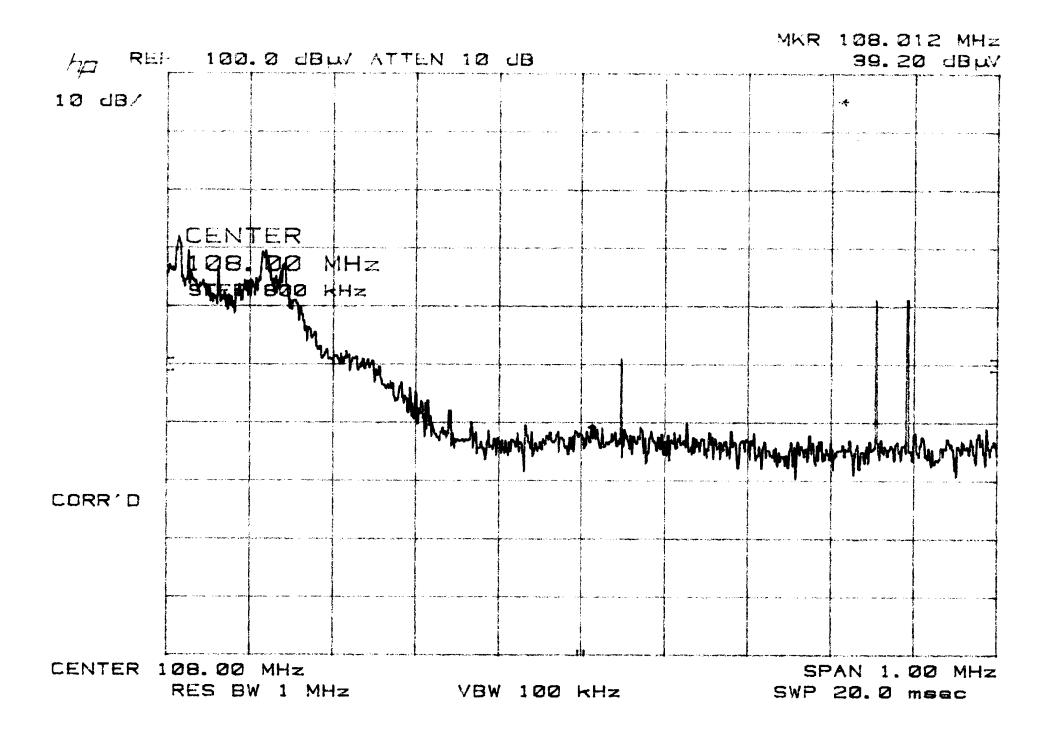
Model : IPTRNS01 Test Distance : 3.00 Meters

Serial # : Sample 1

Specification : FCC Pt. 15- Class B

Distance correction factor (20 * log(test/spec)) : 0.00


Test Mode : Qualification


Tx. Freq. 88.1

Test Engineer: R. Ramirez

Bandedge 88-108MHz.

Pol	Freq	Reading	Cable loss	Antenna factor	Amplifier gain	Corr'd rdg = R		Delta R-L
	MHz	dBuV	dВ	dB	dВ	dBuV/m	dBuV/m	dB
1V	87.995	52.40	2.70	8.27	35.18	28.19	40.00	-11.81
2V	108.012	39.20	2.93	9.89	35.47	16.56	43.50	-26.94

