

TEST REPORT FCC PART 15 SUBPART C 15.239 RSS-210 ISSUE 9 ANNEX B.9

Test report On Behalf of Scosche Industries Inc. For Wireless Hands-free Car Kit Model No.: BTFM4

> FCC ID: IKQBTFM4 IC: 6955A-BTFM4

Prepared for : Scosche Industries Inc. 1550 Pacific Ave, Oxnard, CA93033, USA

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

Date of Test:Aug. 19, 2018 ~ Aug. 31, 2018Date of Report:Aug. 31, 2018Report Number:HUAK180904967E

TEST RESULT CERTIFICATION

Applicant's name	Scosche Industries Inc.
Address:	1550 Pacific Ave, Oxnard, CA93033, USA
Manufacture's Name	Scosche Industries Inc.
Address:	1550 Pacific Ave, Oxnard, CA93033, USA
Product description	
Trade Mark:	SCOSCHE
Product name:	Wireless Hands-free Car Kit
Model and/or type reference:	BTFM4
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.239 RSS-210 issue 9 Annex B.9 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	Aug. 20, 2018 ~ Aug. 31, 2018
Date of Issue	Aug. 31, 2018
Test Result	Pass

2

2

Testing Engineer

Gory Qian)

Technical Manager

Edon Hu

(Eden Hu)

Authorized Signatory :

(Jason Zhou)

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 OPERATION OF EUT DURING TESTING	6
2.3 DESCRIPTION OF TEST SETUP	6
2.4 MEASUREMENT INSTRUMENTS LIST	7
3. RADIATED EMISSION	8
3.1. MEASUREMENT PROCEDURE	8
3.2. TEST SETUP	9
3.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL	10
3.4. TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION	10
3.5. TEST RESULT FOR SPURIOUS EMISSION	11
4. BANDWIDTH	13
4.1. MEASUREMENT PROCEDURE	13
4.2. TEST SETUP	13
4.3. TEST RESULT	14
5. PHOTOGRAPH OF TEST	16

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

FCC/IC RUL	RESULT			
FCC Part 15.2	239	Field Strength of Fundamental and Spurious		
RSS-210 ISSU	JE 9	Fmission	Compliant	
ANNEX B.	9	Emission		
FCC Part 15.2	239			
RSS-210 ISSU	JE 9	Bandwidth	Compliant	
ANNEX B.	9			
FCC Part 15.2	207	Line Conducted Emission	Ν/Δ	
RSS-GEN ISS	UE 5		IN/A	

NOTE: N/A stands for not applicable. The device is only used in the car, so the conducted emission is not applicable.

1.2 TEST FACILITY

1.2.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.2.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

FCC Registration No.: CN1229

Test Firm Registration Number : 616276

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Operation Frequency	88.1MHz-107.9MHz
Field Strength(3m)	43.14dBuV/m(AV)@3m
Modulation	FM
Number of channels	199(Channel spacing 100kHz)
Hardware Version	BT-15-BT-M V3.2
Software Version	YHW-BC23_6621EX_20180816_V7_(SCOSCHE BTFM)_SPBB1758E4
Antenna Designation	Integrated Antenna (Met 15.203 Antenna requirement)
Power Supply	DC12V

2.2 OPERATION OF EUT DURING TESTING

	NO.	TEST MODE DESCRIPTION				
	1	Transmitting mode(Low channel)				
	2	Transmitting mode(Middle channel)				
	3	Transmitting mode(High channel)				
Nc	ite:					
1.	For Radiated Emiss	sion, 3axis were chosen for testing for each applicable mode.				
2.	All the requirements have been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level					

which set to the manufacturer's maximum rated input to the modulator.

2.3 DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation and Above1GHz Radiation testing:

Item	Equipment	Model No.	ID or Specification	Remark
1	Car Battery		DC12V	Support
2	Load		10W	Support

2.4 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216 HKE-002		Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
11.	Pre-amplifier	EMCI	EMC05184 5SE	HKE-015	Dec. 28, 2017	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2017	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2017	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2017	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

3. RADIATED EMISSION

3.1. MEASUREMENT PROCEDURE

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground and opposite the horn antenna. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions below 1GHz, use 120KHz RBW and VBW>=3RBW for QP reading.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 8. Only the worst case is reported.

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP

3.2. TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

108.000

3.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL

Frequency MHz	Polarization	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB	Pass/Fail	Detector	
88.100	Н	40.26	67.96	27.70	Pass	PK	
88.100	V	43.67	67.96	24.29	Pass	PK	
98.000	Н	41.85	67.96	26.11	Pass	PK	
98.000	V	44.54	67.96	23.42	Pass	PK	
107.900	Н	42.05	67.96	25.91	Pass	PK	
107.900	V	44.97	67.96	22.99	Pass	PK	
Frequency MHz	Polarization	Level dB(uV/m) AV	Limit dB(uV/m) AV	Margin dB	Pass/Fail	Detector	
88.100	н	38.75	47.96	9.21	Pass	AV	
88.100	V	42.15	47.96	5.81 Pass		AV	
98.000	Н	40.12	47.96	7.84	Pass	AV	
98.000	V	42.95	47.96	5.01	Pass	AV	
107.900	Н	41.12	47.96	6.84	Pass	AV	
107.900	V	43.14	47.96	4.82	Pass	AV	
3.4. TEST RESU	JLT FOR FIELD ST	RENGTH OF B	AND EDGE EN	IISSION			
Frequency MHz	Polarization	Level dB(uV/m) QP	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Detector	
88.000	Н	31.62	40.00	-7.55	Pass	QP	
88.000	V	32.53	40.00	-6.82	Pass	QP	
108.000	н	33.44	43.50	-12.02	Pass	QP	

Note: The above two frequencies are the worst case for the band edge emission test.

35.67

43.50

-8.98

Pass

QP

٧

3.5. TEST RESULT FOR SPURIOUS EMISSION

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		52.6332	24.40	8.41	32.81	40.00	-7.19	peak			
2	*	107.9000	33.33	8.72	42.05						
3		136.6999	22.89	13.66	36.55	43.50	-6.95	peak			
4		172.2666	21.17	10.78	31.95	43.50	-11.55	peak			
5		789.8333	1.85	27.18	29.03	46.00	-16.97	peak			
6		899.7667	3.91	28.60	32.51	46.00	-13.49	peak			

RESULT: PASS

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		52.6332	25.53	8.22	33.75	40.00	-6.25	peak			
2	*	107.9000	43.48	1.49	44.97						
3		170.6500	21.85	14.66	36.51	43.50	-6.99	peak			
4		233.6999	27.49	12.30	39.79	46.00	-6.21	peak			
5		809.2332	1.50	27.32	28.82	46.00	-17.18	peak			
6		959.5833	0.89	29.91	30.80	46.00	-15.20	peak			

RESULT: PASS

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin=Measurement-Limit.
- 2 The "Factor" value can be calculated automatically by software of measurement system.
- 3 All test modes had been tested. The High channel is the worst case and recorded in the report.

4. BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. Set the parameters of SPA as below: Centre frequency = Operation Frequency RBW=3KHz VBW=10KHz Span: 300kHz Sweep time: Auto
- 2. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 3. Record the plots and Reported.
- 4. In addition, the requirement has been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level which set to the manufacturer's maximum rated input to the modulator.

4.2. TEST SETUP

4.3. TEST RESULT

Channel	Channel Frequency(MHz)	-20dB bandwidth (kHz)	99% bandwidth (kHz)	Limit(kHz)
Low	88.1	137.1	127.55	200
Middle	98.0	137.2	128.08	200
High	107.9	137.3	127.48	200

Keysight Spectrum Analyzer - Occupied BW ALIGN AUTO Center Freq: 88.100000 MHz Trig: Free Run Avg|H #Atten: 0 dB Frequency Center Freq 88.100000 MHz Radio Std: None #IFGain:Low Avg|Hold:>10/10 PREAMP Radio Device: BTS 15 dB/div Ref -30.00 dBm Log **Center Freq** 88.100000 MHz Span 300 kHz Sweep 40.87 ms Center 88.1 MHz #Res BW 3 kHz CF Step 30.000 kHz Man #VBW 10 kHz <u>Auto</u> **Total Power** -58.8 dBm **Occupied Bandwidth** 127.55 kHz **Freq Offset** 0 Hz Transmit Freq Error 415 Hz **OBW Power** 99.00 % x dB Bandwidth 137.1 kHz x dB -20.00 dB MSG STATUS

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

5. PHOTOGRAPH OF TEST

