

RADIO TEST REPORT FCC ID: IKQBT100

Product:	BLUETOOTH HEADSET
Trade Name:	N/A
Model No.:	BT100
Serial Model:	BT100WT、BT100BL、BT100PK
Report No.:	NTEK-2016NT07076988F
Issue Date:	19 Jul. 2016

Prepared for

SCOSCHE INDUSTRIES INC. 1550 Pacific Avenue, Oxnard, CA 93033,United States

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TABLE OF CONTENTS

1	TES	T RESULT CERTIFICATION	3
2	SUN	IMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4	GEN	NERAL DESCRIPTION OF EUT	6
5	DES	SCRIPTION OF TEST MODES	8
6	SET	UP OF EQUIPMENT UNDER TEST	9
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10 11
7	TES	T REQUIREMENTS	12
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT	17 26 28 34 41 47 53
	7.9	ANTENNA APPLICATION	61

1 TEST RESULT CERTIFICATION

Applicant's name:	Scosche Industries Inc.
Address:	1550 Pacific Avenue, Oxnard, CA 93033,United States
Manufacture's Name:	Creative Game Accessories Co.,LTD
Address:	4/F,Block A , Dajiahao Square, No.362, 2nd Yu'an Road,Xin'an Street, Bao'an District, Shenzhen, China
Product description	
Product name:	BLUETOOTH HEADSET
Model and/or type reference:	BT100
Serial Model:	BT100WT、BT100BL、BT100PK

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J:2015 FCC 47 CFR Part 15, Subpart C:2015 KDB 174176 D01 Line Conducted FAQ v01r01 ANSI C63.10-2013 DA 00-705	Complied

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:7 Jul. 2016 ~ 19 Jul. 2016	
Testing Engineer	: Jusan Su (Susan Su)	
Technical Manager	: Jusen chen (Jason Chen)	
Authorized Signatory	:(Sam Chen)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247(c)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description		
EMC Lab.	:	Accredited by CNAS, 2014.09.04
		The certificate is valid until 2017.09.03
		The Laboratory has been assessed and proved to be in compliance with
		CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
		The Certificate Registration Number is L5516.
		Accredited by FCC, September 6, 2013
		The Certificate Registration Number is 238937.
		Accredited by Industry Canada, August 29, 2012
		The Certificate Registration Number is 9270A-1.
Name of Firm	:	NTEK Testing Technology Co., Ltd
Site Location	:	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	BLUETOOTH HEADSET			
Trade Name	N/A			
FCC ID	IKQBT100			
Model No.	BT100			
Serial Model	BT100WT、BT100BL、BT100PK			
Model Difference	All the model are the same circuit and RF module, except the model No. and colour.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK,π/4-DQPSK, 8DPSK			
Number of Channels	79 Channels			
Antenna Type	PCB Antenna			
Antenna Gain	1.0 dBi			
Power supply	DC supply: DC 3.7V/80mAh from Li-ion Battery.			
	Adapter supply: N/A			
HW Version	V3			
SW Version	V6			

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Page 7 of 61

Report No.:NTEK-2016NT07076988F

Revision History						
Report No.	Version	Description	Issued Date			
NTEK-2016NT07076988F	Rev.01	Initial issue of report	Jul 19, 2016			

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Frequency(MHz)
2402
2403
2441
2442
2479
2480

Note: fc=2402MHz+k×1MHz k=0 to 78

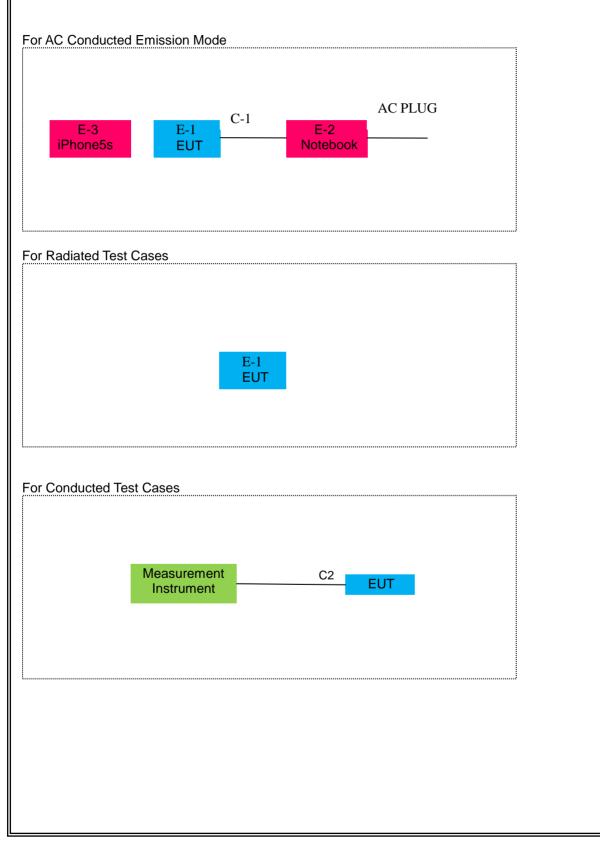
The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission	
Final Test Mode	Description	
Mode 1	Normal link	
Note: AC nower line C	anducted Emission was tested under maximum output nower	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases					
Final Test Mode	Description				
Mode 1	Normal link				
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.


For Conducted Test Cases					
Final Test Mode	Description				
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				
Note: The engineering	test program was provided and the EUT was programmed to be in continuous				

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	BLUETOOTH HEADSET	N/A	BT100	IKQBT100	EUT
E-2	Notebook	Lenove	Thinkpad Edge E430	N/A	Peripherals
E-3	iPhone5s	Apple	A1518		

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	NO	NO	NO	1.2m
C-2	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Radiat	Radiation Test equipment								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2016.07.06	2017.07.05	1 year		
2	Test Receiver	R&S	ESPI	101318	2016.06.07	2017.06.06	1 year		
3	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year		
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.07	2017.06.06	1 year		
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2016.06.07	2017.06.06	1 year		
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2016.07.06	2017.07.05	1 year		
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year		
8	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year		
9	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.08	2017.06.07	1 year		
10	Power Meter	R&S	NRVS	100696	2016.07.06	2017.07.05	1 year		
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2016.07.06	2017.07.05	1 year		
12	Test Cable	N/A	R-01	N/A	2016.07.06	2017.07.05	1 year		
13	Test Cable	N/A	R-02	N/A	2016.07.06	2017.07.05	1 year		
Condu	uction Test equi	ipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Test Receiver	R&S	ESCI	101160	2016.06.06	2017.06.05	1 year		
2	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year		
3	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year		
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year		
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2016.06.07	2017.06.06	1 year		
6	Absorbing clamp	R&S	MOS-21	100423	2016.06.08	2017.06.07	1 year		
7	Test Cable	N/A	C01	N/A	2016.06.08	2017.06.07	1 year		
8	Test Cable	N/A	C02	N/A	2016.06.08	2017.06.07	1 year		
9	Test Cable	N/A	C03	N/A	2016.06.08	2017.06.07	1 year		
		1							

Note: Each piece of equipment is scheduled for calibration once a year.

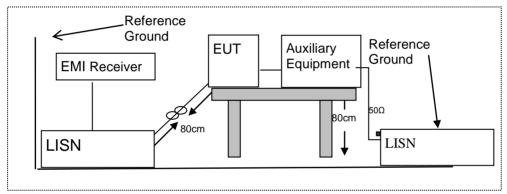
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit


	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

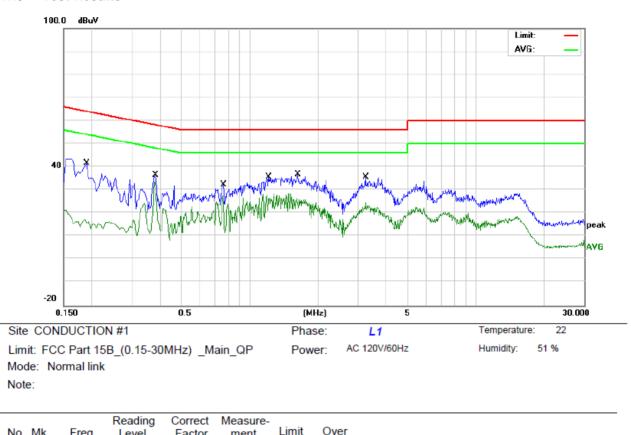
2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

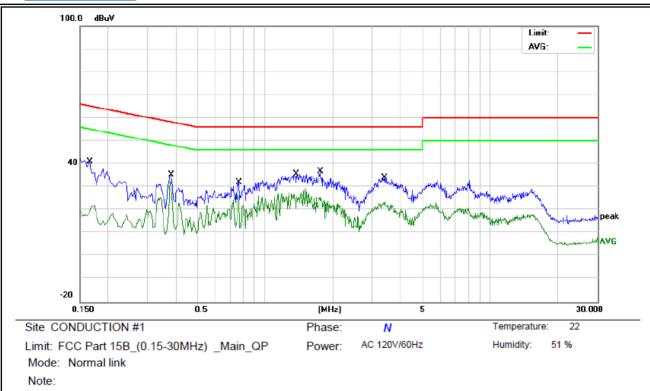
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

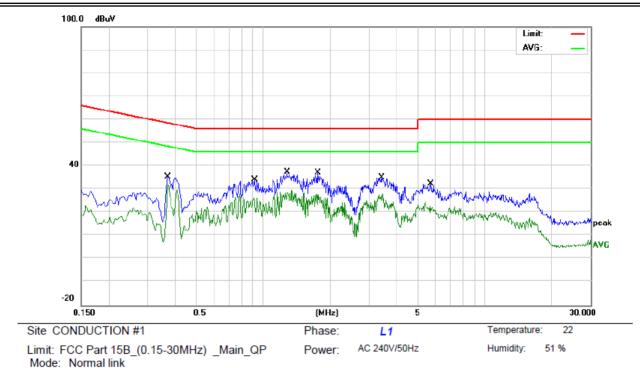

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

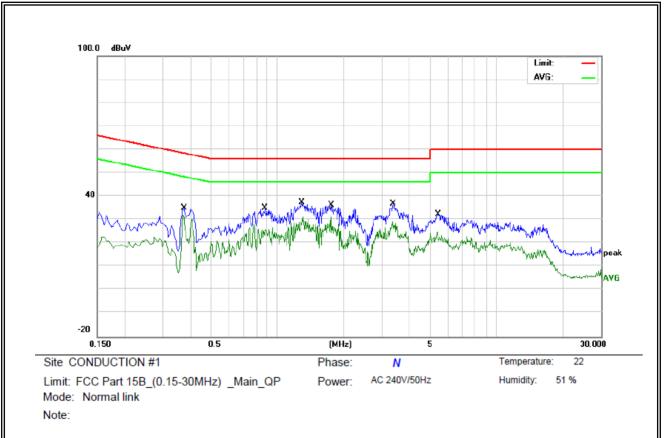
Pass


7.1.6 Test Results

No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1900	31.39	10.13	41.52	64.03	-22.51	QP	
2	0.1900	5.80	10.13	15.93	54.03	-38.10	AVG	
3	0.3820	26.50	10.06	36.56	58.23	-21.67	QP	
4 *	0.3820	20.52	10.06	30.58	48.23	-17.65	AVG	
5	0.7660	22.46	9.80	32.26	56.00	-23.74	QP	
6	0.7660	13.07	9.80	22.87	46.00	-23.13	AVG	
7	1.2138	25.78	9.82	35.60	56.00	-20.40	QP	
8	1.2138	16.40	9.82	26.22	46.00	-19.78	AVG	
9	1.6338	27.17	9.77	36.94	56.00	-19.06	QP	
10	1.6338	15.19	9.77	24.96	46.00	-21.04	AVG	
11	3.2580	25.95	9.74	35.69	56.00	-20.31	QP	
12	3.2580	13.27	9.74	23.01	46.00	-22.99	AVG	


Page 14 of 61

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1660	30.85	10.06	40.91	65.15	-24.24	QP	
2	0.1660	9.46	10.06	19.52	55.15	-35.63	AVG	
3	0.3820	25.28	10.06	35.34	58.23	-22.89	QP	
4 *	0.3820	20.02	10.06	30.08	48.23	-18.15	AVG	
5	0.7660	22.35	9.82	32.17	56.00	-23.83	QP	
6	0.7660	12.87	9.82	22.69	46.00	-23.31	AVG	
7	1.3740	25.74	9.82	35.56	56.00	-20.44	QP	
8	1.3740	16.02	9.82	25.84	46.00	-20.16	AVG	
9	1.7620	27.13	9.78	36.91	56.00	-19.09	QP	
10	1.7620	15.97	9.78	25.75	46.00	-20.25	AVG	
11	3.3900	24.37	9.73	34.10	56.00	-21.90	QP	
12	3.3900	12.92	9.73	22.65	46.00	-23.35	AVG	


Page 15 of 61

Note:

Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.3699 25.31 10.07 35.38 58.50 -23.12 QP 0.3699 21.74 10.07 31.81 48.50 -16.69 2 AVG 1 3 0.9100 9.83 56.00 -21.98 QP 24.19 34.02 46.00 -21.82 4 0.9100 14.35 9.83 24.18 AVG 1.2820 27.60 56.00 -18.58 QP 5 9.82 37.42 46.00 -17.90 6 1.2860 18.28 9.82 28.10 AVG 1.7540 27.28 37.04 56.00 -18.96 QP 7 9.76 1.7540 13.96 9.76 23.72 46.00 -22.28 AVG 8 3.4340 56.00 -20.83 QP 9 25.43 9.74 35.17 10 3.4340 18.01 9.74 27.75 46.00 -18.25 AVG QP 5.7057 22.55 9.76 32.31 60.00 -27.69 11 12 5.7057 11.12 9.76 20.88 50.00 -29.12 AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3738	24.93	10.07	35.00	58.41	-23.41	QP	
2		0.3738	19.43	10.07	29.50	48.41	-18.91	AVG	
3		0.8780	25.25	9.85	35.10	56.00	-20.90	QP	
4		0.8780	16.17	9.85	26.02	46.00	-19.98	AVG	
5		1.2900	27.61	9.83	37.44	56.00	-18.56	QP	
6	*	1.2900	18.02	9.83	27.85	46.00	-18.15	AVG	
7		1.7540	26.42	9.78	36.20	56.00	-19.80	QP	
8		1.7540	14.84	9.78	24.62	46.00	-21.38	AVG	
9		3.3660	27.06	9.73	36.79	56.00	-19.21	QP	
10		3.3660	16.58	9.73	26.31	46.00	-19.69	AVG	
11		5.4458	22.75	9.73	32.48	60.00	-27.52	QP	
12		5.4458	12.25	9.73	21.98	50.00	-28.02	AVG	

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art13.20	According to 1 CO 1 art 13.200, restricted bands								
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	(2)						
13.36-13.41									

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

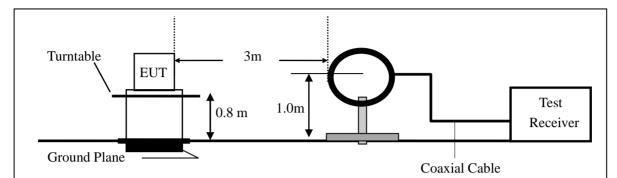
Frequency(MHz)	Class B (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

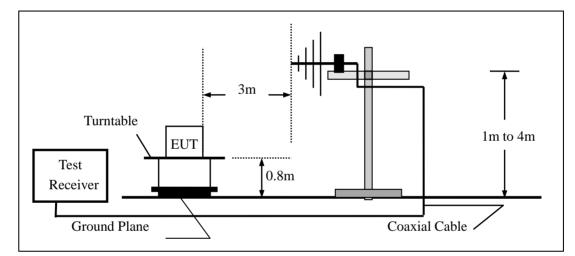
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

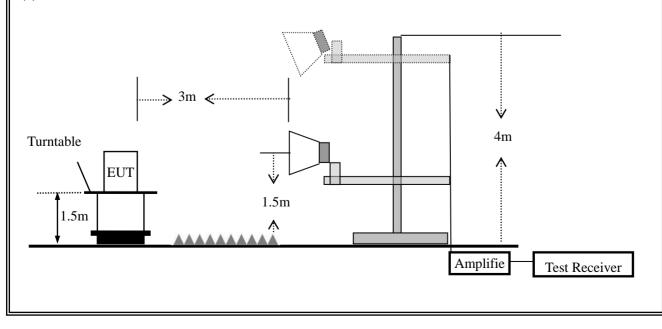
Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.



7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

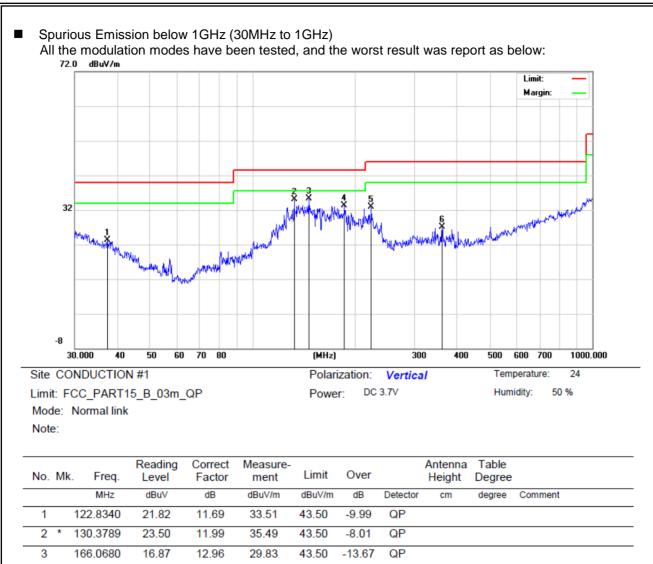
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

	BLUETOOTH HEADSET	Model No.:	BT100
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Su


ſ	Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)		
	(MHz)	H/V	PK	AV	PK	AV	PK	AV	
ſ									

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

*:Maximum data x:Over limit !:over margin

10.92

10.33

10.18

12.14

15.84

16.41

23.06

26.17

26.59

46.00

46.00

46.00

QP

QP

QP

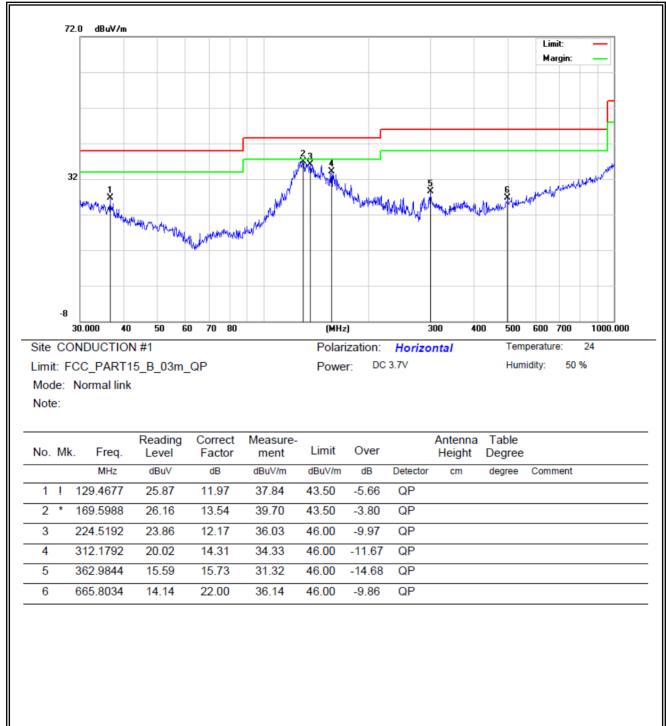
-22.94

-19.83

-19.41

222.1698

366.8231


432.5457

4

6

Page 22 of 61

Report No.:NTEK-2016NT07076988F

_									
	Spurious Emission Above 1GHz (1GHz to 25GHz)								
HEADSET			Model No.:		BT100				
Т	emperature:	20 ℃		Relative Humidity	Relative Humidity: 48%				
Т	est Mode:	Mode2/Mode3	3/Mode4	Test By:		Susan	Su		
Ā	Il the modulation n	nodes have been	tested, a	nd the worst result	t was	report	as below:		
	Frequency	Meter Reading	Factor	Emission Level	Lir	mits	Margin	Remar	Comment
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dB	uV/m)	(dB)	k	Comment
			Low Char	nnel (2402 MHz)-Ab	ove 10	G			
	4804.018	54.16	-3.64	57.80	74	4.00	-16.20	Pk	Vertical
	4804.018	41.24	-3.64	44.88	54	1.00	-9.12	AV	Vertical
	7206.217	52.23	-0.95	53.18	74	1.00	-20.82	Pk	Vertical
	7206.217	41.64	-0.95	42.59	54	1.00	-11.41	AV	Vertical
	4804.206	60.47	-3.64	64.11	74	4.00	-9.89	Pk	Horizontal
	4804.206	44.45	-3.64	48.09	54	1.00	-5.91	AV	Horizontal
	7206.153	55.57	-0.95	56.52	74	4.00	-17.48	Pk	Horizontal
	7206.153	38.69	-0.95	39.64	54	1.00	-14.36	AV	Horizontal
			Mid Char	nnel (2441 MHz)-Abo	ove 10	G			
	4882.234	56.37	-3.68	60.05	74	4.00	-13.95	Pk	Vertical
	4882.234	42.48	-3.68	46.16	54	1.00	-7.84	AV	Vertical
	7323.402	55.45	-0.82	56.27	74	1.00	-17.73	Pk	Vertical
	7323.402	43.38	-0.82	44.20	54	1.00	-9.80	AV	Vertical
	4882.013	60.27	-3.68	63.95	74	1.00	-10.05	Pk	Horizontal
	4882.013	41.43	-3.68	45.11	54	4.00	-8.89	AV	Horizontal
	7323.211	56.48	-0.82	57.30	74	1.00	-16.70	Pk	Horizontal
	7323.211	43.23	-0.82	44.05	54	4.00	-9.95	AV	Horizontal
			High Char	nnel (2480 MHz)- Ab	ove 1	G			
	4960.152	60.72	-3.59	64.31	74	4.00	-9.69	Pk	Vertical
	4960.152	43.54	-3.59	47.13	54	4.00	-6.87	AV	Vertical
	7440.415	51.46	-0.68	52.14	74	4.00	-21.86	Pk	Vertical
	7440.415	39.24	-0.68	39.92	54	4.00	-14.08	AV	Vertical
	4960.204	59.68	-3.59	63.27	74	1.00	-10.73	Pk	Horizontal
	4960.204	41.54	-3.59	45.13	54	4.00	-8.87	AV	Horizontal
	7440.176	54.45	-0.68	55.13	74	4.00	-18.87	Pk	Horizontal
	7440.176	44.44	-0.68	45.12		1.00	-8.88	AV	Horizontal
N	ote: (1) All Read	ings are Peak Va	lue (VBW	=3MHz) and Peak	(Valu	e (VBV	v=10Hz).		

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Reading Level+Probe Factor +Cable Loss. (3)All other emissions more than 20dB below the limit.

Report No.:NTEK-2016NT07076988F

Spurious									
EUT: BLUETOOTH HEADSET		Model No.:		BT100					
Temperature	:	20 ℃			Relative H	umidity:	48%		
Test Mode:			/Mode3/Mo		Test By:		Susan Su		
All the modu	ulation mo	des ha	ve been te	sted, a	and the wo	rst result wa	s report as be	elow:	
Frequency	Meter Re	ading	Factor	Emis	sion Level	Limits	Margin	Detector	O a man a mat
(MHz)	(dBµ	V)	(dB)	(d	BµV/m)	(dBµV/m)	(dB)	Туре	Comment
				1M	bps Non-	hopping			
2390	54.6	3	-13.06		41.57	74	-32.43	Pk	Vertical
2390	52.4	7	-13.06		39.41	54	-14.59	AV	Vertical
2390	55.6	8	-13.06		42.62	74	-31.38	Pk	Horizontal
2390	56.1	2	-13.06		43.06	54	-10.94	AV	Horizontal
2483.5	60.3	5	-12.78		47.57	74	-26.43	Pk	Vertical
2483.5	60.4	3	-12.78		47.65	54	-6.35	AV	Vertical
2483.5	58.1	2	-12.78		45.34	74	-28.66	Pk	Horizontal
2483.5	57.4	3	-12.78		44.65	54	-9.35	AV	Horizontal
					1Mbps ho	oping			_
2390	57.9	5	-13.06		44.89	74	-29.11	Pk	Vertical
2390	59.4	1	-13.06		46.35	54	-7.65	AV	Vertical
2390	57.2	2	-13.06		44.16	74	-29.84	Pk	Horizontal
2390	59.6	5	-13.06		46.59	54	-7.41	AV	Horizontal
2483.5	58.2	4	-12.78		45.46	74	-28.54	Pk	Vertical
2483.5	59.1	6	-12.78		46.38	54	-7.62	AV	Vertical
2483.5	60.5	8	-12.78		47.8	74	-26.2	Pk	Horizontal
2483.5	57.4		-12.78		44.69	54	-9.31	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Spurious	Emission in Res	stricted Bar	nd 32€	SOMMHz-1	3000MHz			
EUT:	EUT: BLUETOOTH HEADSET			Model No.		BT100		
Temperature		-		Relative H	Relative Humidity: 48%			
Test Mode:	Mode2	2/Mode3/Mo	ode4	Test By:		Susan Su		
All the modu	ulation modes ha	ve been ter	sted, a	and the wo	rst result wa	as report as be	elow:	
Frequency	Meter Reading	Factor	Emis	sion Level	Limits	Margin	Detector	Commont
(MHz)	(dBµV)	(dB)	(dl	BµV/m)	(dBµV/m)	(dB)	Туре	Comment
			1M	bps Non-	hopping			
3260	56.14	-13.06		43.08	74	-30.92	Pk	Vertical
3260	55.32	-13.06		42.26	54	-11.74	AV	Vertical
3260	57.51	-13.06		44.45	74	-29.55	Pk	Horizontal
3260	54.28	-13.06	-	41.22	54	-12.78	AV	Horizontal
3435	60.36	-12.78	4	47.58	74	-26.42	Pk	Vertical
3435	49.58	-12.78		36.8	54	-17.2	AV	Vertical
3435	60.37	-12.78	4	47.59	74	-26.41	Pk	Horizontal
3435	50.02	-12.78	:	37.24	54	-16.76	AV	Horizontal
17215	61.15	-12.24	2	48.91	74	-25.09	Pk	Vertical
17215	53.48	-12.24	4	41.24	54	-12.76	AV	Vertical
17215	61.32	-12.24	1	49.08	74	-24.92	Pk	Horizontal
17215	53.56	-12.24	4	41.32	54	-12.68	AV	Horizontal
	.		1	Mbps ho	pping		.	т
3260	58.42	-13.06	4	45.36	74	-28.64	Pk	Vertical
3260	52.35	-13.06	;	39.29	54	-14.71	AV	Vertical
3260	58.13	-13.06		45.07	74	-28.93	Pk	Horizontal
3260	54.24	-13.06	4	41.18	54	-12.82	AV	Horizontal
3435	60.23	-12.78	4	47.45	74	-26.55	Pk	Vertical
3435	50.68	-12.78		37.9	54	-16.1	AV	Vertical
3435	60.46	-12.78	4	47.68	74	-26.32	Pk	Horizontal
3435	50.39	-12.78	:	37.61	54	-16.39	AV	Horizontal
17215	61.24	-12.24		49	74	-25	Pk	Vertical
17215	53.47	-12.24	4	41.23	54	-12.77	AV	Vertical
17215	62.22	-12.24	4	49.98	74	-24.02	Pk	Horizontal
17215	54.26	-12.24		42.02	54	-11.98	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and DA 00-705

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

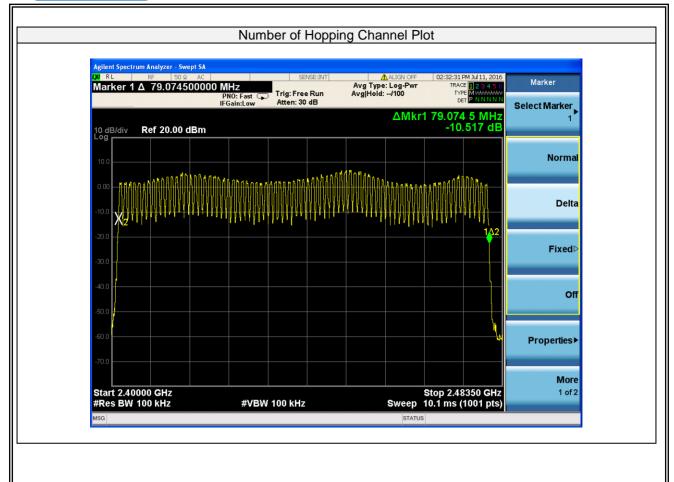
7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure


The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

	BLUETOOTH HEADSET	Model No.:	BT100
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Su

Number of Hopping (Channel)	Adaptive Frequency hopping (Channel)	limit	Verdict
79	20	≥15	Pass

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and DA 00-705

7.4.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

- RBW ≥ 30KHz
- $VBW \ge 3*RBW$
- Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

	BLUETOOTH HEADSET	Model No.:	BT100
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Su

Modulation	Channel	Channel	Measurement	Limit		
Mode	Number	Frequency	Bandwidth	(kHz)	Verdict
		(MHz)	(kHz)			
	0	2402	1.000	>935.7	N/A	PASS
GFSK	39	2441	1.000	>937.0	N/A	PASS
	78	2480	1.000	>883.2	N/A	PASS
	0	2402	1.000	>838.667	2/3 of 20dB BW	PASS
π/4-DQPSK	39	2441	1.000	>840.000	2/3 of 20dB BW	PASS
	78	2480	1.000	>836.000	2/3 of 20dB BW	PASS
	0	2402	1.000	>841.333	2/3 of 20dB BW	PASS
8DPSK	39	2441	1.000	>843.333	2/3 of 20dB BW	PASS
	78	2480	1.000	>841.333	2/3 of 20dB BW	PASS

Channel Separation plot on channel 77-78	3Mbps				
Agilent Spectrum Analyzer - Swept SA Off RL RF 50 Ω AC SENSE:INT Marker 1 Δ -1.000000000 MHz PN0: Far → IFGain:Low IFGain:Low	Aughold:/100 Type: Log-Pwr TRACE 23:41 PM Jul 11, 2016 Avg Type: Log-Pwr TRACE 23:45 6 Avg Hold:/100 Type Maxward Der PNNNNN				
10 dB/div Ref 20.00 dBm	ΔMkr1 -1.000 0 MHz 1.015 dB				
	Normal				
1Δ2					
-10.0	X2				
-20.0					
-30.0	Fixed⊳				
-40.0	off				
-60.0					
-60.0	Properties⊁				
-70.0	More				
Center 2.479500 GHz #Res BW 30 kHz #VBW 100 kHz	Span 2.500 MHz 1 of 2 Sweep 2.67 ms (1001 pts)				
MSG	STATUS				

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and DA 00-705

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

 $RBW \ge 1MHz$

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Measure the maximum time duration of one single pulse.

Set the EUT for DH5, DH3 and DH1 packet transmitting.

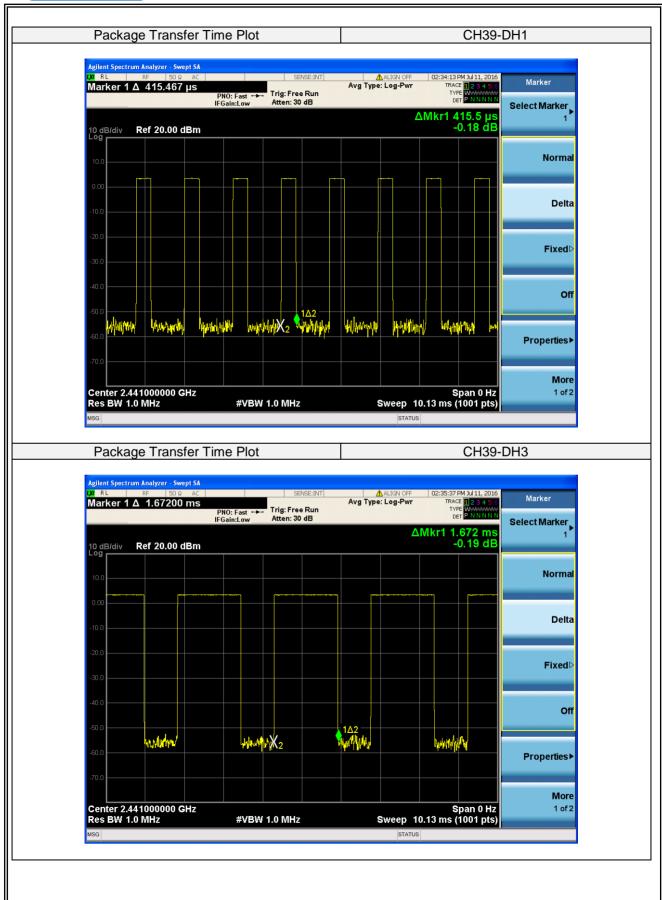
Measure the maximum time duration of one single pulse.

7.5.6 Test Results

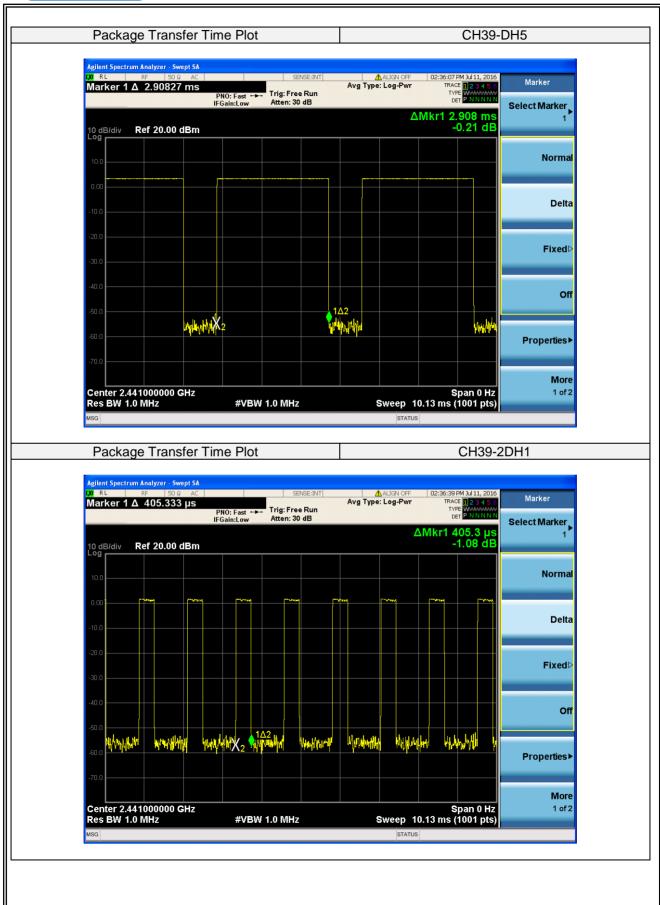
		BLUETOOT HEADSET	Η	Model No.:		BT100			
Temperature: 20 °C			Relative Humidity:		48%				
Test Mode: Mode2/Mo		Mode2/Mode	le3/Mode4 Test By:			Susan Su			
Modulation Mode	Chann Numb		Mode	Hops Over Occupancy Time (ms)	(1	e width ms)	dwell time (ms)	Limit (ms)	Verdict
GFSK	39	DH1	Normal	320.00		.416	133.120	<400	PASS
	39	DIII	AFH	160.00		.416	66.560	<400	PASS
	39	DH3	Normal	160.00	1.672		267.520	<400	PASS
	39		AFH	80.00	1.672		133.760	<400	PASS
	39	DH5	Normal	106.67	2.908		310.196	<400	PASS
	39	DIIS	AFH	53.33	2.908		155.084	<400	PASS
π/4-DQPSK	39	2DH1	Normal	320.00	0.405		129.600	<400	PASS
	39	20111	AFH	160.00	0.405		64.800	<400	PASS
	39	2DH3	Normal	160.00	1.692		270.720	<400	PASS
	39	20113	AFH	80.00	1.692		135.360	<400	PASS
	39	2DH5	Normal	106.67	2.918		311.263	<400	PASS
	39	20113	AFH	53.33	2.918		155.617	<400	PASS
8DPSK	39		Normal	320.00	0.416		133.120	<400	PASS
	39	3011	AFH	160.00	0.	.416	66.560	<400	PASS
	39		Normal	160.00	1.662		265.920	<400	PASS
	39	50105	AFH	80.00	1.662		132.960	<400	PASS
	39		Normal	106.67	2.	.918	311.263	<400	PASS
	39	50115	AFH	53.33	2.918		155.617	<400	PASS

Note:

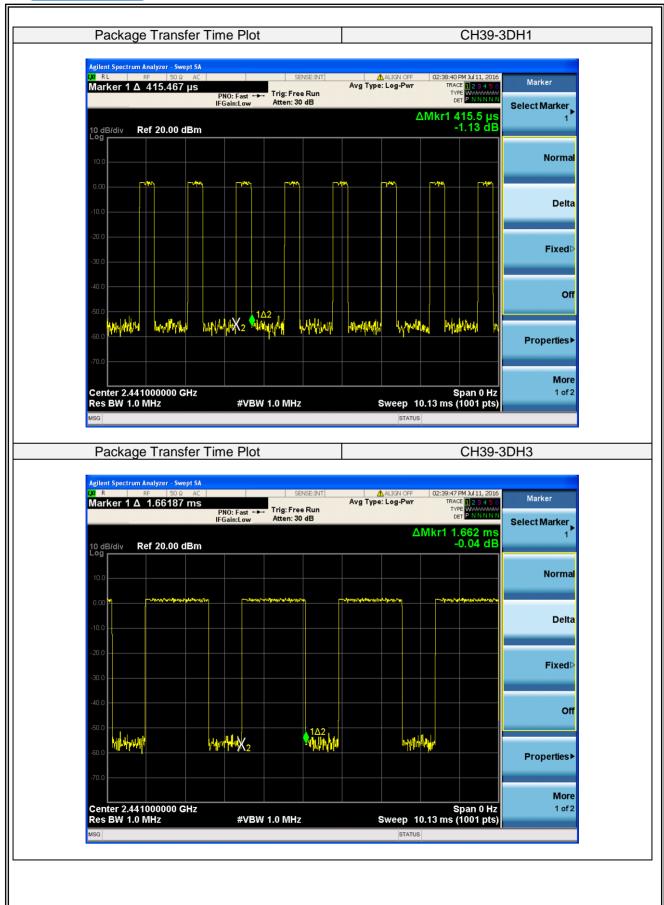
A Period Time = (channel number)*0.4


DH1 Time Slot: Reading * (1600/2)*31.6/(channel number) DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)

DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)


For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



Agilent Spectrum Analyzer - Swept QX RL RE 50.0 Marker 1 Δ 2.91840 m 10 dB/div Ref 20.00 dB	SA AC SENSE:INT IS PN0: Fast →→ IFGain:Low Atten: 30 dB	ALIGN OFF 02:40:20 PM 2011, 201 Avg Type: Log-Pwr TRACE	
10 dB/div Ref 20.00 dB	in Gam. Low		Select Marker
	m	-2.03 df	
10.0			Normal
0.00 <mark>- 1921 - 1929 - 1</mark>	เสียงมาะทำหน่างเสียงแห่งหา	การการกระสารกระบาทการกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระสาร	
-10.0			Delta
-20.0			Fixed⊳
-30.0			
-40.0			Off
-60.0	nyimluk 2		Properties▶
-70.0			. Toperaesv
Center 2.441000000 GH	z	Span 0 H:	More 1 of 2
Res BW 1.0 MHz	#VBW 1.0 MHz	Sweep 10.13 ms (1001 pts status	9)

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and DA 00-705

7.6.2 Conformance Limit

No limit requirement.

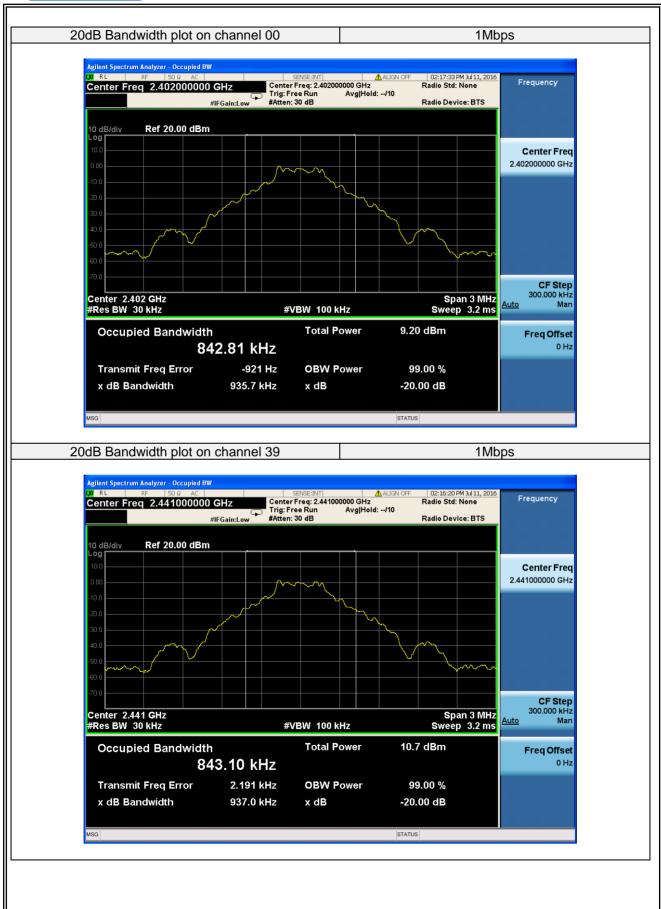
7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

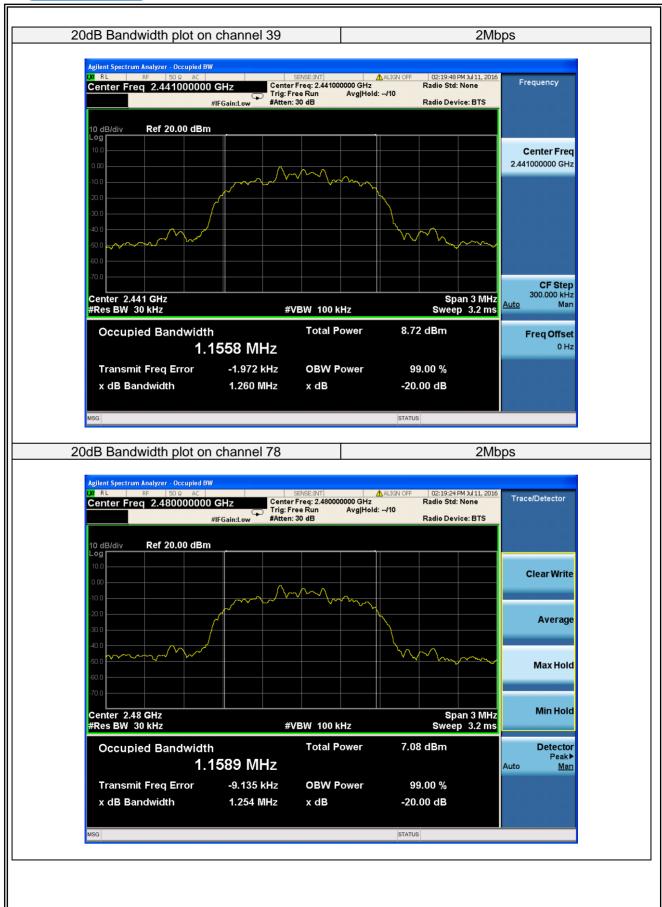
7.6.5 Test Procedure

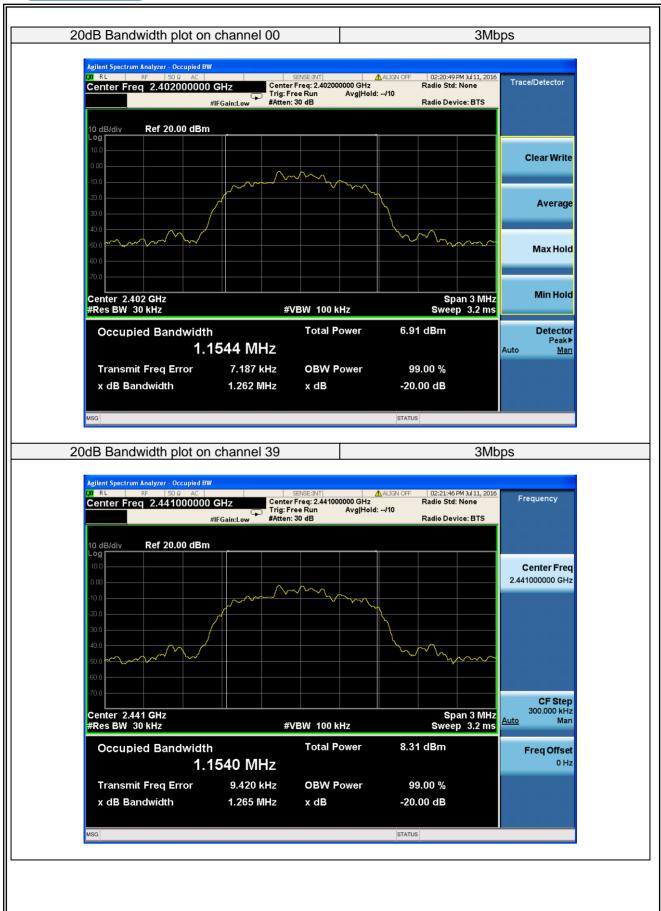

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

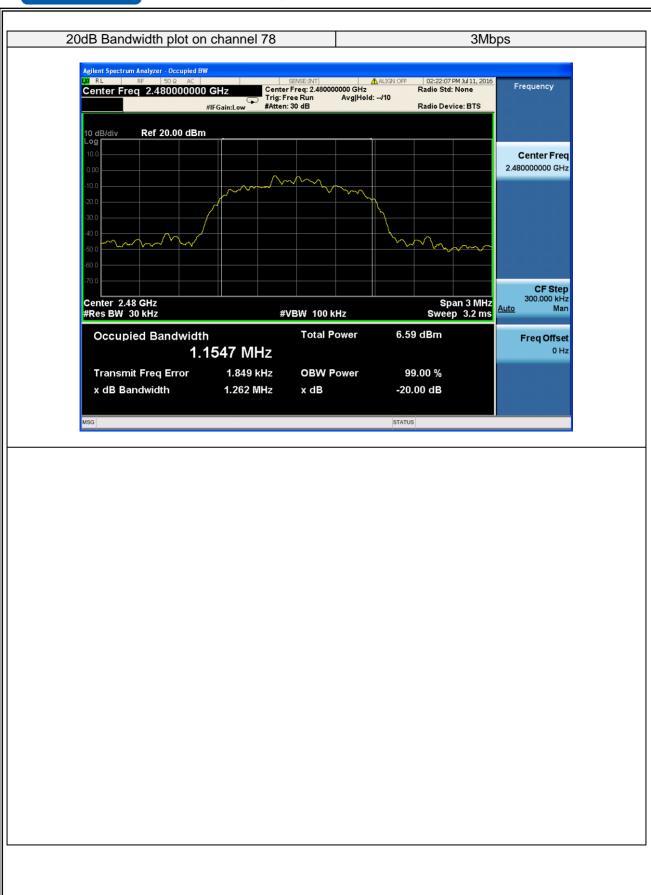
7.6.6 Test Results


IFUT	BLUETOOTH HEADSET	Model No.:	BT100
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Su

Test Channel Frequency (MHz)		Measurement	Limit	Verdict	
		Bandwidth (KHz)	(kHz)	verdict	
		1Mbps			
00	2402	935.700	N/A	PASS	
39	2441	937.000	N/A	PASS	
78	2480	883.200	N/A	PASS	
2Mbps					
00	2402	1258.000	N/A	PASS	
39	2441	1260.000	N/A	PASS	
78	2480	1254.000	N/A	PASS	
		3Mbps			
00	2402	1262.000	N/A	PASS	
39	2441	1265.000	N/A	PASS	
78	2480	1262.000	N/A	PASS	







7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and DA 00-705

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

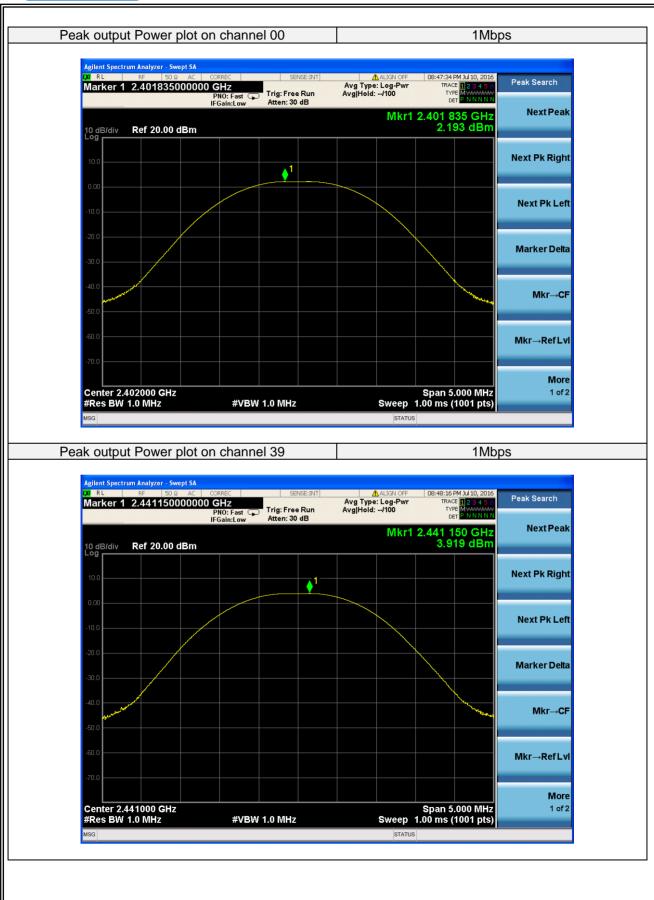
Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

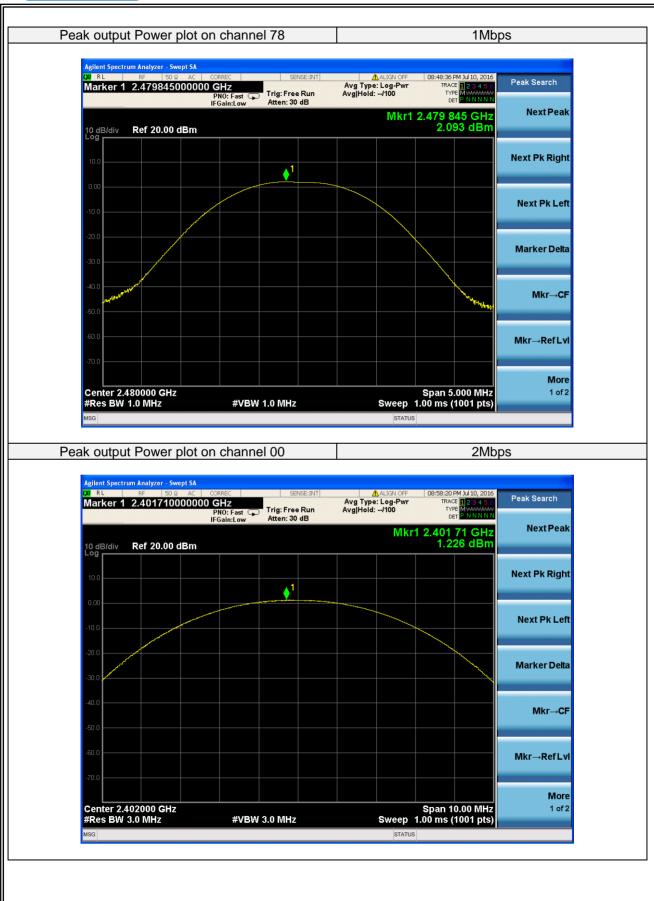
 $RBW \geq$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

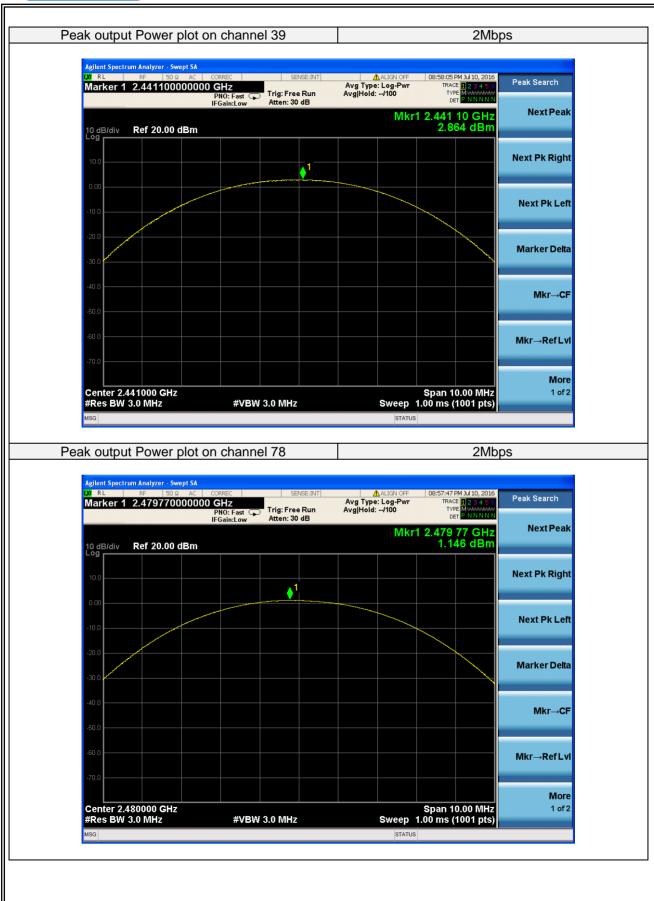
Sweep = auto

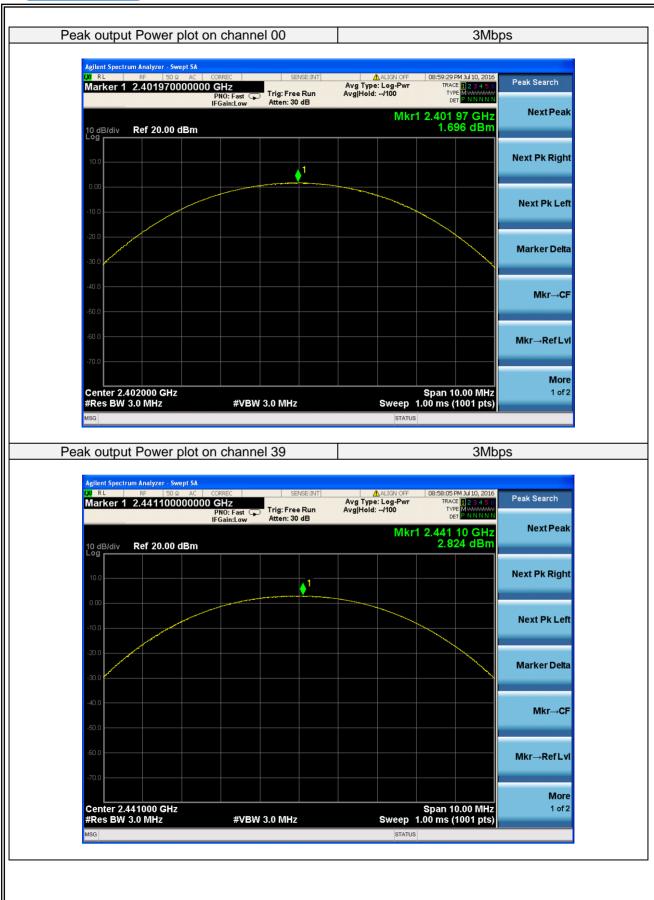

Detector function = peak

- Trace = max hold
- 7.7.6 Test Results


	BLUETOOTH HEADSET	Model No.:	BT100
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Su

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict
			1Mbps		
00	2402	Default	2.19	30	PASS
39	2441	Default	3.92	30	PASS
78	2480	Default	2.09	30	PASS
	2Mbps				
00	2402	Default	1.23	20.97	PASS
39	2441	Default	2.86	20.97	PASS
78	2480	Default	1.15	20.97	PASS
	3Mbps				
00	2402	Default	1.70	20.97	PASS
39	2441	Default	2.82	20.97	PASS
78	2480	Default	1.47	20.97	PASS





	t on channel 78		3Mt	ops
Agilent Spectrum Analyzer - Swept S	A C CORREC SENSE:INT	ALIGN OFF	09:00:12 PM Jul 10, 2016	
и RL RF 50Ω A Marker 1 2.479970000	000 GHz PN0: Fast () Trig: Free Run	Avg Type: Log-Pwr Avg Hold:/100	TRACE 12 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
	PNO: Fast 🕌 Trig: Free Run IFGain:Low Atten: 30 dB			
		Mk	r1 2.479 97 GHz 1.471 dBm	Next Peak
10 dB/div Ref 20.00 dBn			1.471 dBill	
10.0				Next Pk Right
	1			
0.00				
-10.0			~~~~	Next Pk Left
-20.0				Marker Delta
-30.0				
-40.0				
-40.0				Mkr→CF
-50.0				
-60.0				Mkr→RefLvl
				WIKI → KEI LVI
-70.0				
Center 2.480000 GHz			Span 10.00 MHz	More 1 of 2
#Res BW 3.0 MHz	#VBW 3.0 MHz	Sweep	1.00 ms (1001 pts)	
MSG		STATU	JS	

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and DA 00-705

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

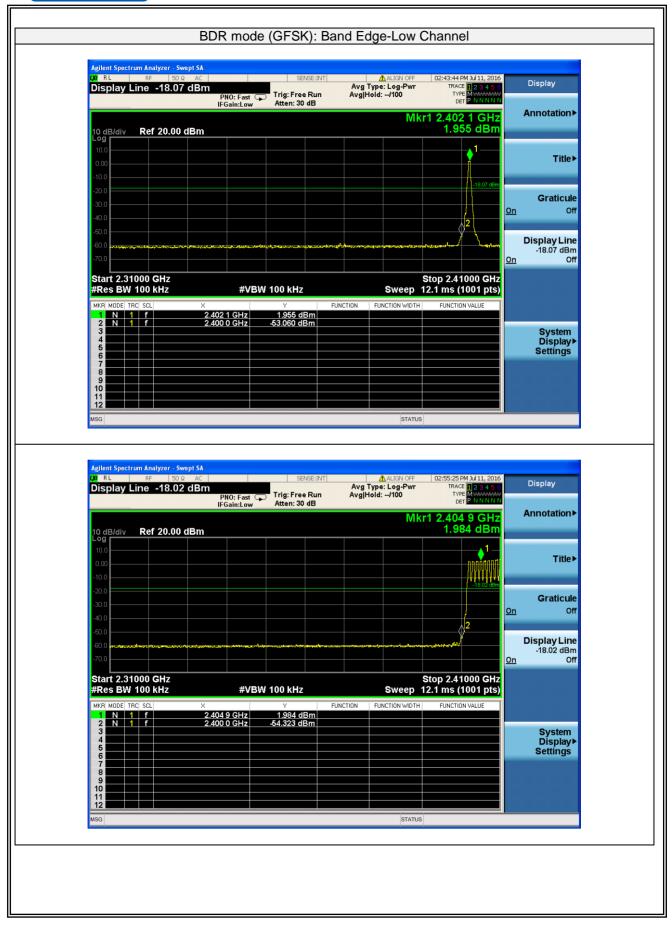
RBW = 100KHz

VBW = 300KHz

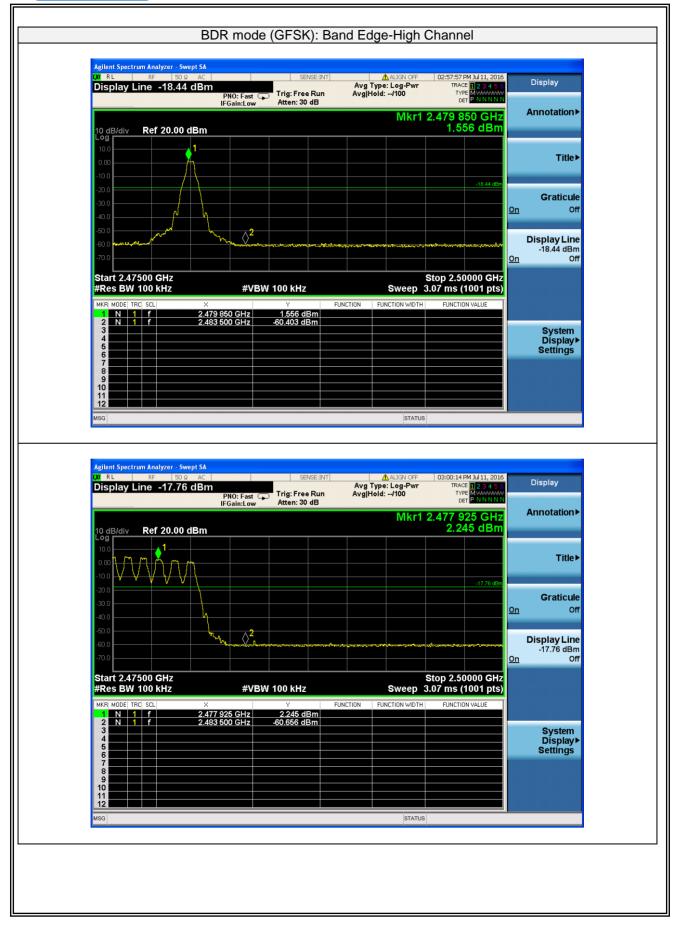
Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

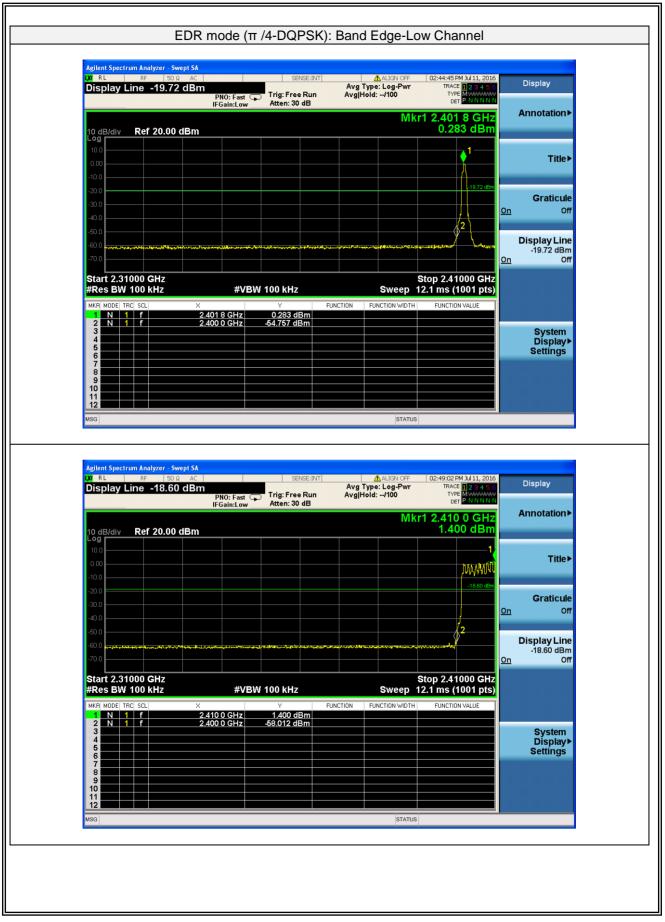
Repeat above procedures until all measured frequencies were complete.

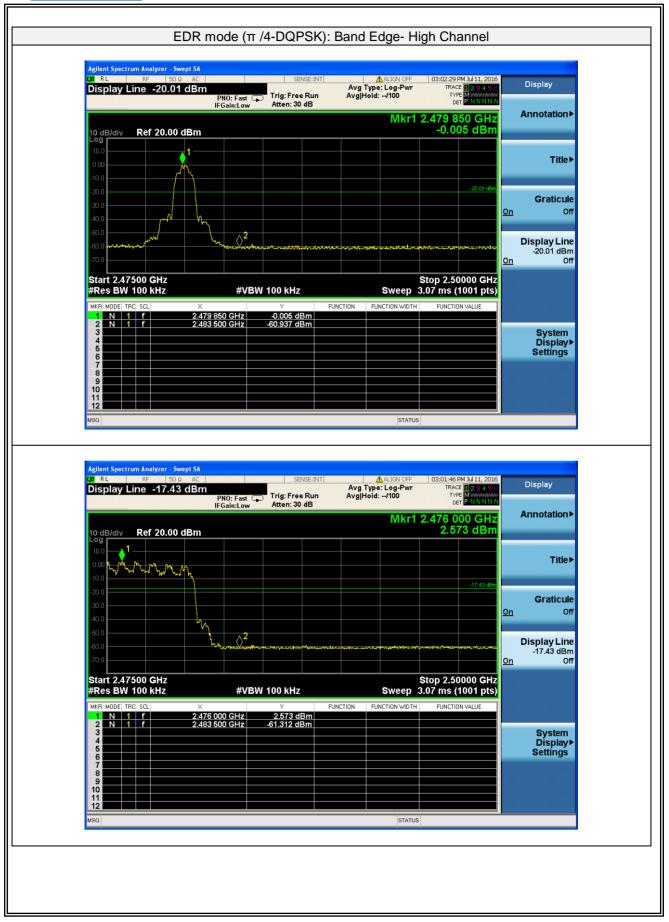


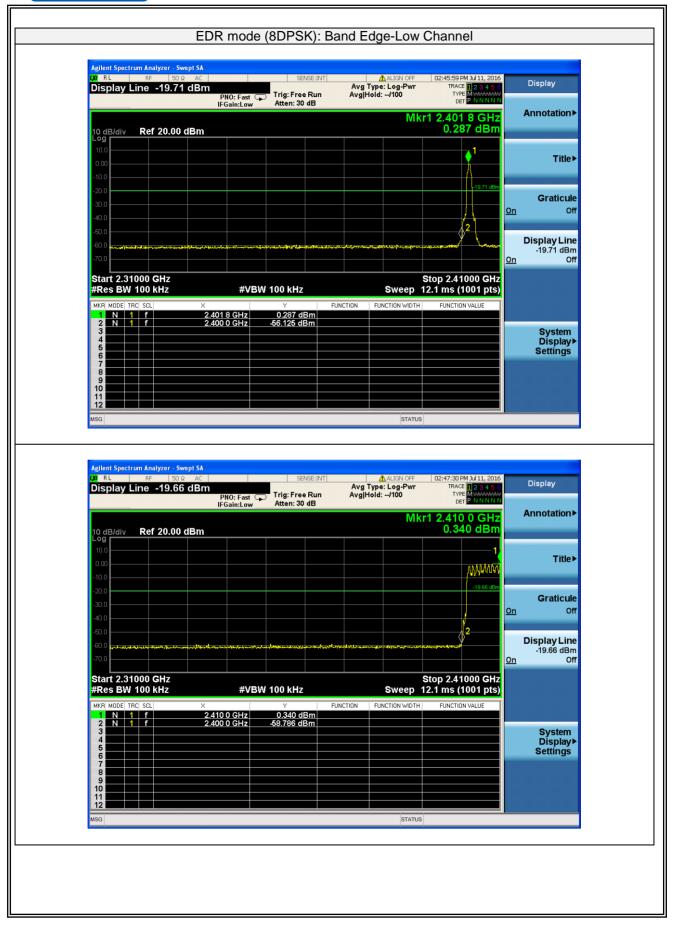
7.8.6 Test Results

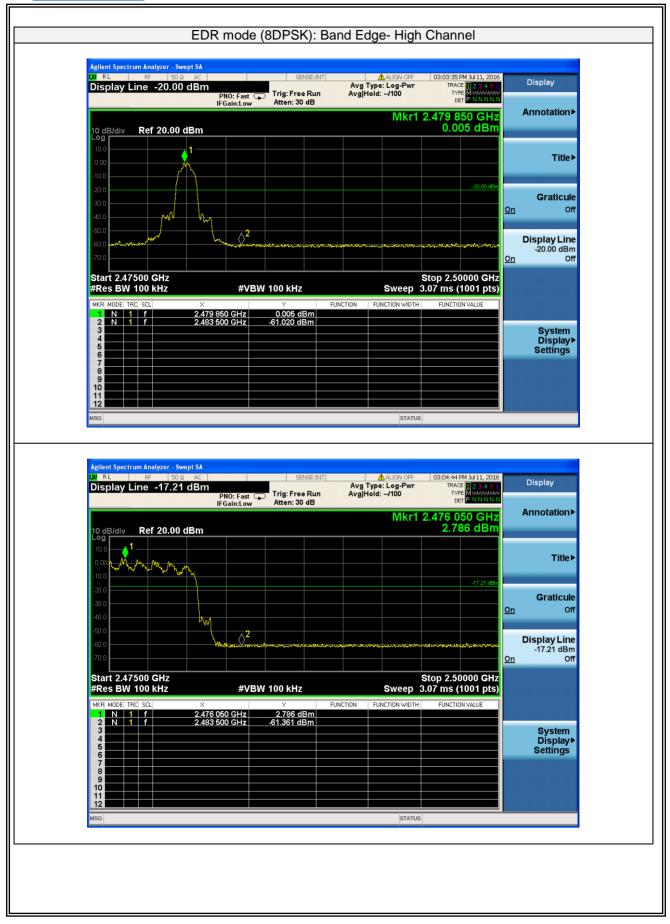

EUT:	BLUETOOTH HEADSET	Model No.:	BT100
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Susan Su

Note: Hopping enabled and disabled have evaluated, and the wortest data was reported









7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached antenna. It comply with the standard requirement.