f/1500

1.0

30

30

Product Name: Reversing system Model No.: W7 PRO, K7 PRO, RVW-AF1

FCC ID: IK4W7PRO

RF Exposure Evaluation

1.1 RF Exposure Compliance Requirement

1.1.1 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

TABLE 1—LIMITS FOR I	MAXIMUM PERMISSIBLE	EXPOSURE	(MPE)
----------------------	---------------------	----------	-------

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	its for Occupational	/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6 6	
(B) Limits 1	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34 1.34–30 30–300	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/f ²) 0.2	30 30 30	

.....

.....

.....

.....

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}Pi^{*}R^{2})$

Where

300-1500

Pd = power density in mW/cm2

1500-100,000

Pout = output power to antenna in mW

.....

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.1.2 Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

1.1.3 EUT RF Exposure Evaluation

Antenna Gain: 2dBi

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.58 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Cha	nnel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	Limit	Result
Lov	vest	2406.5	16.76	47.4242	0.0150	1.0	PASS

Note: Refer to report No. BLA-EMC-202102-A0702 for EUT test Max Conducted Peak Output Power value. The distance r (4th column) calculated from the Fries transmission formula is far greater than 20 cm separation Requirement