TEST REPORT

FCC ID: IK4RVS-TR3B Product: Wireless Back-up Camera Model No.: RVS-TR3B Additional Model: CAM-WLP, RVS-TR4B Trade Mark: N/A Report No.: TCT190102E001 Issued Date: Jan. 18, 2019

Issued for:

Shenzhen Auto-vox Technology Co., Ltd. 5NO.709, Block 5, Jinfanghua Industrial Area, Xinhe Street, Hebei Village, Bantian, Longgang District, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. Test Certification	
2. Test Result Summary	4
3. EUT Description	5
4. General Information	
4.1. Test environment and mode	
4.2. Description of Support Units	6
5. Facilities and Accreditations	7
5.1. Facilities	7
5.2. Location	
5.3. Measurement Uncertainty	
6. Test Results and Measurement Data	
6.1. Antenna requirement	
6.2. Conducted Emission	9
6.3. Conducted Output Power	
6.4. 20dB Occupy Bandwidth	
6.5. Carrier Frequencies Separation	
6.6. Hopping Channel Number	
6.7. Dwell Time	
6.8. Pseudorandom Frequency Hopping Sequence	25
6.9. Conducted Band Edge Measurement	
6.10. Conducted Spurious Emission Measurement	
6.11. Radiated Spurious Emission Measurement	
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

1. Test Certification

Product:	Wireless Back-up Camera
Model No.:	RVS-TR3B
Additional Model No.:	CAM-WLP, RVS-TR4B
Trade Mark:	N/A
Applicant:	Shenzhen Auto-vox Technology Co., Ltd.
Address:	5NO.709, Block 5, Jinfanghua Industrial Area, Xinhe Street, Hebei Village, Bantian, Longgang District, Shenzhen, China
Manufacturer:	Shenzhen Auto-vox Technology Co., Ltd.
Address:	5NO.709, Block 5, Jinfanghua Industrial Area, Xinhe Street, Hebei Village, Bantian, Longgang District, Shenzhen, China
Date of Test:	Jan. 03, 2019 – Jan. 17, 2019
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

	1		
Tested By:	Jerry Lie	Date:	Jan. 17, 2019
	Jerry Xie	-	Ô
Reviewed By:	Beny zhao	Date:	Jan. 18, 2019
	Beryl Zhao		
Approved By:	Tomsm	Date:	Jan. 18, 2019
KO	Tomsin		

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
Band Edge	§15.247(d) §2.1051, §2.1057	PASS
Note: 1. PASS: Test item meets the require 2. Fail: Test item does not meet the		
3. N/A: Test case does not apply to4. The test result judgment is decide	the test object.	

3. EUT Description

Product:	Wireless Back-up Camera
Model No.:	RVS-TR3B
Additional Model No.:	CAM-WLP, RVS-TR4B
Trade Mark:	N/A
Hardware Version:	Rve1.2
Software Version:	V1.8-181205
Operation Frequency:	2406MHz - 2475MHz
Transfer Rate:	4 Mbits/s
Number of Channel:	24
Modulation Type:	GFSK
Modulation Technology:	FHSS
Antenna Type:	External Antenna
Antenna Gain:	2dBi
Power Supply:	DC 12V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2406MHz	6	2424MHz	12	2442MHz	18	2460MHz
1	2409MHz	7	2427MHz	13	2445MHz	19	2463MHz
2	2412MHz	8	2430MHz	14	2448MHz	20	2467MHz
3	2415MHz	9	2433MHz	15	2451MHz	21	2470MHz
4	2418MHz	10	2436MHz	16	2454MHz	22	2473MHz
5	2421MHz	11	2439MHz	17	2457MHz	23	2475MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2406MHz
The middle channel	2442MHz
The Highest channel	2475MHz

4. General Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
, 2				

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 48

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The EUT antenna is external antenna which permanently attached, and the best case gain of the antenna is 2dBi.

OTO 05 05 04 05 09 07 08 06 00101 05 05 04 05 09 00 00 00

a eo to so so so so so so so eo eo to so so so so so so so so so to so to so to so to so to so so

Antenna

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207			
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range	Frequency range Limit (dBuV)			
	(MHz)	Quasi-peak	asi-peak Áverage		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Reference	e Plane			
Test Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISNI Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	AC power		
Test Mode:	Refer to item 4.1				
Test Procedure:	 The E.U.T is connerimpedance stabilizing provides a 500hm/5 measuring equipment The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63 10:2013 control 	ation network 50uH coupling im nt. ees are also conne SN that provides with 50ohm tern diagram of the line are checken nce. In order to fin e positions of equi must be changed	(L.I.S.N.). Thi pedance for th ected to the mai a 500hm/50ul nination. (Pleas test setup an ed for maximur nd the maximur ipment and all o		
Test Procedure: Test Result:	 impedance stabiliz provides a 50ohm/s measuring equipment 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	ation network 50uH coupling im nt. Ses are also conner SN that provides with 50ohm tern diagram of the line are checked nce. In order to fin e positions of equi must be changed on conducted mea	(L.I.S.N.). The pedance for the ected to the mains a 500hm/50u nination. (Pleas test setup and ed for maximum nd the maximum ipment and all of according to asurement.		

Page 9 of 48

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

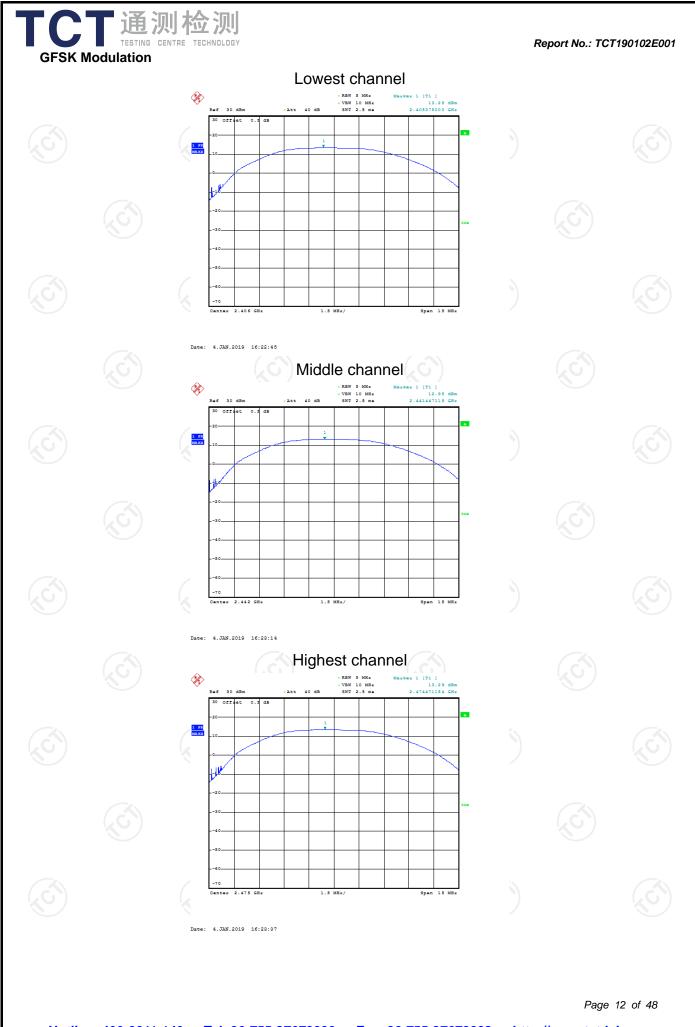
6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 48

6.3.3. Test Data


Test plots as follows:

Report No.: T	CT190102E001
---------------	--------------

GFSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	13.25	30.00	PASS
Middle	12.95	30.00	PASS
Highest	13.29	30.00	PASS

Page 11 of 48

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

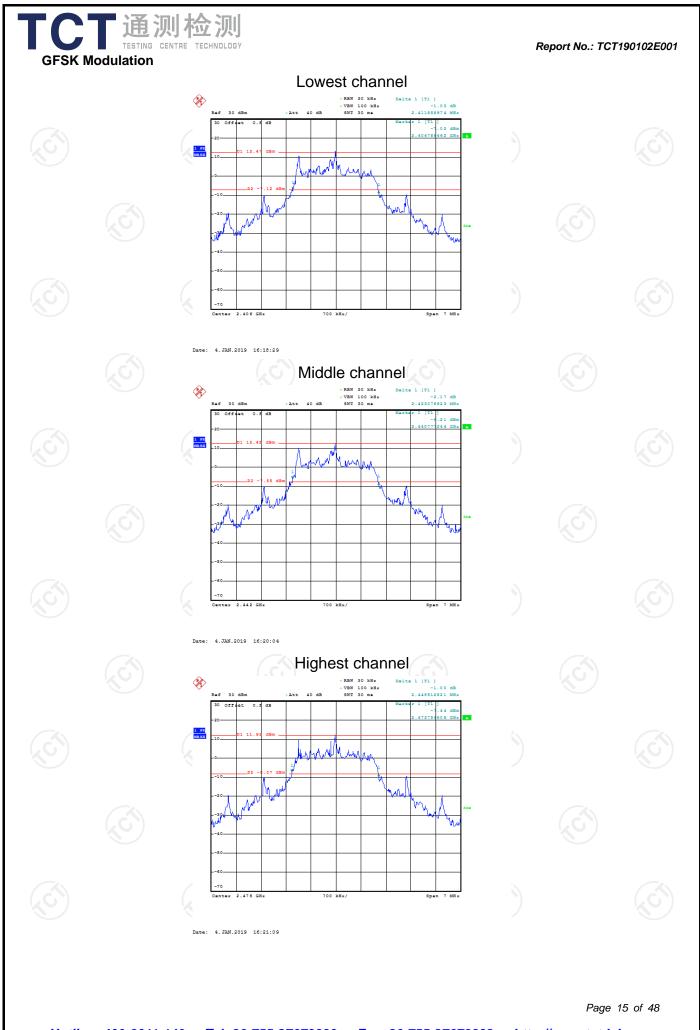
6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

FCC Part15 C Sectior	n 15.247 (a)(1)
ANSI C63.10:2013	
N/A	
Spectrum Analyzer	EUT
Transmitting mode wit	h modulation
 Guidelines. 2. The RF output of Elanalyzer by RF calwas compensated measurement. 3. Set to the maximum EUT transmit continue and the following spectrum and the following spectrum and the following spectrum and the sp	pectrum analyzer settings for 20dB
PASS	
	 ANSI C63.10:2013 N/A Spectrum Analyzer Transmitting mode with 1. The testing follows Guidelines. 2. The RF output of E analyzer by RF ca was compensated measurement. 3. Set to the maximum EUT transmit conti 4. Use the following sp Bandwidth measur Span = approximat bandwidth, centered \$5% of the 20 dB Sweep = auto; Det hold. 5. Measure and record

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 20, 2019


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

	Test sharped	20dB Occupy Ba	andwidth (kHz)	
	Test channel	GFSK	Conclusion	
	Lowest	2411.86	PASS	
	Middle	2423.08	PASS	
	Highest	2445.51	PASS	

Report No.: TCT190102E001

Test plots as follows:			
Hotline: 400-6611-140 Tel: 86-	755-27673339 Fax: 86	6-755-27673332 http:/	Page 14 of 48 //www.tct-lab.com

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT190102E001

6.5.3. Test data

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	2987.18	1630.34	PASS	
Middle	3018.46	1630.34	PASS	
Highest	3025.64	1630.34	PASS	

Note: According to se	ction 6.4			
Mode	2	0dB bandwidth (kHz) (worse case)) Limit (kHz) (Carrier Freque Separation)	ncies
GFSK		2445.51	1630.34	

Test plots as follows:

Test plots as fo		

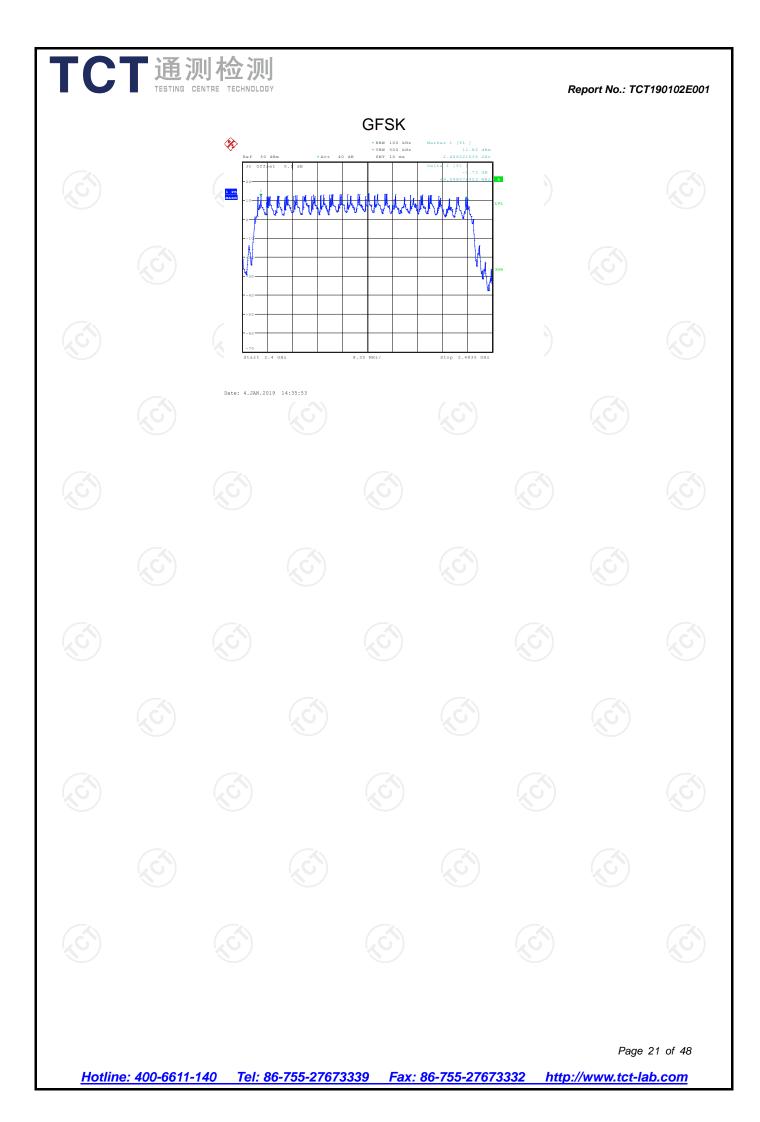
6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 20, 2019


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.3. Test data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT190102E001

de	Hopping ch	annel num	bers	Limit	Result	
SK		24		15	PASS	
llows:						
611-140			Tel: 86-755-27673339 Fax:		Tel: 86-755-27673339 Fax: 86-755-27673332 http	Page 2 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lak

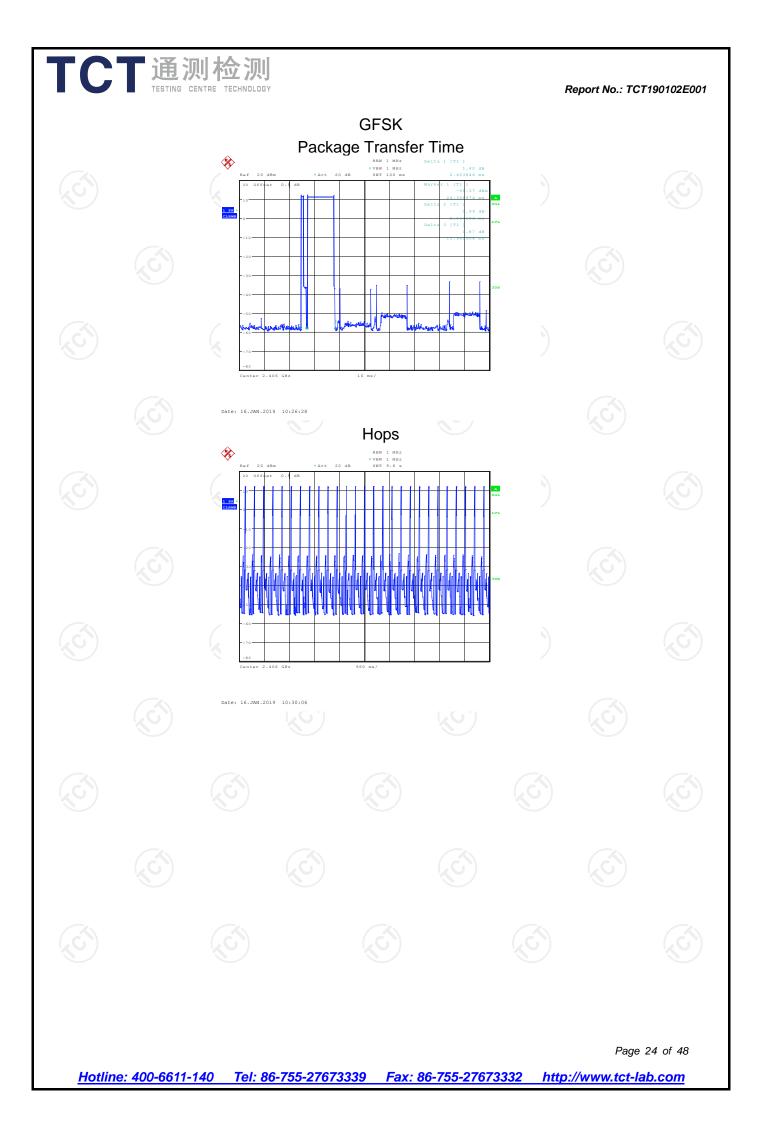
6.7. Dwell Time

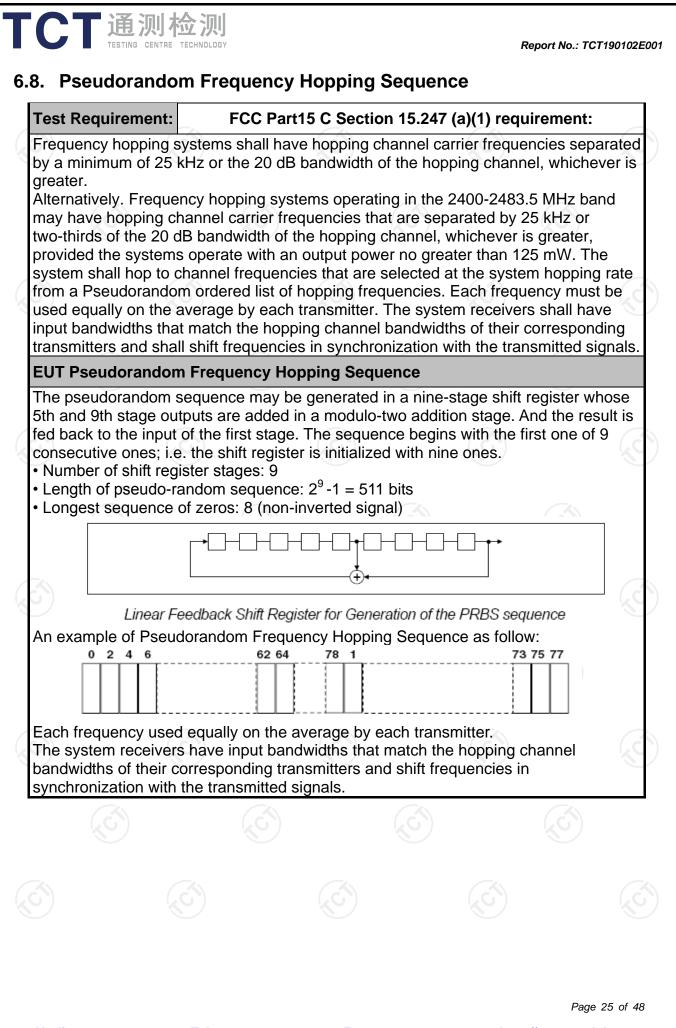
6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Report No.: TCT190102E001

Page 22 of 48

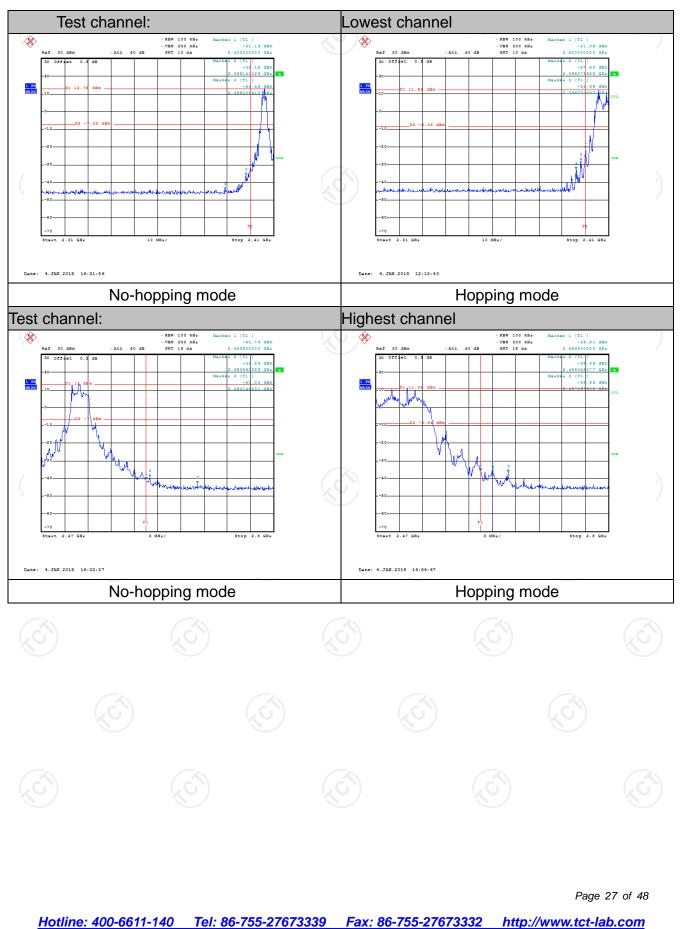
Mode	Hops Over Occupancy Time (hops)	Packa Transt Time (r	fer t	owell ime econd)	Limit (second)	Result	
GFSK	27 Time 100mst min	13.7).37	0.4	PASS	
	Time=400ms* mini					io ms;	
t plots as fo	ne(s) = Hops Over	Occupancy T	ime (nops) x i	Package Tra	inster Time		

TCT通测检测 6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
ANSI C63.10:2013
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer EUT
Transmitting mode with modulation
 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

6.9.2. Test Instruments


Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

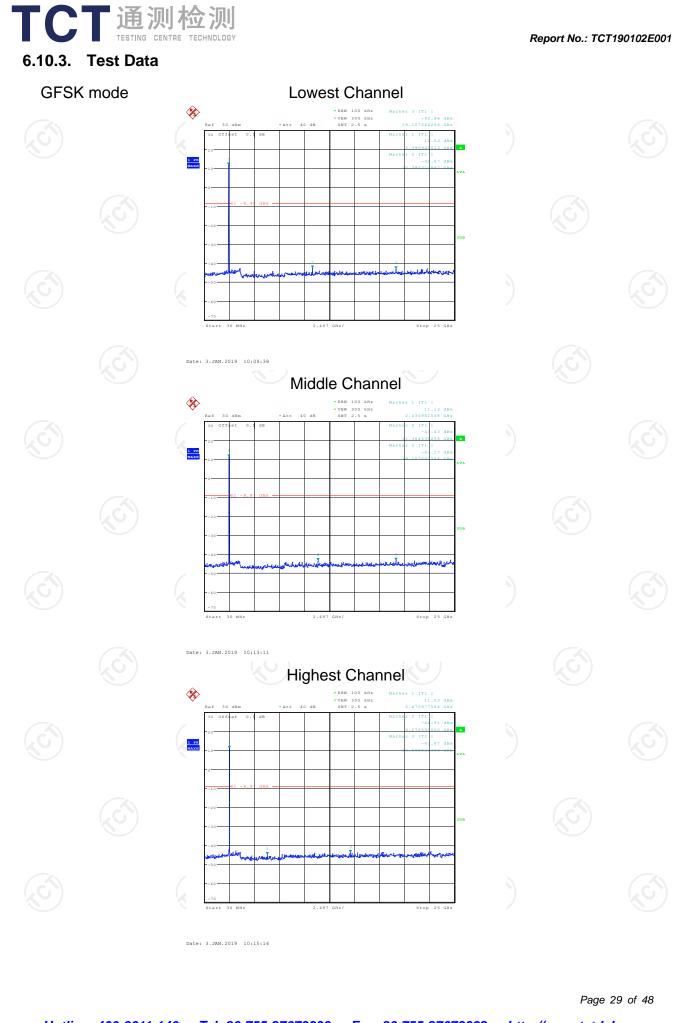
Page 26 of 48

6.9.3. Test Data

GFSK Modulation

Report No.: TCT190102E001

6.10. Conducted Spurious Emission Measurement


6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

6.10.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ40	200061	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	О тст	RFC-01	N/A 😒	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

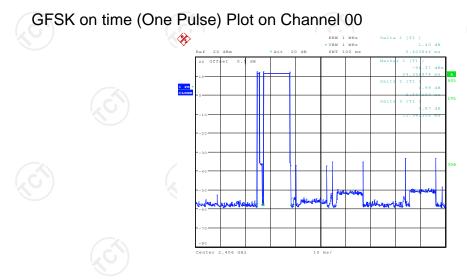
TCT通测检测 TESTING CENTRE TECHNOLOGY

SI C63.10 Hz to 25 0 n rizontal & Frequency Hz- 150kHz 150kHz- 30MHz MHz-1GHz bove 1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9	GHz Vertical Detecto Quasi-pe Quasi-pe Quasi-pe Peak Peak Peak	or eak eak eak	RBW 200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts, 2400/F(t) 24000/F(t) 30	/meter) (Hz)	Quas Quas Quas Pu Ave	Remark si-peak Value si-peak Value si-peak Value erage Value asurement nce (meters) 300 30
n rizontal & Frequency Hz- 150kHz 150kHz- 30MHz MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Vertical Detecto Quasi-pe Quasi-pe Peak Peak cy 190 705 50 0	or eak eak eak	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts) 2400/F(H 24000/F(1kHz 30kHz 300KHz 3MHz 10Hz ength /meter) KHz)	Quas Quas Quas Pu Ave	si-peak Value si-peak Value eak Value erage Value asurement nce (meters) 300
rizontal & Frequency Hz- 150kHz 150kHz- 30MHz MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Detecto Quasi-pe Quasi-pe Peak Peak Cy 190 705 50	or eak eak eak	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts) 2400/F(H 24000/F(1kHz 30kHz 300KHz 3MHz 10Hz ength /meter) KHz)	Quas Quas Quas Pu Ave	si-peak Value si-peak Value eak Value erage Value asurement nce (meters) 300
Frequency Hz- 150kHz 30MHz MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Detecto Quasi-pe Quasi-pe Peak Peak Cy 190 705 50	or eak eak eak	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts) 2400/F(H 24000/F(1kHz 30kHz 300KHz 3MHz 10Hz ength /meter) KHz)	Quas Quas Quas Pu Ave	si-peak Value si-peak Value eak Value erage Value asurement nce (meters) 300
Hz- 150kHz 150kHz- 30MHz MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Quasi-pe Quasi-pe Peak Peak cy 190 705 50 60	eak eak eak	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts) 2400/F(H 24000/F(1kHz 30kHz 300KHz 3MHz 10Hz ength /meter) KHz)	Quas Quas Quas Pu Ave	si-peak Value si-peak Value eak Value erage Value asurement nce (meters) 300
Hz- 150kHz 150kHz- 30MHz MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Quasi-pe Quasi-pe Peak Peak cy 190 705 50 60	eak eak eak	9kHz 100KHz 1MHz 1MHz Field Stre (microvolts, 2400/F(H 24000/F(30kHz 300KHz 3MHz 10Hz ength /meter) KHz)	Quas Quas Quas Pu Ave	si-peak Value si-peak Value eak Value erage Value asurement nce (meters) 300
30MHz MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Quasi-pe Peak Peak cy 190 705 60	eak	100KHz 1MHz 1MHz Field Stre (microvolts, 2400/F(k 2400/F(300KHz 3MHz 10Hz ength /meter) KHz)	Quas Po Ave	si-peak Value eak Value erage Value asurement nce (meters) 300
Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Peak Peak cy 490 705 50 60		1MHz 1MHz Field Stre (microvolts, 2400/F(k 24000/F(3MHz 10Hz ength /meter) (Hz)	Pe Ave Me	eak Value erage Value asurement nce (meters) 300
Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Peak cy 490 705 50 60 60		1MHz Field Stre (microvolts, 2400/F(k 24000/F(10Hz ength /meter) (Hz)	Ave Me	erage Value asurement nce (meters) 300
0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	cy 190 705 50 60 60		Field Stre (microvolts) 2400/F(F 24000/F(F)	ength /meter) (Hz)	Ме	asurement nce (meters) 300
0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	490 705 50 60 60 60		(microvolts) 2400/F(ł 24000/F(/meter) (Hz)		nce (meters) 300
0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	490 705 50 60 60 60		2400/F(ł 24000/F((Hz)	Dista	300
0.490-1.7 1.705-3 30-88 88-216 216-96	705 50 5 0		24000/F(
1.705-3 30-88 88-216 216-96	0 3 0			· · · · <i>L</i> /		
30-88 88-216 216-96	6 0		00		30	
216-96	0		100		3	
		(c	150		3	
ADOVE 9			200		3	
	Above 960 500			3		
E F A C A A A A A A A A A A A A A A A A A		crove	(mete		nce Detector ers)	
Above 1GHz		500 3 5000 3				Average Peak
Di EUT	stance = 3m					
			(
	Above 1GHz radiated emis	Above 1GHz radiated emissions belo Distance = 3m EUT Turn table Gro	Above 1GHz 5 Above 1GHz 5 radiated emissions below 30 Distance = 3m FUT Turn table Ground Pl	Above 1GHz 500 Tradiated emissions below 30MHz Distance = 3m FUT Turn table Ground Plane	Above 1GHz Tradiated emissions below 30MHz Distance = 3m Functional distance = 3m Functional d	Above 1GHz 500 3 Above 1GHz 500 3 radiated emissions below 30MHz Distance = 3m Compu Pre - Amplifier FUT Turn table Receiver

	Report No.: TCT190102E00
	EUT Antenna Tower Antenna Antenna BEUT Antenna Antenna RF Test Receiver Turm Table 0.8m Im Antenna
	Ground Plane Above 1GHz
	AE EUT Horn Anienna Tower Horn Anienna Tower Ground Reference Plane Test Receiver
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10:2013 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT,

TC		and rece mea max ante rest abo 3. Set EU 4. Use (1) (2)	Set RBW= for f>1GH Sweep = = max ho For avera correction 15.35(c). I On time = Where N length of Average Level + 2 Corrected	ned at the naximum s antenna el emissions ion for mai range of he ind or refer ximum por continuous ing spectru l wide enor continuous =100 kHz fe z ; VBW≥R auto; Dete ld for peak age measu n factor me Duty cycle N1*L1+N2 1 is numbe type 1 puls Emission L co*log(Duty Reading: /	on pattern of emission s ignal. The f evation sha . The meas ximum emi eights of from rence ground wer setting ly. um analyze ugh to fully sured; or f < 1 GH BW; ector function rement: us ethod per = On time/ *L2++Nn er of type 1 ses, etc. Level = Pea r cycle) Antenna Fa	ource for final all be that v surement ssions sha om 1 m to 4 nd plane. y and enab er settings: capture the z, RBW=11 on = peak;	sion which II be I m Ile the MHz Trace e MHz Trace e conds Nn*Ln is n
Test re	esults:	PASS					

6.11.2. Test Instruments


Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 17, 2019				
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 20, 2019				
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 16, 2019				
Pre-amplifier	HP	8447D	2727A05017	Sep. 16, 2019				
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 20, 2019				
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 02, 2019				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Oct. 20, 2019				
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 16, 2019				
Antenna Mast	Keleto	RE-AM	N/A	N/A				
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 16, 2019				
Coax cable (9KHz-40GHz)	отст	RE-high-02	N/A	Sep. 16, 2019				
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 16, 2019				
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 16, 2019				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

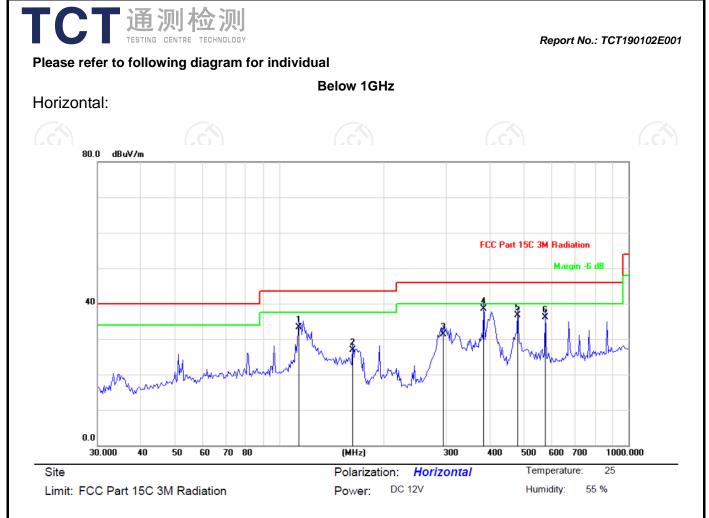
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

CT通测检测 6.11.3. Test Data

Duty cycle correction factor for average measurement

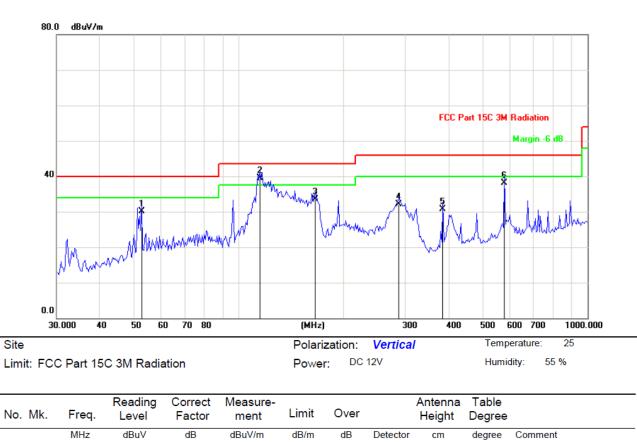
Note:


- 1. Worst case Duty cycle = on time/100 milliseconds = 13.78/100=0.1378
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -17.22dB

Date: 16.JAN.2019 10:26:28

- 3. The highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-17.22dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Page 34 of 48


Report No.: TCT190102E001

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		113.2200	43.00	-9.73	33.27	43.50	-10.23	QP			
2		162.0197	42.68	-15.71	26.97	43.50	-16.53	QP			
3	2	294.4260	42.45	-11.11	31.34	46.00	-14.66	QP			
4	*	384.5447	47.61	-9.18	38.43	46.00	-7.57	QP			
5	4	481.5112	44.45	-7.74	36.71	46.00	-9.29	QP			
6	Ę	578.0359	42.40	-6.32	36.08	46.00	-9.92	QP			

Vertical:

	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	52.6345	40.82	-10.63	30.19	40.00	-9.81	QP			
2 *	114.8224	49.57	-10.16	39.41	43.50	-4.09	QP			
3	165.4716	49.04	-15.56	33.48	43.50	-10.02	QP			
4	288.2840	43.40	-11.31	32.09	46.00	-13.91	QP			
5	384.5447	39.98	-9.18	30.80	46.00	-15.20	QP			
6	578.0359	44.43	-6.32	38.11	46.00	-7.89	QP			

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (High channel) was submitted only.

Report No.: TCT190102E001

Report No.: TCT190102E001

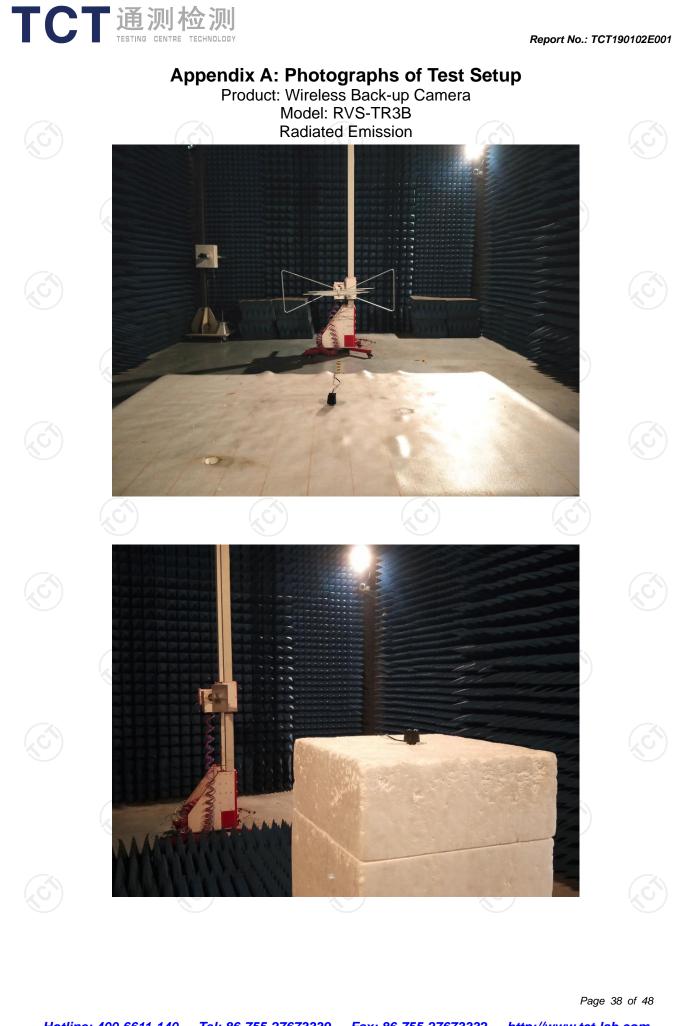
_	Above 1GHz											
	Low channel: 2406MHz											
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)		n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
	4812.00	Н	48.07		-3.94	44.13		74	54	-9.87		
	7218.00	Н	45.53		0.52	46.05		74	54	-7.95		
		<u>_</u> 1.										
Ī	4812.00	V	46.12	- -	-3.94	42.18	<u>G</u>	74	54	-11.82		
	7218.00	V	47.34		0.52	47.86		74	54	-6.14		

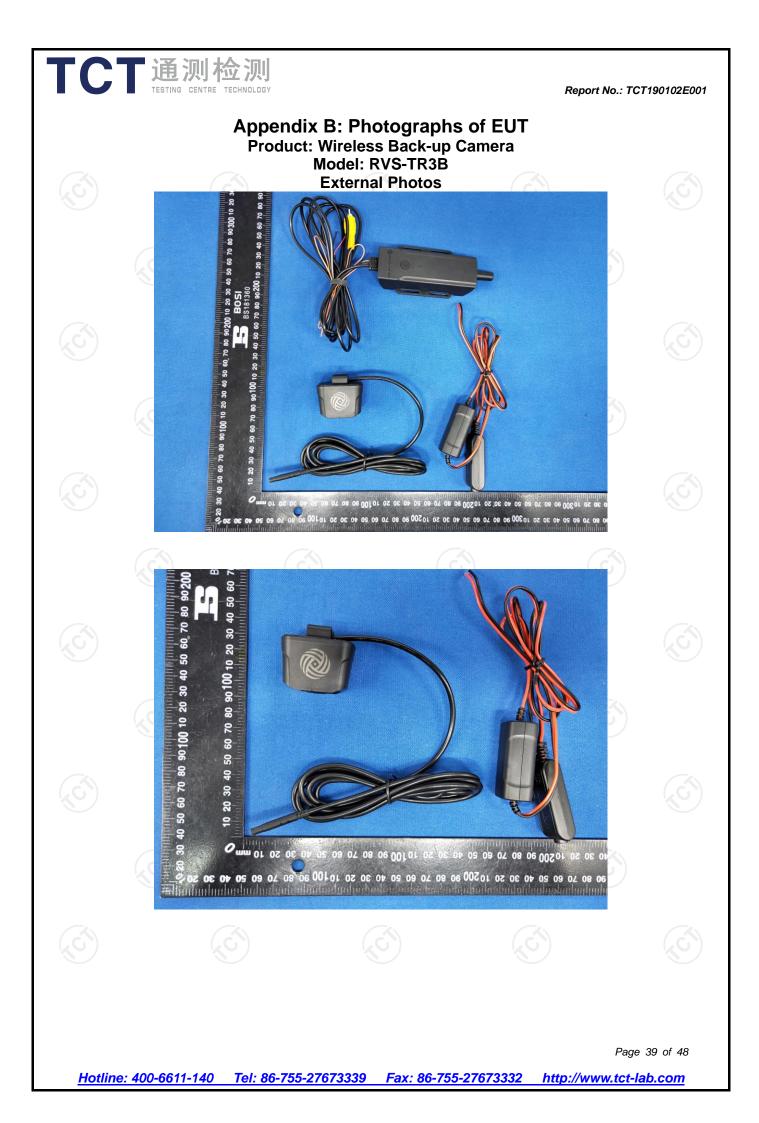
	Middle channel: 2442MHz									
Fraguanay	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit	A) / limit	Morgin	
(MHz)					Peak		(dBu)/(m)	AV limit (dBµV/m)	Margin (dB)	
(1011 12)					(dBµV/m)					
4884.00	Н	50.57		-3.98	46.59		74	54	-7.41	
7326.00	H	48.25		0.57	48.82		74	54	-5.18	
			<u> </u>)		24				
4884.00	V	51.36		-3.98	47.38		74	54	-6.62	
7326.00	V	48.04		0.57	48.61		74	54	-5.39	
(<u> </u>		(. 		(<u></u>					

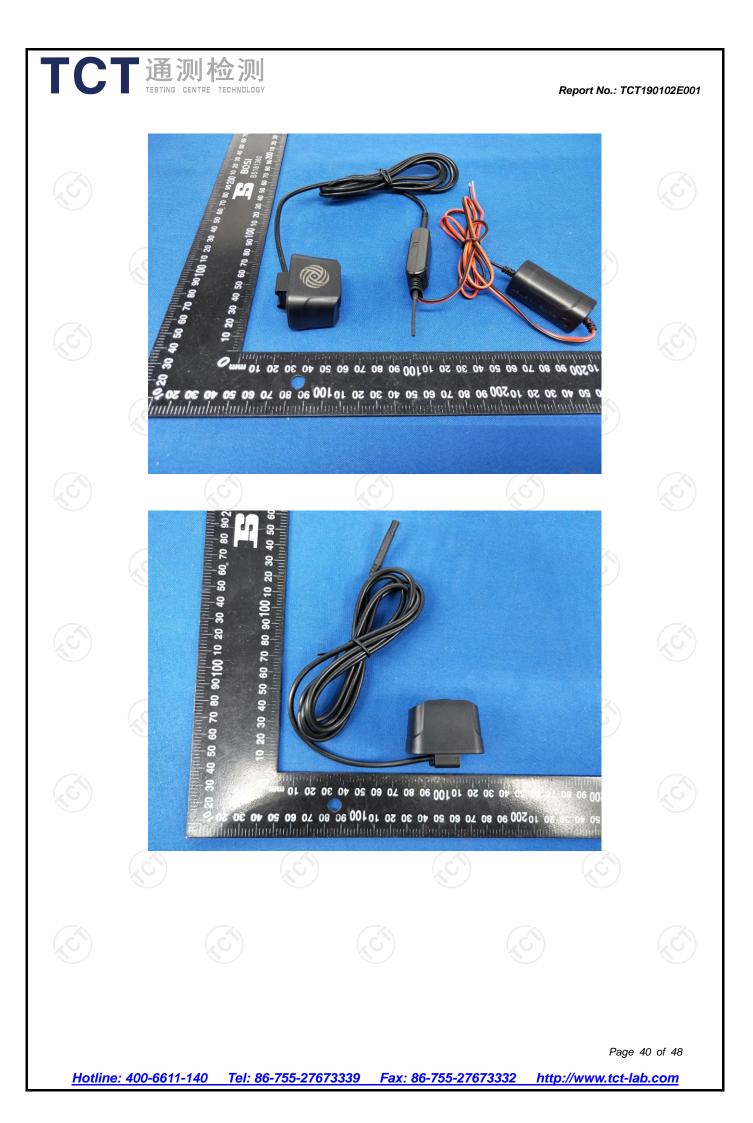
High channel: 2475MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)		on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4950.00	H	50.45		-3.98	46.47		74	54	-7.53		
7425.00	Н	49.09		0.57	49.66		74	54	-4.34		
4950.00	V	51.37		-3.98	47.39		74	54	-6.61		
7425.00	V	47.12		0.57 🔍	47.69		74	54	-6.31		

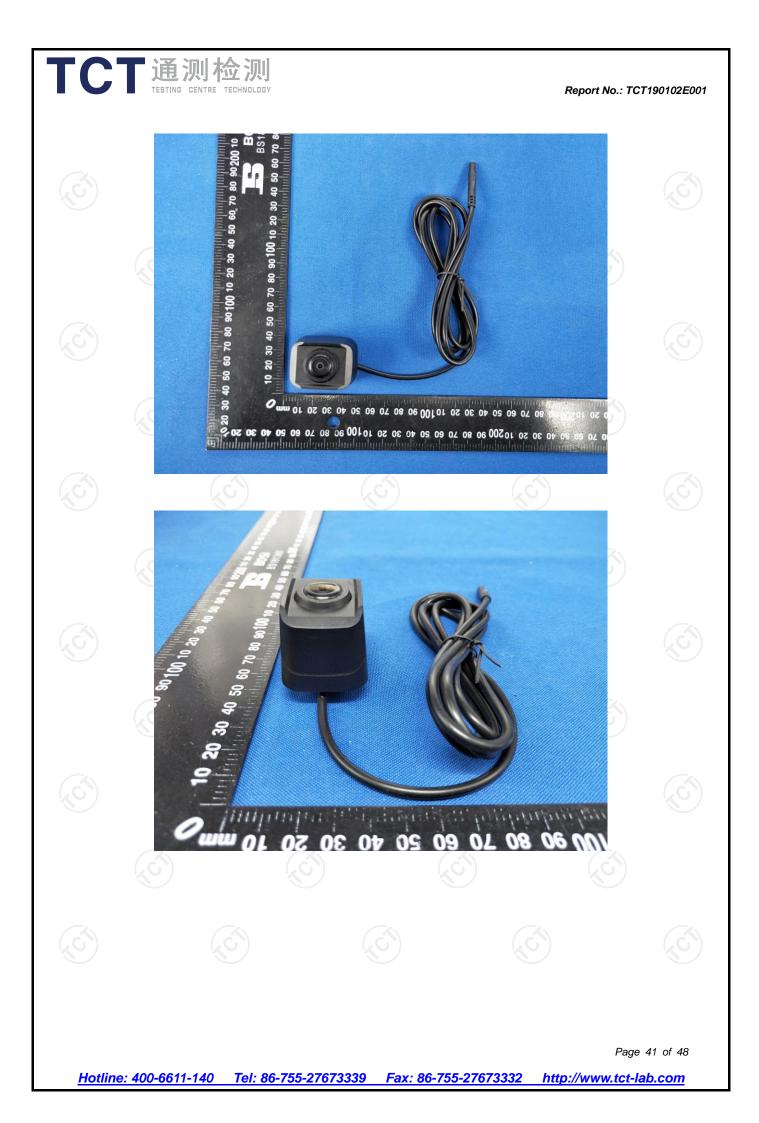
Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)


3. The emission levels of other frequencies are very lower than the limit and not show in test report.


4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.


5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

