

EMC TEST REPORT

REPORT NO. : F88071609

MODEL NO.

: 986X

DATE OF TEST: Aug. 4, 1999

PREPARED FOR: PROVIEW ELECTRONICS (TAIWAN) CO. LTD.

ADDRESS: 6F, NO. 1, PAU-SHENG RD., YUNG-HO CITY,

TAIPEI HSIEN, TAIWAN, R.O.C.

PREPARED BY:

ADVANCE DATA TECHNOLOGY CORPORATION

11F, NO.1, SEC.4, NAN-KING EAST RD.,

TAIPEI, TAIWAN, R.O.C.

Accredited Laboratory

This test report consists of 15 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of our laboratory. It should not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. government. The test result in the report only applies to the tested sample.

TABLE OF CONTENTS

1.	CERTIFICATION3
2.	GENERAL INFORMATION4
	2.1 GENERAL DESCRIPTION OF EUT4
	2.2 DESCRIPTION OF SUPPORT UNITS5
	2.3 TEST METHODOLOGY AND CONFIGURATION5
3.	TEST INSTRUMENTS6
	3.1 TEST INSTRUMENTS (EMISSION)6
	3.2 LIMITS OF CONDUCTED AND RADIATED EMISSION7
4.	TEST RESULTS (EMISSION)
	4.1 RADIO DISTURBANCE
	4.2 EUT OPERATION CONDITION
	4.3 TEST DATA OF CONDUCTED EMISSION
	4.4 TEST DATA OF RADIATED EMISSION11
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION WITH MINIMUM MARGIN13
6.	APPENDIX - INFORMATION OF THE TESTING LABORATORY15

l .	CERTIFICATION
------------	---------------

Issue Date: Aug. 11, 1999

Product

: COLOR MONITOR

Trade Name

PROVIEW

Model No.

986X

Applicant

: PROVIEW ELECTRONICS (TAIWAN) CO. LTD.

Standard :

FCC Part 15, Subpart B, Class B

CISPR 22: 1993+A1: 1995+A2: 1996, Class B

ANSI C63.4-1992

We hereby certify that one sample of the designation has been tested in our facility on Aug. 4, 1999. The test record, data evaluation and Equipment Under Test (EUT) configurations represent herein are true and accurate representation of the measurements of the sample's EMC characteristics under the conditions herein specified.

The test results show that the EUT as described in this report is in compliance with the Class B limits of conducted and radiated emission of applicable standards.

TESTED BY	:	Kein	lan.,	DATE:	8/11/99
		/ TZ ' TA			

(Kevin Pan)

CHECKED BY: (Yemmy Soong), DATE: \$\frac{\gamma \left[11 \right] 99}{\left[17 \right] \text{Yemmy Soong} \right]}

(1 chiny Soong)

APPROVED BY: Sinke Su, DATE: 8/11/199.

(Mike Su)

ADVANCE DATA TECHNOLOGY CORPORATION

NA(VÓ

Accredited Laboratory

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product : COLOR MONITOR

Model No. : 986X

Power Supply Type : Switching

Power Cord of monitor : Nonshielded (1.8 m)

Data Cable of monitor : Shielded (1.5 m)

Note: The EUT is a 19" COLOR MONITOR with an internal microphone and external speakers, and its resolution is up to 1600 x 1200.

The "X" in model: 986X could be defined as A \sim Z, 1 \sim 9 or blank according to different customers' requirement.

There is a ferrite core on the video cable outside the monitor.

For more detailed features description, please refer to Manufacturer's Specification or user's manual.

2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories are used to form representative test configuration during the tests.

No.	Product	Brand	Model No.	FCC ID	I/O Cable
1.	PERSONAL COMPUTER	NTI	PII-450T	FCC DoC Approved	Nonshielded Power (1.8m)
2.	KEYBOARD	FORWARD	FDA-104GA	F4ZDA-104G	Shielded Signal (1.4m)
3.	PRINTER	HP	2225C+	DSI6XU2225	Shielded Signal (1.2m) Nonshielded Power (1.2m)
4.	MODEM	ACEEX	1414	IFAXDM1414	Shielded Signal (1.2m) Nonshielded Power (1.2m)
5.	MOUSE	DEXIN	A2P800A	NIYA2P800A	Shielded Signal (1.5m)
6.	SPEAKER	AUDIO- TECHNICA	AT-SP25	NA	Nonshielded Signal (1.5m) Nonshielded Power (1.8m)
7.	VGA CARD	CARDEX	CD-GX2A44T	ICUVGA-GW710	NA
8.	SOUND CARD	YA HSIN	AUDIO 1869	FCC DoC Approved	NA

Note: 1. An audio cable (1.8m) was connected between the mic. port of EUT and sound card of PC.

- 2. An audio cable (1.3m) was connected between the ext. speaker (R) of EUT to sound card of PC.
- 3. Two audio cables (0.2m) was connected between EUT and its ext. speakers.
- 4. A power cable (0.2m) was connected between EUT and its ext. speaker (R).

2.3 TEST METHODOLOGY AND CONFIGURATION

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4:1992. Radiated testing was performed at an antenna to EUT distance of 3/10 m on an open area test site.

Please refer to the photos of test configuration in Item 5.

3. TEST INSTRUMENTS

3.1 TEST INSTRUMENTS (EMISSION)

CONDUCTED EMISSION MEASUREMENT

Description & Manufacturer	Model No.	Serial No.	Calibrated Until	
ROHDE & SCHWARZ Test	ESH3	893495/006	July 7, 2000	
Receiver	ESIIS	693493/000	July 7, 2000	
ROHDE & SCHWARZ	EZM	893787/013	T. 1. 9 2000	
Spectrum Monitor	EZIVI	893787/013	July 8, 2000	
ROHDE & SCHWARZ	ESH3-Z5	839135/006	July 7, 2000	
Artificial Mains Network	E3H3-Z3	839133/000	July 7, 2000	
EMCO-L.I.S.N.	3825/2	9204-1964	July 7, 2000	
Shielded Room	Site 2	ADT-C02	NA	

Note: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

RADIATED EMISSION MEASUREMENT

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
HP Spectrum Analyzer	8594A	3144A00308	Sept. 3, 1999
HP Preamplifier	8447D	2944A08119	Jan. 12, 2000
HP Preamplifier	8347A	3307A01088	Sept. 9, 1999
ROHDE & SCHWARZ	ESVP	893496/030	July 13, 2000
TEST RECEIVER	ESVI	893490/030	July 13, 2000
SCHWARZBECK Tunable	VHA 9103	E101051	Nov. 25, 1999
Dipole Antenna	UHA 9105	E101055	1(07. 25, 1555
CHASE Bilog Antenna	CBL6112A	2329	Sept. 19, 1999
EMCO Double Ridged	3115	9312-4192	April 5, 2000
Guide Antenna	3113	9312-4192	April 5, 2000
EMCO Turn Table	1060	1195	NA NA
EMCO Tower	1051	1163	NA
Open Field Test Site	Site 2	ADT-R02	Sept. 18, 1999

Note: 1. The measurement uncertainty is less than +/- 3dB, which is calculated as per NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

3.2 LIMITS OF CONDUCTED AND RADIATED EMISSION

LIMIT OF RADIATED EMISSION OF CISPR 22

FREQUENCY	Class A (at 10m) *	Class B (at 10m) *
(MHz)	dBuV/m	dBuV/m
30 - 230	40	30
230 - 1000	47	37

^{*} Detector Function: Quasi-Peak

LIMIT OF RADIATED EMISSION OF FCC PART 15, SUBPART B FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY	Class A (dBu	V/m) (at 3m)	Class B (dBuV/m) (at 3m)		
(MHz)	Peak	Average	Peak	Average	
Above 1000	80.0	60.0	74.0	54.0	

Note: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

LIMIT OF CONDUCTED EMISSION OF CISPR 22

FREQUENCY	Class A	(dBuV)	Class B (dBuV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: (1) The lower limit shall apply at the transition frequencies.

- (2) The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4. TEST RESULTS (EMISSION)

4.1 RADIO DISTURBANCE

Frequency Range : 0.15 - 30 MHz (Conducted Emission)

30 - 2000 MHz (Radiated Emission)

Input Voltage : 120 Vac, 60 Hz

Temperature : 24 °C Humidity : 69 %

Atmospheric Pressure : 982 mbar

TEST RESULT	Remarks
	Minimum passing margin of conducted emission: -10.8 dB at 0.160 MHz
	Minimum passing margin of radiated emission: -3.9 dB at 83.32 MHz

Note: The EUT was pre-tested under the following resolution & horizontal synchronization speed mode:

- 1600 x 1200 (75 kHz)
- 1280 x 1024 (80 kHz)
- 640 x 480 (31.5 kHz)

The worst emission levels were found under 1280 x 1024 (80 kHz) and therefore test data of this mode is recorded.

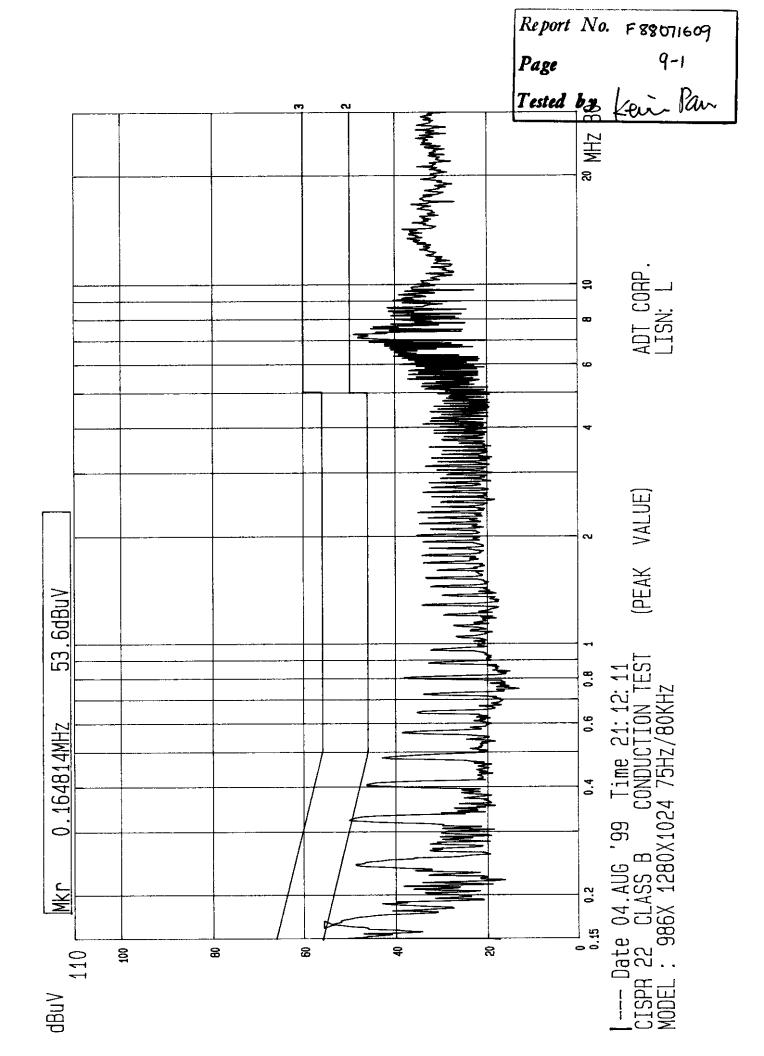
4.2 EUT OPERATION CONDITION

- 1. Turn on the power of all equipment.
- 2. PC runs a test program to enable all functions.
- 3. PC reads and writes messages from FDD and HDD.
- 4. PC sends "H" messages to monitor (EUT) and monitor displays "H" patterns on screen.
- 5. PC sends "H" messages to modem.
- 6. PC sends "H" messages to printer, and the printer prints them on paper.
- 7. PC sends audio messages to speakers.
- 8. Repeat steps 3-8.

4.3 TEST DATA OF CONDUCTED EMISSION

EUT: COLOR MONITOR

MODEL: 986X


MODE: 1280x1024 (80 kHz)

6 dB Bandwidth: 10 kHz

PHASE: LINE (L)

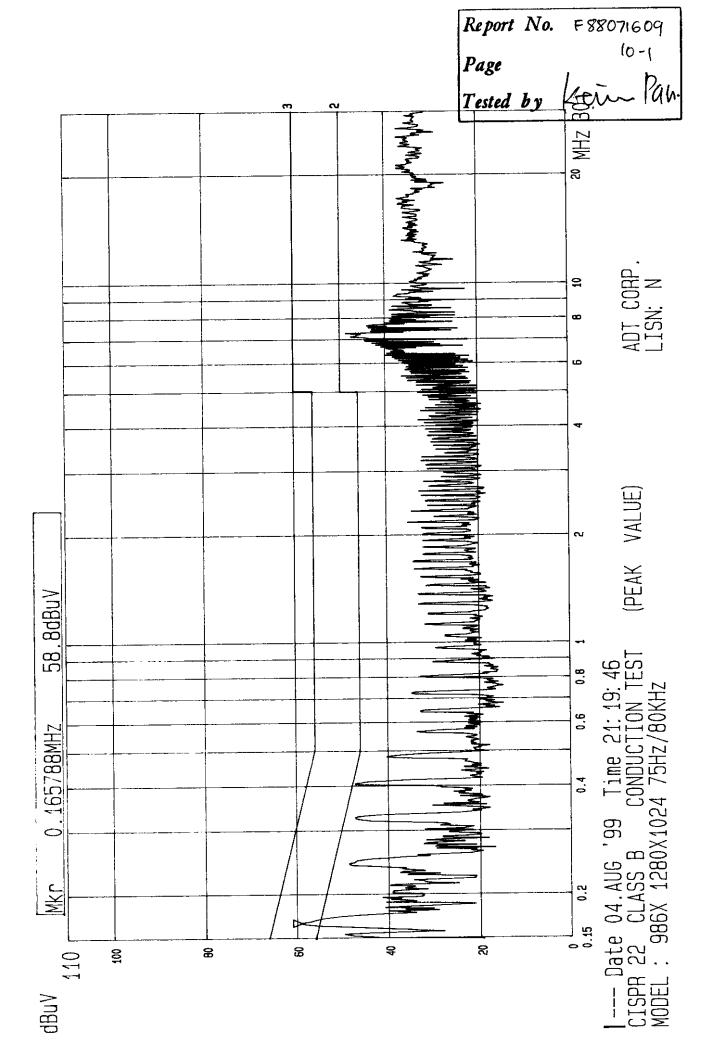
Freq.	Corr.	Readin	g Value	Emissio	n Level	Liı	nit	Mar	gin
[MHz]	Factor	[dB	(uV)]	[dB ((uV)]	[dB ((uV)]	(d)	B)
	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.160	0.2	53.5		53.7	-	65.5	55.5	-11.8	<u>-</u>
0.239	0.2	46.5	_	46.7	-	62.1	52.1	-15.4	
0.319	0.2	48.5	_	48.7	-	59.7	49.7	-11.0	_
0.399	0.2	42.8	-	43.0	-	57.9	47.9	-14.9	
0.478	0.2	39.1	-	39.3	-	56.4	46.4	-17.1	
7.370	0.7	43.7	_	44.4	_	60.0	50.0	-15.6	

- Remarks: 1. "*": Undetectable
 - 2. Q.P. and AV. are abbreviations of quasi-peak and average individually.
 - 3. "-": The Quasi-peak emission level also meets average limit and measurement with the average detector is unnecessary.
 - 4. The emission levels of other frequencies were very low against the limit.
 - 5. Margin value = Emission level Limit value
 - 6. Emission Level = Correction Factor + Reading Value.

TEST DATA OF CONDUCTED EMISSION

EUT: COLOR MONITOR

MODEL: 986X


MODE: 1280x1024 (80 kHz)

6 dB Bandwidth: 10 kHz

PHASE: NEUTRAL (N)

Freq.	Corr.	Readin	g Value	Emissio	n Level	Liı	nit	Mar	gin
[MHz]	Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.160	0.2	54.5	-	54.7	-	65.5	55.5	-10.8	_
0.239	0.2	49.0	-	49.2	-	62.1	52.1	-12.9	-
0.319	0.2	46.8	_	47.0		59.7	49.7	-12.7	
0.399	0.2	42.4	-	42.6	-	57.9	47.9	-15.3	_
0.478	0.2	39.6	-	39.8	_	56.4	46.4	-16.6	<u>-</u>
7.370	0.6	43.0	-	43.6	-	60.0	50.0	-16.4	

- Remarks: 1. "*": Undetectable
 - 2. Q.P. and AV. are abbreviations of quasi-peak and average individually.
 - 3. "-": The Quasi-peak emission level also meets average limit and measurement with the average detector is unnecessary.
 - 4. The emission levels of other frequencies were very low against the limit.
 - 5. Margin value = Emission level Limit value
 - 6. Emission Level = Correction Factor + Reading Value.

4.4 TEST DATA OF RADIATED EMISSION

EUT: COLOR MONITOR

MODEL: 986X

MODE: <u>1280x1024 (80 kHz)</u>

ANT. POLARITY: Horizontal

DETECTOR FUNCTION AND BANDWIDTH: Quasi peak, 120 kHz (30-1000 MHz)

Peak, 1 MHz (1000 MHz-2000 MHz)

FREQUENCY RANGE: 30-1000 MHz

MEASURED DISTANCE: 10 M

FREQUENCY RANGE: 1000-2000 MHz

MEASURED DISTANCE: 3 M

Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)
54.60	8.8	15.6	24.4	30.0	-5.6	400	1
134.52	13.3	7.9	21.2	30.0	-8.8	400	145
168.09	10.6	12.0	22.6	30.0	-7.4	400	227
174.92	10.7	11.2	21.9	30.0	-8.1	400	255
188.36	10.9	11.5	22.4	30.0	-7.6	400	252
215.28	12.0	7.7	19.7	30.0	-10.3	400	244
228.81	12.9	7.2	20.1	30.0	-9.9	400	244
256.35	15.0	12.7	27.7	37.0	-9.3	400	63
298.36	14.8	7.3	22.1	37.0	-14.9	400	348

REMARKS:

- 1. Emission level (dBuV/m) = Correction Factor (dB)
 - + Reading value (dBuV).
- 2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

TEST DATA OF RADIATED EMISSION

EUT: COLOR MONITOR

MODEL: 986X

MODE: 1280x1024 (80 kHz)

ANT. POLARITY: Vertical

DETECTOR FUNCTION AND BANDWIDTH: Quasi peak, 120 kHz (30-1000 MHz)

Peak, 1 MHz (1000 MHz-2000 MHz)

FREQUENCY RANGE: 30-1000 MHz

MEASURED DISTANCE: 10 M

FREQUENCY RANGE: 1000-2000 MHz

MEASURED DISTANCE: 3 M

Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)
54.31	6.6	18.3	24.9	30.0	-5.1	100	314
83.32	7.8	18.3	26.1	30.0	-3.9	140	356
134.72	13.6	9.1	22.7	30.0	-7.3	100	175
148.07	12.4	9.1	21.5	30.0	-8.5	100	25
168.11	10.7	11.4	22.1	30.0	-7.9	100	79
174.89	10.6	11.8	22.4	30.0	-7.6	100	232
201.86	11.9	9.7	21.6	30.0	-8.4	100	37
215.30	12.4	13.6	26.0	30.0	-4.0	100	20
229.11	12.9	11.6	24.5	30.0	-5.5	100	20
242.23	13.4	8.7	22.1	37.0	-14.9	100	2
296.02	14.7	5.8	20.5	37.0	-16.5	100	324

REMARKS:

- 1. Emission level (dBuV/m) = Correction Factor (dB)
 - + Reading value (dBuV).
- 2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

6. APPENDIX - INFORMATION OF THE TESTING LABORATORY

Information of the testing laboratory

We, ADT Corp., are founded in 1988, to provide our best service in EMC and Safety consultation. Our laboratory is accredited by the following approval agencies according to ISO/IEC Guide 25 or EN 45001:

USA

FCC, UL, NVLAP

Germany

TUV Rheinland

TUV Product Service

Japan

VCCI

New Zealand

RFS

Norway

NEMKO, DNV

U.K.

INCHCAPE

• R.O.C.

BSMI

Enclosed please find some certificates of our laboratory obtained from approval agencies. If you have any comments, please feel free to contact us with the following:

Lin Kou EMC Lab.:

Hsin Chu EMC Lab:

Tel: 886-2-26032180

Tel: 886-35-935343

Fax: 886-2-26022943

Fax: 886-35-935342

Lin Kou Safety Lab.:

Design Center:

Tel: 886-2-26093195

Tel: 886-2-26093195

Fax: 886-2-26093184

Fax: 886-2-26093184

E-mail: service@mail.adt.com.tw

http://www.adt.com.tw