

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 15.247 WLAN 802.11b/g/n

Applicant Name:

Motorola Mobility LLC 8000 West Sunrise Blvd. Plantation, FL 33322 United States

Date of Testing: 5/7 -5/15/2014

Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1405050917.IHD-R1

FCC ID:	IHDT6QC1

APPLICANT:

Motorola Mobility LLC

Application Type: EUT Type: FCC Classification: FCC Rule Part(s):

Test Procedure(s):

Certification Wrist Watch Digital Transmission System (DTS) Part 15.247 KDB 558074 v03r01, KDB 648474 D03 v01r02

		Avg Conducted		Peak Conducted	
Mode	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
802.11b	2412 - 2462	89.331	19.51	114.025	20.57
802.11g	2412 - 2462	49.091	16.91	111.944	20.49
802.11n	2412 - 2462	40.179	16.04	106.660	20.28

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 v03r01. Test results reported herein relate only to the item(s) tested. This revised Test Report (S/N: 0Y1405050917.IHD-R1) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) (S/N: 0Y1405050917.IHD) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

andy Ortanez resident

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dege 1 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 1 of 50
© 2014 PCTEST Engineering Laboratory. Inc. V 5.0				

TABLE OF CONTENTS

FCC	PART	15.247 MEASUREMENT REPORT	3
1.0	INT	RODUCTION	4
	1.1	SCOPE	4
	1.2	PCTEST TEST LOCATION	4
2.0	PR	ODUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	TEST CONFIGURATION	5
	2.4	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.5	LABELING REQUIREMENTS	5
3.0	DES	SCRIPTION OF TEST	6
	3.1	EVALUATION PROCEDURE	6
	3.2	AC LINE CONDUCTED EMISSIONS	6
	3.3	RADIATED EMISSIONS	7
4.0	AN	TENNA REQUIREMENTS	8
5.0	TES	ST EQUIPMENT CALIBRATION DATA	9
6.0	TES	ST RESULTS	10
	6.1	SUMMARY	10
	6.2	6DB BANDWIDTH MEASUREMENT – 802.11B/G/N	11
	6.3	OUTPUT POWER MEASUREMENT – 802.11B/G/N (2.4GHZ)	
	6.4	POWER SPECTRAL DENSITY (802.11B/G/N)	21
	6.5	CONDUCTED EMISSIONS AT THE BAND EDGE	28
	6.6	CONDUCTED SPURIOUS EMISSIONS	
	6.7	RADIATED SPURIOUS EMISSION MEASUREMENTS	
	6.8	RADIATED RESTRICTED BAND EDGE MEASUREMENTS	42
	6.9	LINE-CONDUCTED TEST DATA	48
7.0	CO	NCLUSION	50

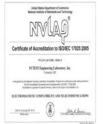
FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 2 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 2 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	Motorola Mobility LLC				
APPLICANT ADDRESS:	8000 West Sunrise Blvd.				
	Plantation, FL 33322, United States				
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.				
TEST SITE ADDRESS:	7185 Oakland Mills Road, Columbia, MD 21046 USA				
FCC RULE PART(S):	Part 15.247				
FCC ID:	IHDT6QC1				
FCC CLASSIFICATION:	Digital Transmission System (DTS)				
Test Device Serial No.:	5MAY-4, 5MAY-2 Production Pre-Production Engineering				
DATE(S) OF TEST:	5/7 -5/15/2014				
TEST REPORT S/N:	0Y1405050917.IHD-R1				

Test Facility / Accreditations


Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site • description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and • Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory • Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and • R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC • Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO • wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dogo 2 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 3 of 50
© 2014 PCTEST Engineering Laboratory. Inc. V 5.0				

1.0 **INTRODUCTION**

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on February 15, 2012.

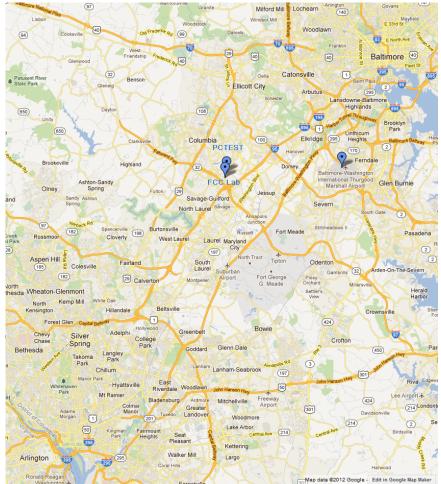


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N: Test Dates: EUT Type:		EUT Type:		Dage 4 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 4 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				

© 2014 PCTEST Engineering Laboratory, Inc.

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Motorola Wrist Watch FCC ID: IHDT6QC1**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

2.2 Device Capabilities

This device contains the following capabilities:

802.11b/g/n WLAN, Bluetooth (1x, EDR, LE)

• 802.11b - 98%

2.3 Test Configuration

The Motorola Wrist Watch FCC ID: IHDT6QC1 was tested per the guidance of KDB 558074 v03r01. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2, 3.3, and 6.1 of this test report for a description of the AC line conducted emissions, radiated emissions, and antenna port conducted emissions test setups, respectively. Additional emissions testing were performed per KDB 648474 D03 and the additional worst case emissions are reported herein and identified as WCC.

Per KDB 648474 D03, spurious emissions measurement data was also investigated with a wireless charging device. The EUT was placed on the representative wireless charger under normal conditions and in a simulated call configuration. Only worst case emissions are shown in this report

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5 Labeling Requirements

Per 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 5 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 5 of 50
© 2014 PCTEST Engineering Laboratory, Inc. V 5.0				

3.0 **DESCRIPTION OF TEST**

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009), and the guidance provided in KDB 558074 v03r01 were used in the measurement of the **Motorola Wrist Watch FCC ID: IHDT6QC1.**

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 6.9. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 8.51.0.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dage 6 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 6 of 50
© 2014 PCTEST Engineering Laboratory Inc.				

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Clause 5, Figure 5.7 of ANSI C63.4-2009. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the PVC supports to bring the total height of the table to 80cm.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. For the EUT positioning, "H" is defined with the EUT lying flat on the test surface, "H2" is defined with the EUT standing up on its side, and "V" is defined with the EUT standing upright.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 7 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 7 of 50
© 2014 PCTEST Engineering Laboratory, Inc. V 5.0				

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the Wrist Watch are **permanently attached**.
- There are no provisions for connections to an external antenna.

Conclusion:

The Motorola Wrist Watch FCC ID: IHDT6QC1 unit complies with the requirement of §15.203.

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 4-1. Frequency/ Channel Operations

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 9 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 8 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	1/29/2014	Annual	1/29/2015	N/A
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	3/25/2014	Annual	3/25/2015	N/A
Agilent	8447D	Broadband Amplifier	5/31/2013	Annual	5/31/2014	2443A01900
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	4/16/2014	Annual	4/16/2015	US42510244
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Agilent	N9038A	MXE EMI Receiver	1/3/2014	Annual	1/3/2015	MY51210133
Emco	6502	Active Loop Antenna (10k - 30 MHz)	5/31/2012	Biennial	5/31/2014	267
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/8/2014	Biennial	4/8/2016	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Biennial	5/30/2014	135427
Mini-Circuits	VHF-3100+	High Pass Filter	1/29/2014	Annual	1/29/2015	31144
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	1/27/2014	Annual	1/27/2015	100342
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	6/20/2013	Biennial	6/20/2015	310233
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/28/2014	Biennial	1/28/2016	A051107

Table 5-1. Annual Test Equipment Calibration Schedule

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 9 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				

6.0 **TEST RESULTS**

6.1 Summary

Company Name:	Motorola Mobility LLC
FCC ID:	IHDT6QC1
FCC Classification:	Digital Transmission System (DTS)
Data Rate(s) Tested:	<u>1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)</u>
	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g)
	6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps,

52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n – 20MHz)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER	<u>R MODE (TX)</u>				
15.247(a)(2)	6dB Bandwidth	> 500kHz		PASS	Section 6.2
15.247(b)(3)	Transmitter Output Power	< 1 Watt	CONDUCTED	PASS	Sections 6.3
15.247(e)	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 6.4
15.247(d)	Band Edge / Out-of-Band Emissions	Conducted ≥ 20dBc		PASS	Sections 6.5, 6.6
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 6.7, 6.8
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 6.9

Table 6-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation", Version 2.6.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deg 10 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 10 of 50
2 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

6.2 6dB Bandwidth Measurement – 802.11b/g/n §15.247(a.2)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 v03r01 - Section 8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

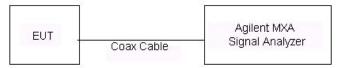
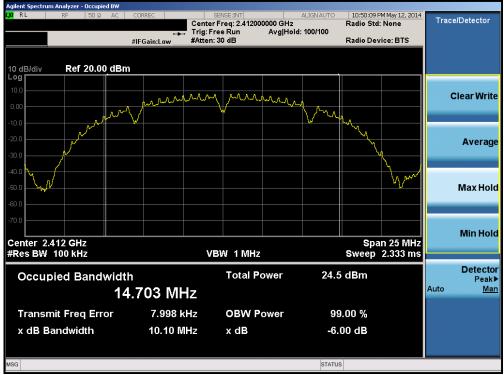


Figure 6-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 11 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 11 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0



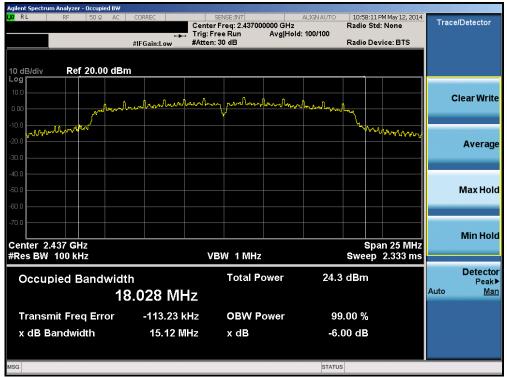
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
2412	1	b	1	10.100	0.500	Pass
2437	6	b	1	10.127	0.500	Pass
2462	11	b	1	10.086	0.500	Pass
2412	1	g	6	15.13	0.500	Pass
2437	6	g	6	15.12	0.500	Pass
2462	11	g	6	15.11	0.500	Pass
2412	1	n	6.5/7.2 (MCS0)	15.12	0.500	Pass
2437	6	n	6.5/7.2 (MCS0)	15.11	0.500	Pass
2462	11	n	6.5/7.2 (MCS0)	15.11	0.500	Pass

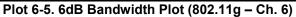
Table 6-2. Conducted Bandwidth Measurements

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 12 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0


Plot 6-2. 6dB Bandwidth Plot (802.11b - Ch. 6)

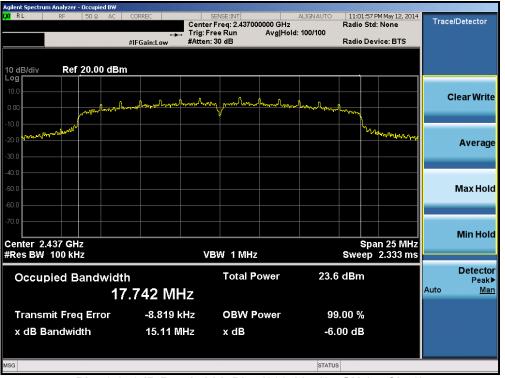
FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 13 of 50
0 2014 PCTEST Engineering Laboratory, Inc.				V 5.0





Plot 6-4. 6dB Bandwidth Plot (802.11g - Ch. 1)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 14 of 50
2 2014 PCTEST Engineering Laboratory, Inc.				V 5.0


Plot 6-6. 6dB Bandwidth Plot (802.11g - Ch. 11)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 15 of 50
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0


Plot 6-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)

Plot 6-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dogo 16 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 16 of 50			
© 2014 PCTEST Engineering Laboratory, Inc.							

Plot 6-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 50		
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Fage 17 01 50		
© 2014 PCTEST Engineering Laboratory, Inc.						

6.3 Output Power Measurement – 802.11b/g/n (2.4GHz) §15.247(b.3)

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 v03r01 – Section 9.1.3 PKPM1 Peak Power Method (for signals with BW ≤ 50MHz) KDB 558074 v03r01 – Section 9.2.3.2 Method AVGPM-G (for signals of all BWs)

Test Settings

Method PKPM1 (Peak Power Measurement of Signals with DTS BW ≤ 50MHz)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurements for Signals With Any Channel BW)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

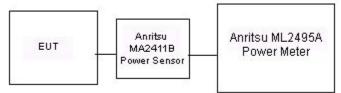


Figure 6-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

Additional in-band conducted power measurements were performed in order to make those channels compliant in radiated band edge measurements. The conducted powers for those channels are also reported below.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dogo 19 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 18 of 50			
© 2014 PCTEST Engineering Laboratory, Inc. V							

	Ero a			802.11	b Conduct	ed Power	[dBm]
Mode	Freq [MHz]	Channel	Detector		Data Rat	e [Mbps]	
	[1	2	5.5	11
802.11b	2412	1*	AVG	16.73	17.33	17.43	17.44
			PEAK	18.52	18.99	19.15	19.17
802.11b	2417	2	AVG	15.97	16.30	16.31	16.37
			PEAK	17.81	18.07	18.08	18.15
802.11b	2422	3	AVG	19.40	19.25	19.92	19.69
			PEAK	20.44	20.24	20.42	20.50
802.11b	2437	6*	AVG	19.38	19.27	19.45	19.51
			PEAK	20.48	20.30	20.54	20.57
802.11b	2442	7	AVG	18.55	19.30	19.96	19.67
			PEAK	20.03	20.46	20.47	20.48
802.11b	2447	8	AVG	17.80	17.78	17.91	17.89
			PEAK	19.45	19.44	19.18	19.42
802.11b	2452	9	AVG	17.76	17.70	18.05	17.88
			PEAK	19.44	19.36	19.32	19.42
802.11b	2457	10	AVG	16.67	16.51	16.62	16.55
			PEAK	18.44	18.26	18.02	18.24
802.11b	2462	11*	AVG	17.88	17.75	18.00	17.97
			PEAK	19.52	19.41	19.28	19.52

Table 6-3. 802.11b Conducted Output Power Measurements

	F					802.11	g Conduc	ted Power	[dBm]		
Mode	Freq [MHz]	Channel	Detector				Data Rat	te [Mbps]			
	[101112]			6	9	12	18	24	36	48	54
802.11g	2412	1	AVG	14.57	14.50	14.65	14.69	13.47	12.70	11.60	10.72
			PEAK	19.74	19.78	19.87	19.89	18.99	18.05	17.02	16.07
802.11g	2417	2	AVG	15.82	15.80	15.76	15.85	14.68	13.73	12.78	11.69
			PEAK	20.07	20.05	20.08	20.10	19.19	18.21	17.23	16.25
802.11g	2422	3	AVG	16.58	16.78	16.77	16.87	15.75	14.81	13.95	12.79
			PEAK	20.19	20.26	20.27	20.28	19.39	18.36	17.42	16.41
802.11g	2437	6	AVG	16.66	16.72	16.88	16.91	15.71	14.88	13.90	12.89
			PEAK	20.12	20.39	20.44	20.49	20.41	20.28	20.12	19.85
802.11g	2452	9	AVG	16.78	16.72	16.77	16.45	15.82	15.00	13.97	12.94
			PEAK	20.32	20.37	20.30	20.22	19.55	18.59	17.61	16.61
802.11g	2457	10	AVG	15.79	15.77	15.90	16.02	14.60	13.78	12.87	11.85
			PEAK	20.18	20.22	20.23	20.26	19.32	18.38	17.41	16.41
802.11g	2462	11	AVG	13.72	13.86	13.99	13.98	12.83	11.86	10.89	9.92
			PEAK	19.62	19.72	19.81	19.79	19.02	17.99	17.05	16.05

Table 6-4. 802.11g Conducted Output Power Measurements

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 19 of 50			
© 2014 PCTEST Engineering Laboratory, Inc. V 5.							

						802.1	1n (2.4GHz) Conduct	ed Power	dBm] (400	ns GI)		
	Mode	Freq	Channel	Detector	Data Rate [Mbps]								
	woue	[MHz]	Channer	Detector	mcs0	mcs1	mcs2	mcs3	mcs4	mcs5	mcs6	mcs7	
					7.22	14.44	21.67	28.89	43.33	57.78	65.00	72.22	
_	802.11n	2412	1	AVG	13.78	13.88	13.90	13.92	12.65	11.80	10.80	9.72	
Ĥ				PEAK	19.53	19.54	19.58	19.62	18.61	17.82	16.83	15.77	
Ō	802.11n	2412	2	AVG	14.67	14.91	15.00	14.89	13.87	12.85	11.85	10.90	
(2.4GHz)				PEAK	19.76	19.87	19.97	19.88	18.95	18.08	17.11	16.10	
c	802.11n	2412	3	AVG	15.68	15.89	16.00	15.86	14.82	13.90	12.80	11.80	
÷				PEAK	20.01	20.08	20.14	20.11	19.14	18.31	17.27	16.28	
802	802.11n	2437	6	AVG	15.87	15.87	16.04	16.01	14.95	14.13	13.05	12.07	
ω.				PEAK	20.21	20.21	20.28	20.28	20.14	20.10	19.84	19.43	
	802.11n	2412	10	AVG	15.92	16.03	16.05	16.01	14.95	14.03	12.88	11.91	
				PEAK	20.20	20.21	20.22	20.24	19.22	18.29	17.23	16.37	
	802.11n	2462	11	AVG	14.00	14.06	13.72	14.04	12.75	11.95	13.00	9.94	
				PEAK	19.66	19.72	19.61	19.73	18.72	18.00	16.98	15.94	

Table 6-5. 20MHz BW 802.11n (2.4GHz 400ns GI) Conducted Output Power Measurements

					802.1	1n (2.4GHz) Conducte	ed Power	[dBm] (800	ns GI)	
Mode	Freq	Channel	el Detector	Data Rate [Mbps]							
woue	[MHz]	Channer	Delector	mcs0	mcs1	mcs2	mcs3	mcs4	mcs5	mcs6	mcs7
				6.5	13	19.5	26	39	52	58.5	65
802.11n	2412	1	AVG	13.70	13.77	13.85	13.85	12.67	11.85	10.88	9.87
			PEAK	19.45	19.65	19.65	19.62	18.58	17.88	16.88	15.88
802.11n	2417	2	AVG	14.79	14.88	15.00	14.86	13.78	12.90	11.83	10.90
			PEAK	19.83	19.85	19.91	19.94	18.92	18.14	17.11	16.07
802.11n	2422	3	AVG	15.79	15.92	15.94	15.92	14.88	13.89	12.86	11.89
			PEAK	20.01	20.07	20.08	20.13	19.14	18.25	17.29	16.26
802.11n	2437	6	AVG	15.81	15.82	15.85	16.00	14.80	13.91	12.77	11.89
			PEAK	20.10	20.09	20.13	20.16	19.92	19.89	19.42	18.65
802.11n	2457	10	AVG	15.86	15.93	15.97	16.07	14.94	13.96	12.92	12.05
			PEAK	20.17	20.18	20.19	20.22	19.26	18.35	17.36	16.39
802.11n	2462	11	AVG	13.82	13.97	14.10	14.18	12.86	12.12	11.02	10.04
			PEAK	19.61	19.76	19.77	19.86	18.75	18.05	16.96	16.02

Table 6-6. 20MHz BW 802.11n (2.4GHz 800 ns GI) Conducted Output Power Measurements

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dago 20 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch	Page 20 of 50				
© 2014 PCTEST Engineering Laboratory, Inc.							

6.4 Power Spectral Density (802.11b/g/n) §15.247(e)

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 v03r01 – Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

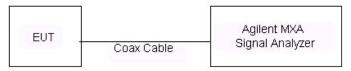


Figure 6-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 21 01 50			
© 2014 PCTEST Engineering Laboratory, Inc.							

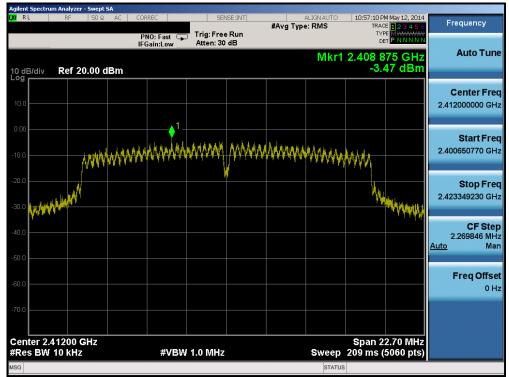
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	-0.86	8.00	-8.86	Pass
2437	6	b	1	0.68	8.00	-7.32	Pass
2462	11	b	1	2.08	8.00	-5.92	Pass
2412	1	g	6	-3.47	8.00	-11.47	Pass
2437	6	g	6	-1.94	8.00	-9.94	Pass
2462	11	g	6	-4.35	8.00	-12.35	Pass
2412	1	n	6.5/7.2 (MCS0)	-4.01	8.00	-12.01	Pass
2437	6	n	6.5/7.2 (MCS0)	-2.90	8.00	-10.90	Pass
2462	11	n	6.5/7.2 (MCS0)	-5.35	8.00	-13.35	Pass

Table 6-7. Conducted Power Density Measurements

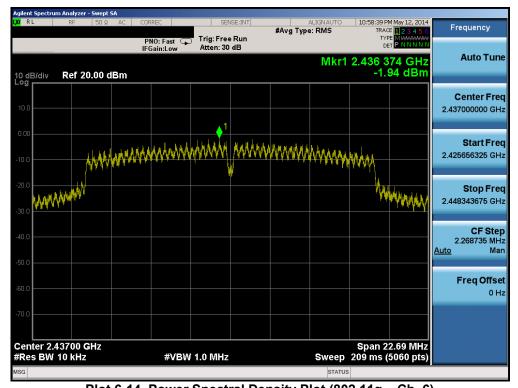
FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 22 01 50			
© 2014 PCTEST Engineering Laboratory, Inc.							

V 5.0 01/13/2014

Plot 6-10. Power Spectral Density Plot (802.11b - Ch. 1)

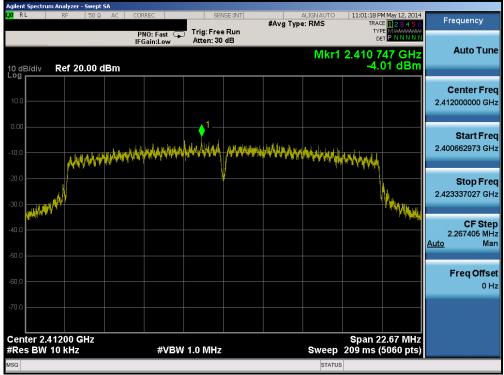

Plot 6-11. Power Spectral Density Plot (802.11b – Ch. 6)

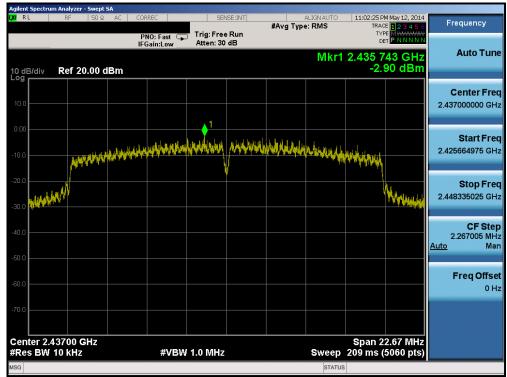
FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 22 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 23 of 50
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0



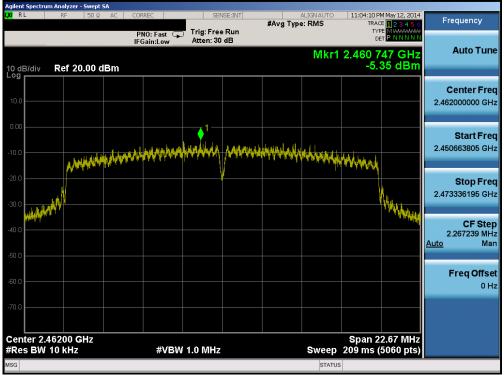
Plot 6-13. Power Spectral Density Plot (802.11g - Ch. 1)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 24 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 24 of 50
© 2014 PCTEST Engineering	Laboratory, Inc.	•		V 5.0




Plot 6-15. Power Spectral Density Plot (802.11g - Ch. 11)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 25 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 25 of 50
© 2014 PCTEST Engineering	V 5.0			



Plot 6-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 26 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 26 of 50
© 2014 PCTEST Engineering L		V 5.0		

Plot 6-18. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 27 01 50
© 2014 PCTEST Engineering I	Laboratory, Inc.	•		V 5.0

6.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g", and 7.22 Mbps (mcs0) for "n" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 9.1).

Test Procedure Used

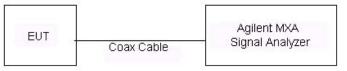
KDB 558074 v03r01 – Section 11.3

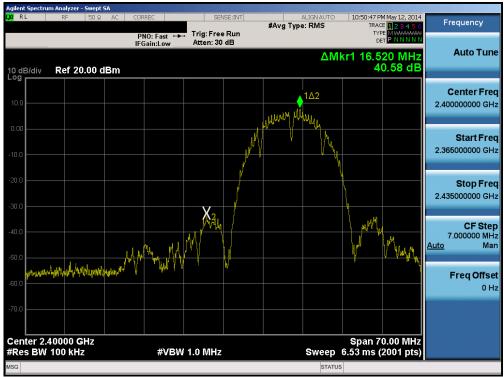
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

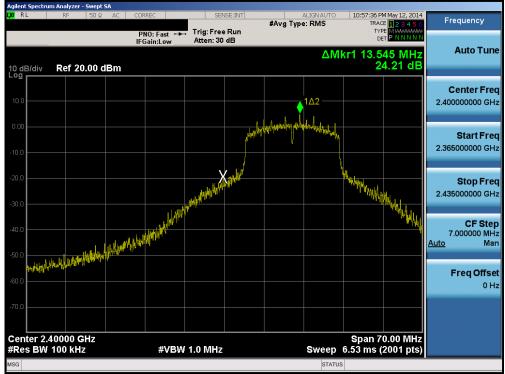



Figure 6-4. Test Instrument & Measurement Setup

Test Notes

None

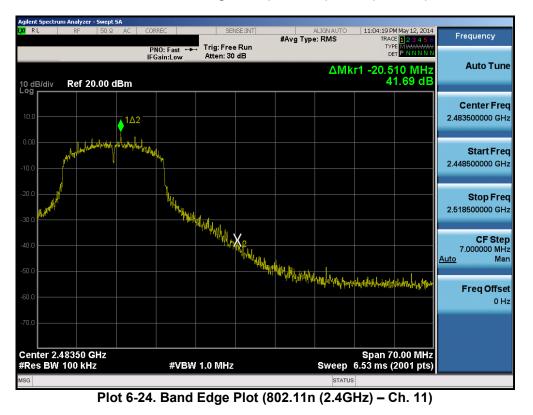
FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 29 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 28 of 50
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0



Plot 6-20. Band Edge Plot (802.11b - Ch. 11)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 29 of 50
© 2014 PCTEST Engineering	Laboratory, Inc.	•		V 5.0

Plot 6-21. Band Edge Plot (802.11g– Ch. 1)



FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 50			
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 30 of 50			
© 2014 PCTEST Engineering Laboratory, Inc.							

Plot 6-23. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

PCTEST Reviewed by: MOTOROLA FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT FCC ID: IHDT6QC1 (CERTIFICATION) **Quality Manager** Test Report S/N: Test Dates: EUT Type: Page 31 of 50 0Y1405050917.IHD-R1 5/7 -5/15/2014 Wrist Watch © 2014 PCTEST Engineering Laboratory, Inc. V 5.0

6.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "n" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 v03r01.

Test Procedure Used

KDB 558074 v03r01 – Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

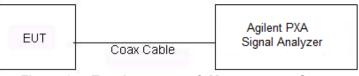


Figure 6-5. Test Instrument & Measurement Setup

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 50		
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 32 of 50		
© 2014 PCTEST Engineering Laboratory, Inc.						

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 50		
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Fage 33 01 50		
© 2014 PCTEST Engineering Laboratory, Inc.						

Agilent Spe MIRL		yzer - Swept 9		CORDEC	051				11.05.05.01.01	10.0014	
L <mark>au</mark> RL	RF	50 Ω	AC	CORREC		VSE:INT	#Avg Typ	ALIGNAUTO e: RMS	11:05:36 PM M TRACE	23456	Frequency
				PNO: Fast 🕞 IFGain:Low	Trig: Free Atten: 30				DET P		
								M	(r1 3.159 (-38.99	3 GHz	Auto Tune
10 dB/di Log	v Re	f 20.00 d	lBm						-38.99	dBm	
											Center Freq
10.0											5.015000000 GHz
0.00											
0.00											Start Freq
-10.0										-11.86 dBm	30.000000 MHz
-20.0											Stop Freq
-30.0											10.00000000 GHz
				1							
-40.0			liller of	and the second state			na data da cara cara da ta	katati attaluan	u	thread and the	CF Step 997.000000 MHz
(Olivy	A CONTRACTOR OF THE	and a strategy of the strategy	And the second						lang a sa a sa a sa a sa a	and the second second	<u>Auto</u> Mar
-50.0	a pirata ba bilini da a										
-60.0											Freq Offset
											0 Hz
-70.0											
Start 3									Stop 10.00	00 GHz	
#Res B	W 1.0	VIHZ		#VBV	/ 3.0 MHz				8.0 ms (300	01 pts)	
MSG								STATUS	5		

Plot 6-25. Conducted Spurious Plot (802.11b - Ch. 1)

Plot 6-26. Conducted Spurious Plot (802.11b – Ch. 1)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 24 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 34 of 50
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

	m Analyzer - Swept									
(X/RL	RF 50 Ω	AC CO	ORREC		ISE:INT	#Avg Typ	ALIGNAUTO e: RMS	TRAC	4 May 12, 2014	Frequency
			PNO: Fast 🕞 FGain:Low	Trig: Free Atten: 30			M	DE kr1 2.495	5 9 GHz 32 dBm	Auto Tune
10 dB/div	Ref 20.00 c	IBm		1			1	-39.4		
10.0										Center Freq 5.015000000 GHz
0.00										
-10.0									-10.20 dBm	Start Freq 30.000000 MHz
-20.0										Ctop Erog
										Stop Freq 10.000000000 GHz
-30.0		1								CF Step
-40.0	possible palandarakt		ale and the first of the state	and an all and the	And And Annual State			de Bergerekerp Maler	(Ingenerational)	997.000000 MHz <u>Auto</u> Man
-50.0 -50.0				a desta della d						
-60.0										Freq Offset 0 Hz
-70.0										
Start 30 N #Res BW			#VBW	/ 3.0 MHz			Sweep	Stop 10. 18.0 ms (3	.000 GHz 0001 pts)	
мsg 🗼 Point	ts changed; all t	traces clea	ared				STAT	JS		

Plot 6-27. Conducted Spurious Plot (802.11b – Ch. 6)

Plot 6-28. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 25 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 35 of 50
© 2014 PCTEST Engineering L	aboratory, Inc.	·		V 5.0

Agilent L <mark>XI</mark> RL		n Analyzer - 9		<u>c cor</u>	255	05				44.00.40.5		
L <mark>au</mark> RL		RF	50Ω A	(L LU)	REC		ISE:INT	#Avg Typ	ALIGNAUTO e: RMS	TRAC	M May 12, 2014 CE 1 2 3 4 5 6	Frequency
				P IF(NO: Fast 🕞 Gain:Low	Trig: Free Atten: 30				D		
									M	kr1 2.48	8 9 GHz	Auto Tune
10 dE Log r	3/div	Ref 20.	00 dBr	n						-34.	87 dBm	
												Center Freq
10.0												5.015000000 GHz
0.00												Start Freq
-10.0											-11.15 dBm	30.000000 MHz
-20.0												Stop Freq
-30.0												10.00000000 GHz
-30.0				\ '								
-40.0					at the second second		العقاد والمرا	and a standard fills of	adu tháng a a t	والتأميسين بريقان	An each teat and	CF Step 997.000000 MHz
		jlaysay ayaa doonayaa		- Andrew	and the second se	and a start of a particle of the second s	and the second se	In the second second second			and the second	<u>Auto</u> Man
-50.0	التركيم وقرر											
-60.0												Freq Offset
												0 Hz
-70.0												
	t 30 M									Stop 10	.000 GHz	
_	S BW 1	1.0 MHz			#VBW	3.0 MHz				18.0 ms (3	10001 pts)	
MSG									STATU	JS		

Plot 6-29. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 6-30. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 26 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 36 of 50
© 2014 PCTEST Engineering	Laboratory, Inc.	·		V 5.0

6.7 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 6-8 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 6-8. Radiated Limits

Test Procedures Used

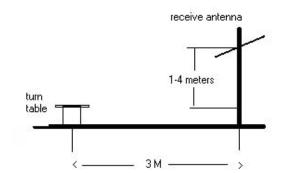
KDB 558074 v03r01 – Section 12.1, 12.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Fage 37 01 50
© 2014 PCTEST Engineering L	V 5.0			



Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

3 Meter EMC Chamber

Figure 6-6. Test Instrument & Measurement Setup

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 36 01 50
© 2014 PCTEST Engineering L	aboratory, Inc.	·		V 5.0

01/13/2014

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 v03r01 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-10.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

Sample Calculations

Determining Spurious Emissions Levels

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 6.8 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Deg 20 of 50		
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 39 of 50		
© 2014 PCTEST Engineering Laboratory, Inc. V 5						

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	-107.69	Avg	Н	Н	39.20	38.51	53.98	-15.47
4824.00	-97.56	Peak	Н	Н	39.20	48.64	73.98	-25.34
12060.00	-109.53	Avg	Н	Н	46.04	43.51	53.98	-10.47
12060.00	-98.09	Peak	Н	Н	46.04	54.95	73.98	-19.03

Table 6-9. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b	
1 Mbps	
3 Meters	
2437MHz	
06	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	-106.37	Avg	Н	Н	39.12	39.75	53.98	-14.23
4874.00	-96.83	Peak	Н	Н	39.12	49.29	73.98	-24.69
7311.00	-108.90	Avg	Н	Н	41.94	40.04	53.98	-13.94
7311.00	-96.96	Peak	Н	Н	41.94	51.98	73.98	-22.00
12185.00	-109.37	Avg	Н	Н	46.39	44.03	53.98	-9.95
12185.00	-96.91	Peak	Н	Н	46.39	56.49	73.98	-17.49

Table 6-10. Radiated Measurements

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 40 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 40 of 50
© 2014 PCTEST Engineering	Laboratory, Inc.			V 5.0

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

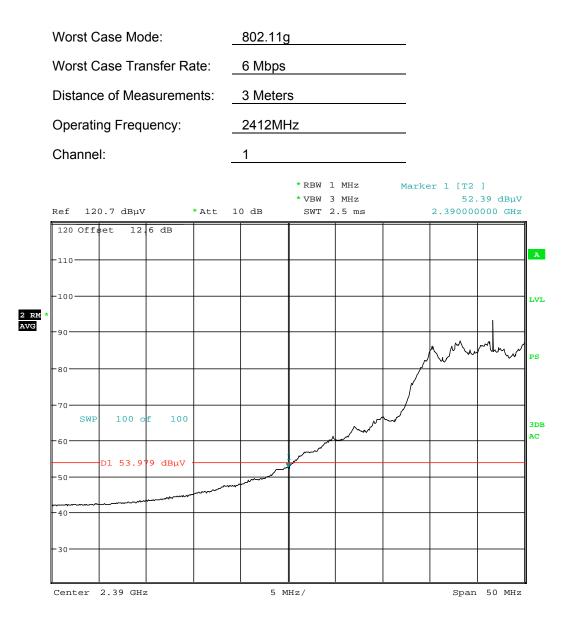
Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	-108.03	Avg	Н	Н	39.02	37.99	53.98	-15.99
4924.00	-97.51	Peak	Н	Н	39.02	48.51	73.98	-25.47
7386.00	-108.56	Avg	Н	Н	41.89	40.33	53.98	-13.65
7386.00	-96.60	Peak	Н	Н	41.89	52.29	73.98	-21.69
12310.00	-108.75	Avg	Н	Н	46.59	44.84	53.98	-9.14
12310.00	-96.12	Peak	Н	Н	46.59	57.47	73.98	-16.51

Table 6-11. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b	
1 Mbps	
3 Meters	
2437 MHz	
6	

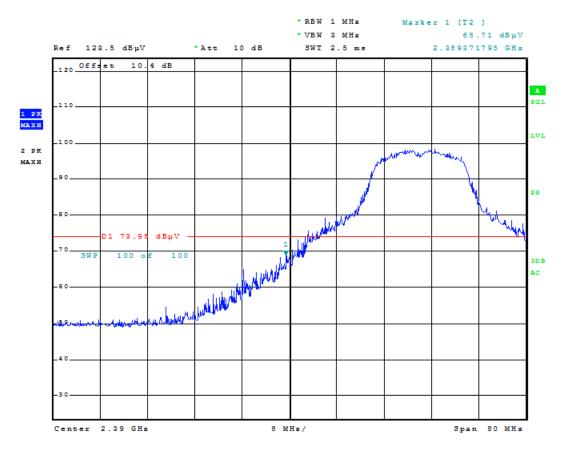
Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	-106.68	Avg	Н	Н	39.12	39.44	53.98	-14.54
4874.00	-96.97	Peak	Н	Н	39.12	49.15	73.98	-24.83
7311.00	-105.69	Avg	Н	Н	41.94	43.25	53.98	-10.73
7311.00	-96.39	Peak	Н	Н	41.94	52.55	73.98	-21.43
12185.00	-105.61	Avg	Н	Н	46.39	47.79	53.98	-6.19
12185.00	-95.95	Peak	Н	Н	46.39	57.45	73.98	-16.53


Table 6-12. Radiated Measurements with WCC

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 41 of 50
0Y1405050917.IHD-R1 5/7 -5/15/2014		Wrist Watch	Page 41 of 50	
© 2014 PCTEST Engineering I	aboratory Inc			V 5.0

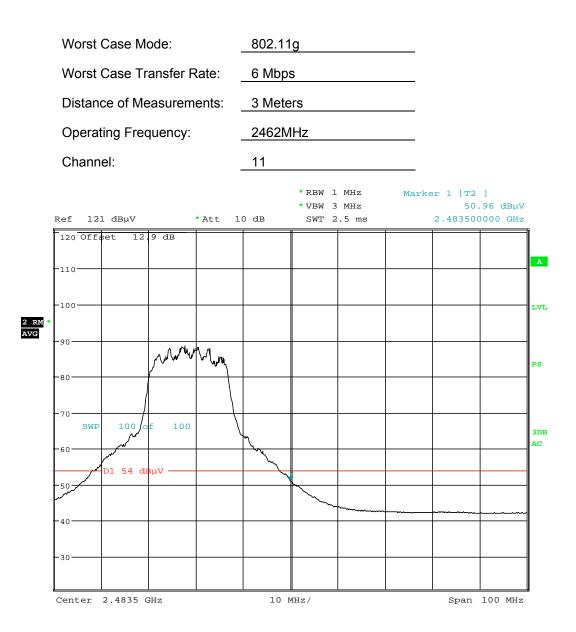
© 2014 PCTEST Engineering Laboratory, Inc.

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.



Date: 8.MAY.2014 15:54:38

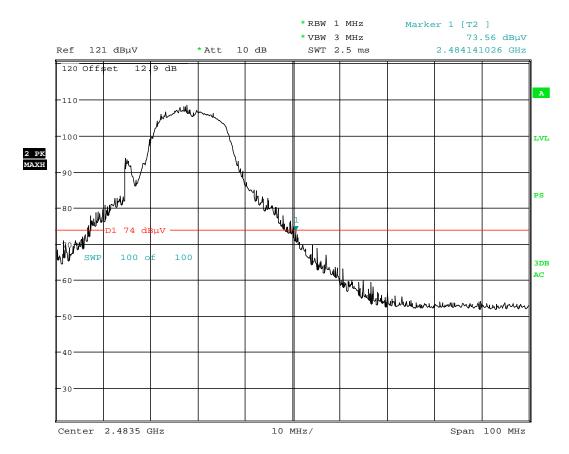
FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deg. 42 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 42 of 50
© 2014 PCTEST Engineering	Laboratory, Inc.			V 5.0



Date: 8.MAY.2014 00:05:45

Plot 6-32. Radiated Restricted Lower Band Edge Measurement (Peak)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 50
0Y1405050917.IHD-R1 5/7 -5/15/2014		Wrist Watch	Page 43 of 50	
© 2014 PCTEST Engineering I	aboratory, Inc.	•		V 5.0



Date: 8.MAY.2014 16:53:50

Plot 6-33. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deg 44 of 50
0Y1405050917.IHD-R1 5/7 -5/15/2014		Wrist Watch	Page 44 of 50	
© 2014 PCTEST Engineering I	aboratory, Inc.			V 5.0

Date: 8.MAY.2014 16:53:13

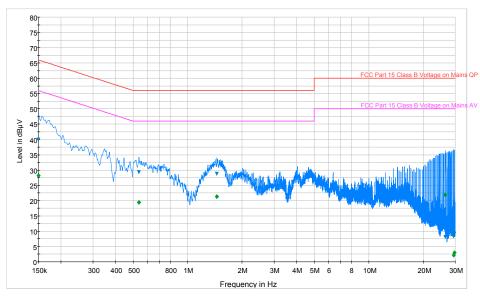
Plot 6-34. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOHOLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 50
0Y1405050917.IHD-R1 5/7 -5/15/2014		Wrist Watch	Page 45 of 50	
© 2014 PCTEST Engineering I	aboratory, Inc.	·		V 5.0


Worst Case Mode:	802.11g
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462 MHz
Channel:	_ 11

Plot 6-35. Radiated Restricted Band Edge Measurement with WCC (Average)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 46 of 50
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch	Page 46 of 50	
© 2014 PCTEST Engineering L	aboratory, Inc.	•		V 5.0



Plot 6-36. Radiated Restricted Band Edge Measurement with WCC (Peak)

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 47 of 50
0Y1405050917.IHD-R1 5/7 -5/15/2014		Wrist Watch	Page 47 of 50	
© 2014 PCTEST Engineering	Laboratory, Inc.			V 5.0

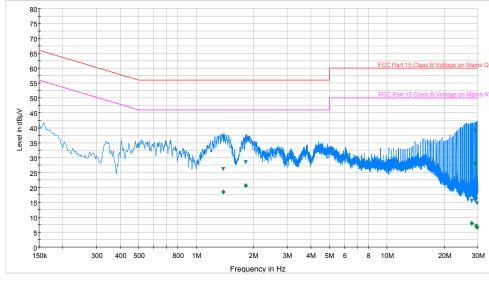
6.9 Line-Conducted Test Data §15.207

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+ Final Result 1-QPK Final Result 2-AVG

Plot 6-37. Line Conducted Plot with 802.11b (L1)

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.150	L1	0.2	39.90	66.00	26.10	28.10	56.00	27.90
0.539	L1	0.1	29.30	56.00	26.70	19.40	46.00	26.60
1.451	L1	0.1	28.70	56.00	27.30	21.40	46.00	24.60
26.423	L1	0.8	8.00	60.00	52.00	21.90	50.00	28.10
29.434	L1	0.8	8.40	60.00	51.60	2.20	50.00	47.80
29.771	L1	0.8	9.10	60.00	50.90	2.90	50.00	47.10

Table 6-13. Line Conducted Data with 802.11b (L1)


Notes:

- 1. All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11b mode using 1Mbps on Channel 6. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3. Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 49 of 50
0Y1405050917.IHD-R1 5/7 -5/15/2014		Wrist Watch	Page 48 of 50	
© 2014 PCTEST Engineering I	aboratory. Inc.			V 5.0

Line-Conducted Test Data §15.207

Plot 6-38. Line Conducted Plot with 802.11b (N)

Frequency		Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
1.390	Ν	0.1	26.20	56.00	29.80	18.40	46.00	27.60
1.822	Ν	0.2	28.50	56.00	27.50	20.60	46.00	25.40
27.825	Ν	0.9	15.50	60.00	44.50	7.90	50.00	42.10
29.108	Ν	0.9	39.00	60.00	21.00	28.20	50.00	21.80
29.427	Ν	0.9	16.10	60.00	43.90	7.20	50.00	42.80
29.747	Ν	0.9	14.70	60.00	45.30	6.60	50.00	43.40

Notes:

Table 6-14. Line Conducted Data with 802.11b (N)

- 1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11b mode using 1Mbps on Channel 6. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 50	
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 49 of 50	
© 2014 PCTEST Engineering Laboratory, Inc.					

7.0 **CONCLUSION**

The data collected relate only the item(s) tested and show that the **Motorola Wrist Watch FCC ID: IHDT6QC1** is in compliance with Part 15C of the FCC Rules.

FCC ID: IHDT6QC1		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	MOTOROLA	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 50 of 50	
0Y1405050917.IHD-R1	5/7 -5/15/2014	Wrist Watch		Page 50 01 50	
© 2014 PCTEST Engineering Laboratory, Inc.					