

# FCC SAR Test Report

| : Motorola Mobility LLC      |
|------------------------------|
| : Mobile Phone               |
| : Motorola                   |
| : XT2155-5                   |
| : IHDT56ZW4                  |
| : FCC 47 CFR Part 2 (2.1093) |
|                              |

We, Sporton International (Kunshan) Inc, would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Nick Hu

Reviewed by: Nick Hu / Supervisor

at lin

Approved by: Kat Yin / Manager



# Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China



# **Table of Contents**

| 1. Statement of Compliance                            |    |
|-------------------------------------------------------|----|
| 2. Administration Data                                |    |
| 3. Guidance Applied                                   | 5  |
| 4. Equipment Under Test (EUT) Information             | 6  |
| 4.1 General Information                               | 6  |
| 4.2 General LTE SAR Test and Reporting Considerations |    |
| 5. RF Exposure Limits                                 | 9  |
| 5.1 Uncontrolled Environment                          |    |
| 5.2 Controlled Environment                            |    |
| 6. Specific Absorption Rate (SAR)                     |    |
| 6.1 Introduction                                      |    |
| 6.2 SAR Definition                                    |    |
| 7. System Description and Setup                       |    |
| 7.1 E-Field Probe                                     | 12 |
| 7.2 Data Acquisition Electronics (DAE)                | 12 |
| 7.3 Phantom                                           | 13 |
| 7.4 Device Holder                                     |    |
| 8. Measurement Procedures                             |    |
| 8.1 Spatial Peak SAR Evaluation                       | 15 |
| 8.2 Power Reference Measurement                       |    |
| 8.3 Area Scan                                         |    |
| 8.4 Zoom Scan                                         |    |
| 8.5 Volume Scan Procedures                            |    |
| 8.6 Power Drift Monitoring                            |    |
| 9. Test Equipment List                                |    |
| 10. System Verification                               |    |
| 10.1 Tissue Simulating Liquids                        |    |
| 10.2 Tissue Verification                              |    |
| 10.3 System Performance Check Results                 |    |
| 11.1 Ear and handset reference point                  |    |
| 11.2 Definition of the cheek position                 |    |
| 11.3 Definition of the tilt position                  |    |
| 11.4 Body Worn Accessory                              |    |
| 11.5 Product Specific 10g SAR Exposure                |    |
| 11.6 Wireless Router                                  |    |
| 12. SAR Test Results                                  |    |
| 12.1 Head SAR                                         |    |
| 12.2 Hotspot SAR                                      |    |
| 12.3 Body Worn Accessory SAR                          |    |
| 12.4 Product specific 10g SAR                         | 27 |
| 13. Uncertainty Assessment                            |    |
| 14. References                                        |    |
| Appendix A. Plots of System Performance Check         |    |
| Appendix B. Plots of High SAR Measurement             |    |
| Appendix C. DASY Calibration Certificate              |    |
| Appendix D. Test Setup Photos                         |    |



# **Revision History**

| REPORT NO.  | VERSION | DESCRIPTION             | ISSUED DATE   |
|-------------|---------|-------------------------|---------------|
| FA142611-06 | Rev. 01 | Initial issue of report | Sep. 01, 2021 |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |



# 1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Motorola Mobility LLC**, **Mobile Phone**, **XT2155-5**, are as follows.

|                    |                 | Highest 1g SAR Sun  | nmary                       |                                                 |                                  |
|--------------------|-----------------|---------------------|-----------------------------|-------------------------------------------------|----------------------------------|
| Equipment<br>Class | Frequ<br>Ba     | uency<br>nd         | Head<br>(Separation<br>0mm) | Hotspot<br>(Separation<br>5mm)<br>1g SAR (W/kg) | Body-worn<br>(Separation<br>5mm) |
| Licensed           | WCDMA           | Band II             |                             | 1.28                                            | 0.93                             |
| DTS                | WLAN            | 2.4GHz WLAN         | 0.81                        |                                                 |                                  |
|                    |                 | Highest 10g SAR Sur | mmary                       |                                                 |                                  |
| Equipment<br>Class | Frequ<br>Ba     |                     | Product                     | t Specific 10g SA<br>(Separation 0mm            |                                  |
| Licensed           | LTE             | Band 7              |                             | 1.85                                            |                                  |
|                    | Date of Testing | :                   |                             | 2021/8/30                                       |                                  |

#### Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

#### Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.



# 2. Administration Data

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

| Testing Laboratory |                                                            |        |               |  |  |  |  |  |
|--------------------|------------------------------------------------------------|--------|---------------|--|--|--|--|--|
| Test Firm          | Sporton International (Kunshan) Inc.                       |        |               |  |  |  |  |  |
| Test Site Location | , 5                                                        |        | elopment Zone |  |  |  |  |  |
| Toot Site No       | Sporton Site No. FCC Designation No. FCC Test Firm Registr |        |               |  |  |  |  |  |
| Test Site No.      | SAR03-KS                                                   | CN1257 | 314309        |  |  |  |  |  |

| Company Name Motorola Mobility LLC                 |  |  |  |  |  |
|----------------------------------------------------|--|--|--|--|--|
| 22 W, Merchandise Mart Plaza, Chicago, IL60654 USA |  |  |  |  |  |
|                                                    |  |  |  |  |  |

|              | Manufacturer                                        |
|--------------|-----------------------------------------------------|
| Company Name | Motorola Mobility LLC                               |
| Address      | 222 W, Merchandise Mart Plaza, Chicago, IL60654 USA |

# 3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- · FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- · FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- · FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- · FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01



# 4. Equipment Under Test (EUT) Information

### 4.1 General Information

|                                                                                               | Product Feature & Specification                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Name                                                                                | Mobile Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Brand Name                                                                                    | Motorola                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Model Name                                                                                    | XT2155-5                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FCC ID                                                                                        | IHDT56ZW4                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IMEI Code                                                                                     | 355689860003624                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                               | GSM850: 824 MHz ~ 849 MHz<br>GSM1900: 1850 MHz ~ 1910 MHz<br>WCDMA Band II: 1850 MHz ~ 1910 MHz<br>WCDMA Band IV: 1710 MHz ~ 1755 MHz<br>WCDMA Band V: 824 MHz ~ 849 MHz<br>Y LTE Band 2: 1850 MHz ~ 1910 MHz<br>LTE Band 4: 1710 MHz ~ 1755 MHz<br>LTE Band 5: 824 MHz ~ 849 MHz<br>LTE Band 5: 824 MHz ~ 849 MHz<br>LTE Band 6: 1710 MHz ~ 2570 MHz<br>LTE Band 66: 1710 MHz ~ 1780 MHz<br>WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz<br>Bluetooth: 2402 MHz ~ 2480 MHz |
| Mode                                                                                          | GSM/GPRS/EGPRS<br>RMC/AMR 12.2Kbps<br>HSDPA<br>HSUPA<br>DC-HSDPA<br>HSPA+(16QAM uplink)<br>LTE: QPSK, 16QAM, 64QAM<br>WLAN 2.4GHz 802.11b/g/n HT20<br>Bluetooth BR/EDR/LE                                                                                                                                                                                                                                                                                            |
| HW Version                                                                                    | DVT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SW Version                                                                                    | RON31.164                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GSM / (E)GPRS                                                                                 | Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously                                                                                                                                                                                                                                                                                                                                                                             |
| Transfer mode                                                                                 | but can automatically switch between Packet and Circuit Switched Network.                                                                                                                                                                                                                                                                                                                                                                                            |
| EUT Stage                                                                                     | Identical Prototype                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Remark:<br>1. 802.11n-HT40 is n                                                               | ot supported in 2.4GHz WLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                               | orts VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | z WLAN support hotspot operation and Bluetooth support tethering applications.                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                               | not support DTM operation and supports GPRS/EGPRS mode up to multi-slot class 12.                                                                                                                                                                                                                                                                                                                                                                                    |
| SAR compliance                                                                                | nents receiver detect mechanism/hotspot trigger reduced power for the power management for<br>at different exposure conditions (head, body-worn, hotspot, extremity). The device will invoke<br>k scenarios power level, which are provided in the operational description.                                                                                                                                                                                          |
|                                                                                               | bands, Receiver off body-worn power level higher than hotspot reduced power level, so front/back<br>worn SAR can represent hotspot conservatively.                                                                                                                                                                                                                                                                                                                   |
| 7. There are two difference<br>same including cir<br>mobile has two SI<br>either one SIM at a | erent types of EUT. They are single SIM card mobile and dual SIM card mobile. The others are the<br>cuit design, PCB board, structure and all components. It is special to declare. For dual SIM card<br>M slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by<br>a time (single active).                                                                                                                                       |
|                                                                                               | dsets, only supplier different, so only chose one headset to perform SAR testing.<br>eport, for model change note, Please refer to the XT2155-5_Class II Permissive Change letter                                                                                                                                                                                                                                                                                    |

 This is a variant report, for model change note, Please refer to the XT2155-5\_Class II Permissive Change letter. Based on the similarity between two models, only the worst cases from original test report (Sporton Report Number FA142611) were verified for the differences.



# 4.2 General LTE SAR Test and Reporting Considerations

| Summarize                                         | d necessary ite                                                                                                                          | ms addres   | ssed in KI   | DB 94122   | 5 D05 v02    | r05               |              |                 |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|--------------|-------------------|--------------|-----------------|
| FCC ID                                            | IHDT56ZW4                                                                                                                                | HDT56ZW4    |              |            |              |                   |              |                 |
| Equipment Name                                    | Mobile Phone                                                                                                                             |             |              |            |              |                   |              |                 |
|                                                   | LTE Band 2: 18                                                                                                                           | 50 MHz ~ 1  | 1910 MHz     |            |              |                   |              |                 |
| Operating Frequency Range of each LTE             | LTE Band 4: 17                                                                                                                           | 10 MHz ~    | 1755 MHz     |            |              |                   |              |                 |
| transmission band                                 | LTE Band 5: 82                                                                                                                           |             |              |            |              |                   |              |                 |
|                                                   | LTE Band 7: 25                                                                                                                           |             |              |            |              |                   |              |                 |
|                                                   | LTE Band 66: 1                                                                                                                           |             |              |            |              |                   |              |                 |
|                                                   | LTE Band 2:1.4                                                                                                                           |             |              |            |              |                   |              |                 |
| Observal Develuidab                               | LTE Band 4:1.4                                                                                                                           |             |              |            | 5MHz, 201    | /IHZ              |              |                 |
| Channel Bandwidth                                 | LTE Band 5:1.4                                                                                                                           | '           | , ,          |            |              |                   |              |                 |
|                                                   | LTE Band 7: 5N<br>LTE Band 66:1.4                                                                                                        |             |              |            | 15MU- 20     |                   |              |                 |
| uplink modulations used                           | QPSK / 16QAM                                                                                                                             | -           | 12, 5101112, | 1010112,   | 10101112, 20 |                   |              |                 |
| LTE Voice / Data requirements                     | Voice and Data                                                                                                                           | / 0100/111  |              |            |              |                   |              |                 |
| ITF Release Version                               | R11, Cat5                                                                                                                                |             |              |            |              |                   |              |                 |
| CA Support                                        | Not supported                                                                                                                            |             |              |            |              |                   |              |                 |
|                                                   | Modulation         Channel bandwidth / Transmission bandwidth (NRB)           1.4         3.0         5         10         15         20 |             |              |            |              | and 3<br>MPR (dB) |              |                 |
| LTE MPR permanently built-in by design            |                                                                                                                                          | MHz         | MHz          | MHz        | MHz          | MHz               | MHz          |                 |
|                                                   | QPSK<br>16 QAM                                                                                                                           | > 5<br>≤ 5  | > 4<br>≤ 4   | > 8        | > 12<br>≤ 12 | > 16<br>≤ 16      | > 18<br>≤ 18 | <u>≤1</u><br>≤1 |
|                                                   | 16 QAM                                                                                                                                   | > 5         | >4           | >8         | > 12         | > 16              | > 18         | \$2             |
|                                                   | 64 QAM                                                                                                                                   | ≤ 5         | ≤ 4          | ≤ 8        | ≤ 12         | ≤ 16              | ≤ 18         | ≤ 2             |
|                                                   | 64 QAM                                                                                                                                   | > 5         | >4           | > 8        | > 12         | > 16              | > 18         | ≤ 3             |
|                                                   | 256 QAM                                                                                                                                  |             |              |            | ≥ 1          |                   |              | ≤ 5             |
| LTE A-MPR                                         | In the base stati<br>A-MPR during<br>(Maximum TTI)                                                                                       | SAR testir  | ng and the   | e LTE SA   | AR tests w   | as transmi        | tting on a   | II TTI frames   |
| Spectrum plots for RB configuration               | A properly con<br>measurement; t<br>not included in t                                                                                    | herefore, s | pectrum p    |            |              |                   |              |                 |
| Power reduction applied to satisfy SAR compliance | Yes, hotspot wil<br>original test repo                                                                                                   |             | duced pow    | er for sor | ne LTE ba    | nds, the de       | tail please  | e referred to   |





|   |             |                                                   | Transmis   | ssion (H, M    | , L) chanr | nel number     |          | uenci                        | es in  | each LTE | band           |            |                |
|---|-------------|---------------------------------------------------|------------|----------------|------------|----------------|----------|------------------------------|--------|----------|----------------|------------|----------------|
|   |             |                                                   |            |                |            | LTE Bai        | nd 2     |                              |        |          |                |            |                |
|   | Bandwidth   | า 1.4 MH                                          | z Bandwid  | th 3 MHz       | Bandwid    | dth 5 MHz      | Bandwidt | Bandwidth 10 MHz Bandwidth 2 |        | h 15 MHz | Bandwid        | dth 20 MHz |                |
|   | Ch. #       | Freq.<br>(MHz)                                    | Ch. #      | Freq.<br>(MHz) | Ch. #      | Freq.<br>(MHz) | Ch. #    | Fre<br>(Mi                   |        | Ch. #    | Freq.<br>(MHz) | Ch. #      | Freq.<br>(MHz) |
| L | 18607       | 1850.7                                            | 18615      | 1851.5         | 18625      | 1852.5         | 18650    | 18                           | 55     | 18675    | 1857.5         | 18700      | 1860           |
| Μ | 18900       | 1880                                              | 18900      | 1880           | 18900      | 1880           | 18900    | 18                           | 80     | 18900    | 1880           | 18900      | 1880           |
| Н | 19193       | 1909.3                                            | 19185      | 1908.5         | 19175      | 1907.5         | 19150    | 19                           | 05     | 19125    | 1902.5         | 19100      | 1900           |
|   |             |                                                   |            |                |            | LTE Bai        | nd 4     |                              |        |          |                |            |                |
|   | Bandwidth   | ո 1.4 MH                                          | z Bandwid  | lth 3 MHz      | Bandwid    | dth 5 MHz      | Bandwidt | h 10 N                       | MHz    | Bandwidt | h 15 MHz       | Bandwid    | dth 20 MHz     |
|   | Ch. #       | Freq.<br>(MHz)                                    | Ch. #      | Freq.<br>(MHz) | Ch. #      | Freq.<br>(MHz) | Ch. #    | Fre<br>(Mi                   |        | Ch. #    | Freq.<br>(MHz) | Ch. #      | Freq.<br>(MHz) |
| L | 19957       | 1710.7                                            | 19965      | 1711.5         | 19975      | 1712.5         | 20000    | 17                           | 15     | 20025    | 1717.5         | 20050      | 1720           |
| Μ | 20175       | 1732.5                                            | 20175      | 1732.5         | 20175      | 1732.5         | 20175    | 173                          | 32.5   | 20175    | 1732.5         | 20175      | 1732.5         |
| Н | 20393       | 1754.3                                            | 20385      | 1753.5         | 20375      | 1752.5         | 20350    | 17                           | 50     | 20325    | 1747.5         | 20300      | 1745           |
|   |             |                                                   |            |                |            | LTE Bai        | nd 5     |                              |        |          |                |            |                |
|   | Band        | Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz |            |                | Ban        | dwidth 10      | MHz      |                              |        |          |                |            |                |
|   | Ch. #       | F                                                 | req. (MHz) | Ch. #          | Fr         | eq. (MHz)      | Ch. #    |                              | Fre    | q. (MHz) | Ch. #          | F          | req. (MHz)     |
| L | 20407       |                                                   | 824.7      | 20415          | 5          | 825.5          | 20425    | 5                            |        | 826.5    | 20450          | )          | 829            |
| Μ | 20525       |                                                   | 836.5      | 20525          | 5          | 836.5          | 20525    | 5                            |        | 836.5    | 20525          | 5          | 836.5          |
| Н | 20643       |                                                   | 848.3      | 20635          | 5          | 847.5          | 20625    | 5                            |        | 846.5    | 20600          | )          | 844            |
|   |             |                                                   |            |                |            | LTE Bai        | nd 7     |                              |        |          |                |            |                |
|   | Bar         | ndwidth 5                                         |            |                | dwidth 10  | MHz            |          | dwidt                        | h 15 l | MHz      | -              | dwidth 20  | MHz            |
|   | Ch. #       | F                                                 | req. (MHz) | Ch. #          | Fr         | eq. (MHz)      | Ch. #    | :                            | Fre    | q. (MHz) | Ch. #          | FI FI      | req. (MHz)     |
| L | 20775       |                                                   | 2502.5     | 20800          | )          | 2505           | 20825    | 5                            | 2      | 2507.5   | 20850          | )          | 2510           |
| М | 21100       |                                                   | 2535       | 21100          | )          | 2535           | 21100    | )                            |        | 2535     | 21100          | )          | 2535           |
| Н | 21425       |                                                   | 2567.5     | 21400          | )          | 2565           | 21375    | 5                            | 2      | 2562.5   | 21350          | )          | 2560           |
|   | LTE Band 66 |                                                   |            |                |            |                |          |                              |        |          |                |            |                |
|   | Bandwidth   |                                                   | z Bandwid  | th 3 MHz       | Bandwid    | th 5 MHz       | Bandwidt |                              |        | Bandwidt |                | Bandwid    | th 20 MHz      |
|   | Ch. #       | Freq.<br>(MHz)                                    | Ch. #      | Freq.<br>(MHz) | Ch. #      | Freq.<br>(MHz) | Ch. #    | Fre<br>(Mł                   |        | Ch. #    | Freq.<br>(MHz) | Ch. #      | Freq.<br>(MHz) |
| L | 131979      | 1710.7                                            | 131987     | 1711.5         | 131997     | 1712.5         | 132022   | 17                           | 15     | 132047   | 1717.5         | 132072     | 1720           |
| Μ | 132322      | 1745                                              | 132322     | 1745           | 132322     | 1745           | 132322   | 17                           |        | 132322   | 1745           | 132322     | 1745           |
| Н | 132665      | 1779.3                                            | 132657     | 1778.5         | 132647     | 1777.5         | 132622   | 17                           | 75     | 132597   | 1772.5         | 132572     | 1770           |



# 5. <u>RF Exposure Limits</u>

# 5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

# 5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

#### Limits for Occupational/Controlled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.4        | 8.0          | 20.0                           |

#### Limits for General Population/Uncontrolled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.08       | 1.6          | 4.0                            |

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.



# 6. Specific Absorption Rate (SAR)

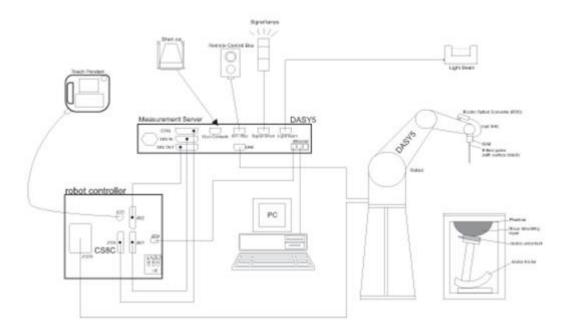
### 6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

# 6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ( $\rho$ ). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$


SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and E is the RMS electrical field strength.

# 7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.



# 7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

#### <EX3DV4 Probe>

| Construction  | Symmetric design with triangular core<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic<br>solvents, e.g., DGBE) |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Frequency     | 10 MHz – >6 GHz<br>Linearity: ±0.2 dB (30 MHz – 6 GHz)                                                                                                       |  |
| Directivity   | ±0.3 dB in TSL (rotation around probe axis)<br>±0.5 dB in TSL (rotation normal to probe axis)                                                                |  |
| Dynamic Range | 10 μW/g – >100 mW/g<br>Linearity: ±0.2 dB (noise: typically <1 μW/g)                                                                                         |  |
| Dimensions    | Overall length: 337 mm (tip: 20 mm)<br>Tip diameter: 2.5 mm (body: 12 mm)<br>Typical distance from probe tip to dipole centers:<br>1 mm                      |  |

# 7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



Photo of DAE



# 7.3 Phantom

#### <SAM Twin Phantom>

| Shell Thickness   | $2 \pm 0.2$ mm;<br>Center ear point: $6 \pm 0.2$ mm     |     |
|-------------------|---------------------------------------------------------|-----|
| Filling Volume    | Approx. 25 liters                                       | + / |
| Dimensions        | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | **  |
| Measurement Areas | Left Hand, Right Hand, Flat Phantom                     |     |

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

#### <ELI Phantom>

| Shell Thickness | 2 ± 0.2 mm (sagging: <1%)                        |  |
|-----------------|--------------------------------------------------|--|
| Filling Volume  | Approx. 30 liters                                |  |
| Dimensions      | Major ellipse axis: 600 mm<br>Minor axis: 400 mm |  |

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.



### 7.4 Device Holder

#### <Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.



Mounting Device for Hand-Held Transmitters



Mounting Device Adaptor for Wide-Phones

#### <Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.



Mounting Device for Laptops

# 8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

### 8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g



#### 8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

### 8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

|                                                                                                           | $\leq$ 3 GHz                                                                                                                                                       | > 3 GHz                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$                                                                                                                                               | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                                  |
| Maximum probe angle from probe axis to phantom<br>surface normal at the measurement location              | $30^{\circ} \pm 1^{\circ}$                                                                                                                                         | $20^{\circ} \pm 1^{\circ}$                                                                                                  |
|                                                                                                           | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 - 3 GHz: $\leq$ 12 mm                                                                                                              | $\begin{array}{l} 3-4 \; \mathrm{GHz} : \leq 12 \; \mathrm{mm} \\ 4-6 \; \mathrm{GHz} : \leq 10 \; \mathrm{mm} \end{array}$ |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                               | When the x or y dimension of<br>measurement plane orientation<br>the measurement resolution of<br>x or y dimension of the test of<br>measurement point on the test | on, is smaller than the above,<br>must be $\leq$ the corresponding<br>levice with at least one                              |



### 8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

|                                                                          |             |                                                                                      | $\leq$ 3 GHz                                                                | > 3 GHz                                                                                                                    |
|--------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan s                                                      | patial reso | lution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$                                        | $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$ | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$                                            |
|                                                                          | uniform     | grid: ∆z <sub>Zoom</sub> (n)                                                         | $\leq$ 5 mm                                                                 | $3 - 4$ GHz: $\leq 4$ mm<br>$4 - 5$ GHz: $\leq 3$ mm<br>$5 - 6$ GHz: $\leq 2$ mm                                           |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface | graded      | $\Delta z_{Zoom}(1)$ : between 1 <sup>st</sup> two points closest to phantom surface | $\leq$ 4 mm                                                                 | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                                                              |
|                                                                          | grid        | ∆z <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                            | ≤1.5·∆z                                                                     | <sub>Zoom</sub> (n-1)                                                                                                      |
| Minimum zoom scan<br>volume                                              | x, y, z     |                                                                                      | ≥ 30 mm                                                                     | $3 - 4 \text{ GHz}: \ge 28 \text{ mm}$<br>$4 - 5 \text{ GHz}: \ge 25 \text{ mm}$<br>$5 - 6 \text{ GHz}: \ge 22 \text{ mm}$ |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

# 8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

# 8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.



# 9. Test Equipment List

| Manufacturan    | Nome of Fusiement             | Turne (Manslel | Coniel Number | Calib<br>Last Cal.<br>2019/3/26<br>2019/3/25<br>2020/11/26<br>2021/6/18<br>2021/6/18<br>2021/6/24<br>NCR<br>2021/4/13<br>2021/4/13<br>2021/4/13<br>2021/7/31<br>2020/12/2<br>2021/1/7<br>2021/8/12<br>2021/8/12<br>2021/1/7<br>2021/1/7<br>2021/1/7 | ration     |
|-----------------|-------------------------------|----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Manufacturer    | Name of Equipment             | Type/Model     | Serial Number | Last Cal.                                                                                                                                                                                                                                           | Due Date   |
| SPEAG           | 1900MHz System Validation Kit | D1900V2        | 5d170         | 2019/3/26                                                                                                                                                                                                                                           | 2022/3/24  |
| SPEAG           | 2450MHz System Validation Kit | D2450V2        | 908           | 2019/3/25                                                                                                                                                                                                                                           | 2022/3/23  |
| SPEAG           | 2600MHz System Validation Kit | D2600V2        | 1061          | 2020/11/26                                                                                                                                                                                                                                          | 2021/11/25 |
| SPEAG           | Data Acquisition Electronics  | DAE4           | 1303          | 2021/6/18                                                                                                                                                                                                                                           | 2022/6/17  |
| SPEAG           | Dosimetric E-Field Probe      | EX3DV4         | 7592          | 2021/6/24                                                                                                                                                                                                                                           | 2022/6/23  |
| SPEAG           | SAM Twin Phantom              | SAM Twin       | TP-1697       | NCR                                                                                                                                                                                                                                                 | NCR        |
| SPEAG           | Phone Positioner              | N/A            | N/A           | NCR                                                                                                                                                                                                                                                 | NCR        |
| Anritsu         | Radio Communication Analyzer  | MT8821C        | 6201432831    | 2021/4/13                                                                                                                                                                                                                                           | 2022/4/12  |
| Agilent         | ENA Series Network Analyzer   | E5071C         | MY46106933    | 2021/7/31                                                                                                                                                                                                                                           | 2022/7/30  |
| SPEAG           | Dielectric Probe Kit          | DAK-3.5        | 1144          | 2020/12/2                                                                                                                                                                                                                                           | 2021/12/1  |
| Anritsu         | Vector Signal Generator       | MG3710A        | 6201682672    | 2021/1/7                                                                                                                                                                                                                                            | 2022/1/6   |
| Rohde & Schwarz | Power Meter                   | NRVD           | 102081        | 2021/8/12                                                                                                                                                                                                                                           | 2022/8/11  |
| Rohde & Schwarz | Power Sensor                  | NRV-Z5         | 100538        | 2021/8/12                                                                                                                                                                                                                                           | 2022/8/11  |
| Rohde & Schwarz | Power Sensor                  | NRV-Z5         | 100539        | 2021/8/12                                                                                                                                                                                                                                           | 2022/8/11  |
| EXA             | Spectrum Analyzer             | FSV7           | 101632        | 2021/1/7                                                                                                                                                                                                                                            | 2022/1/6   |
| Testo           | Hygrometer                    | 608-H1         | 1241332088    | 2021/1/7                                                                                                                                                                                                                                            | 2022/1/6   |
| FLUKE           | DIGITAC THERMOMETER           | 51II           | 97240029      | 2021/8/13                                                                                                                                                                                                                                           | 2022/8/12  |
| BONN            | POWER AMPLIFIER               | BLMA 0830-3    | 087193A       | No                                                                                                                                                                                                                                                  | te 1       |
| BONN            | POWER AMPLIFIER               | BLMA 2060-2    | 087193B       | No                                                                                                                                                                                                                                                  | te 1       |
| Agilent         | Dual Directional Coupler      | 778D           | 20500         | No                                                                                                                                                                                                                                                  | te 1       |
| Agilent         | Dual Directional Coupler      | 11691D         | MY48151020    | No                                                                                                                                                                                                                                                  | te 1       |
| ARRA            | Power Divider                 | A3200-2        | N/A           | No                                                                                                                                                                                                                                                  | te 1       |
| MCL             | Attenuation1                  | BW-S10W5+      | N/A           | No                                                                                                                                                                                                                                                  | te 1       |
| MCL             | Attenuation2                  | BW-S10W5+      | N/A           | No                                                                                                                                                                                                                                                  | te 1       |
| MCL             | Attenuation3                  | BW-S10W5+      | N/A           | No                                                                                                                                                                                                                                                  | te 1       |

Note:

 Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check
 Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification.

The dipoles are also not physically damaged, or repaired during the interval.

3. The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.



# 10. System Verification

# 10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.





Fig 10.1 Photo of Liquid Height for Head SAR

Fig 10.2 Photo of Liquid Height for Body SAR



### 10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

| Frequency<br>(MHz) | Water<br>(%) | Sugar<br>(%) | Cellulose<br>(%) | Salt<br>(%) | Preventol<br>(%) | DGBE<br>(%) | Conductivity<br>(σ) | Permittivity<br>(εr) |  |  |  |  |  |
|--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--|--|--|--|
|                    | For Head     |              |                  |             |                  |             |                     |                      |  |  |  |  |  |
| 835                | 40.3         | 57.9         | 0.2              | 1.4         | 0.2              | 0           | 0.90                | 41.5                 |  |  |  |  |  |
| 1800, 1900, 2000   | 55.2         | 0            | 0                | 0.3         | 0                | 44.5        | 1.40                | 40.0                 |  |  |  |  |  |
| 2450               | 55.0         | 0            | 0                | 0           | 0                | 45.0        | 1.80                | 39.2                 |  |  |  |  |  |
| 2600               | 54.8         | 0            | 0                | 0.1         | 0                | 45.1        | 1.96                | 39.0                 |  |  |  |  |  |

#### <Tissue Dielectric Parameter Check Results>

| Frequency<br>(MHz) | Tissue<br>Type | Liquid<br>Temp.<br>(℃) | Conductivity<br>(σ) | Permittivity<br>(ε <sub>r</sub> ) | Conductivity<br>Target (σ) | Permittivity<br>Target (ε <sub>r</sub> ) | Delta<br>(σ)<br>(%) | Delta<br>(ε <sub>r</sub> )<br>(%) | Limit<br>(%) | Date      |
|--------------------|----------------|------------------------|---------------------|-----------------------------------|----------------------------|------------------------------------------|---------------------|-----------------------------------|--------------|-----------|
| 1900               | Head           | 22.6                   | 1.428               | 38.830                            | 1.40                       | 40.00                                    | 2.00                | -2.93                             | ±5           | 2021/8/30 |
| 2450               | Head           | 22.7                   | 1.809               | 38.570                            | 1.80                       | 39.20                                    | 0.50                | -1.61                             | ±5           | 2021/8/30 |
| 2600               | Head           | 22.8                   | 1.927               | 38.263                            | 1.96                       | 39.00                                    | -1.68               | -1.89                             | ±5           | 2021/8/30 |



# 10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

| <1g SAR>  | <1g SAR>           |                |                        |               |              |            |                              |                              |                                |                  |  |  |  |  |
|-----------|--------------------|----------------|------------------------|---------------|--------------|------------|------------------------------|------------------------------|--------------------------------|------------------|--|--|--|--|
| Date      | Frequency<br>(MHz) | Tissue<br>Type | Input<br>Power<br>(mW) | Dipole<br>S/N | Probe<br>S/N | DAE<br>S/N | Measured<br>1g SAR<br>(W/kg) | Targeted<br>1g SAR<br>(W/kg) | Normalized<br>1g SAR<br>(W/kg) | Deviation<br>(%) |  |  |  |  |
| 2021/8/30 | 1900               | Head           | 50                     | 5d170         | 7592         | 1303       | 2.05                         | 39.00                        | 41                             | 5.13             |  |  |  |  |
| 2021/8/30 | 2450               | Head           | 50                     | 908           | 7592         | 1303       | 2.59                         | 52.80                        | 51.8                           | -1.89            |  |  |  |  |
| 2021/8/30 | 2600               | Head           | 50                     | 1061          | 7592         | 1303       | 2.63                         | 56.60                        | 52.6                           | -7.07            |  |  |  |  |

#### <10g SAR>

| Date      | Frequency<br>(MHz) | Tissue<br>Type | Input<br>Power<br>(mW) | Dipole<br>S/N | Probe<br>S/N | DAE<br>S/N | Measured<br>10g SAR<br>(W/kg) | Targeted<br>10g SAR<br>(W/kg) | Normalized<br>10g SAR<br>(W/kg) | Deviation<br>(%) |
|-----------|--------------------|----------------|------------------------|---------------|--------------|------------|-------------------------------|-------------------------------|---------------------------------|------------------|
| 2021/8/30 | 1900               | Head           | 50                     | 5d170         | 7592         | 1303       | 1.06                          | 20.30                         | 21.2                            | 4.43             |
| 2021/8/30 | 2450               | Head           | 50                     | 908           | 7592         | 1303       | 1.20                          | 24.20                         | 24                              | -0.83            |
| 2021/8/30 | 2600               | Head           | 50                     | 1061          | 7592         | 1303       | 1.17                          | 25.10                         | 23.4                            | -6.77            |

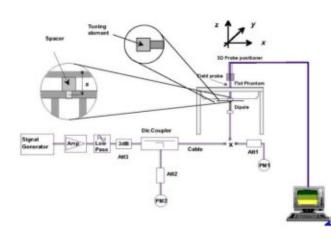



Fig 11.3.1 System Performance Check Setup



Fig 11.3.2 Setup Photo



# 11. RF Exposure Positions

# 11.1 Ear and handset reference point

Figure 12.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 12.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 12.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 12.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

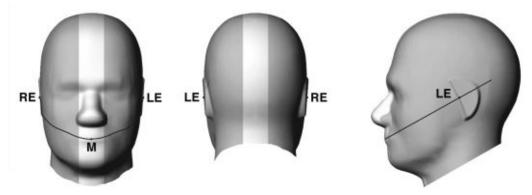



Fig 12.1.1 Front, back, and side views of SAM twin phantom

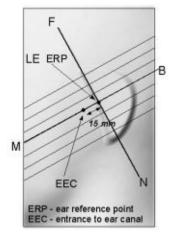
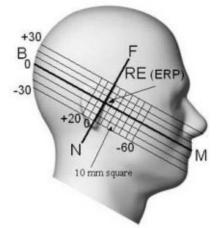
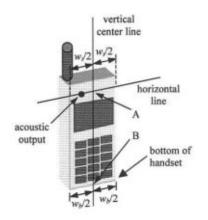
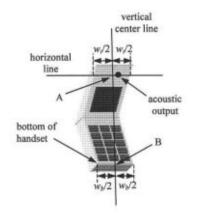
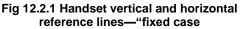



Fig 12.1.2 Close-up side view of phantom showing the ear region.



Fig 12.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations




### 11.2 Definition of the cheek position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 12.2.1 and Figure 12.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 12.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 12.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 12.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 12.2.3. The actual rotation angles should be documented in the test report.







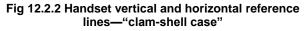




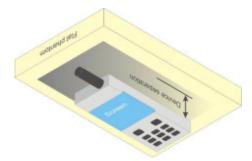

Fig 12.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.



# 11.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 12.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point




Fig 12.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.



### 11.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 12.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.



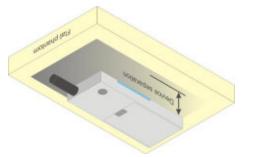



Fig 12.4 Body Worn Position



# 11.5 Product Specific 10g SAR Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.

2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at  $\leq$  25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

# 11.6 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W  $\ge$  9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.



# 12. SAR Test Results

# 12.1 Head SAR

#### <WLAN2.4G SAR>

| Pic<br>No |            | Mode          | Test<br>Position | Power<br>Reduction | Ch. | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Duty<br>Cycle<br>% | Duty Cycle<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-----------|------------|---------------|------------------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|---------------------------------|------------------------|------------------------------|------------------------------|
| 01        | WLAN2.4GHz | 802.11b 1Mbps | Left Tilted      | Receiver on        | 1   | 2412           | 15.23                     | 16.50                     | 1.340                        | 98.27              | 1.018                           | 0.12                   | 0.591                        | 0.806                        |

# 12.2 Hotspot SAR

#### <WCDMA SAR>

| Plo<br>No |          | Mode         | Test<br>Position | Gap<br>(mm) | Sample | Power<br>Reduction | Ch. | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-----------|----------|--------------|------------------|-------------|--------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 02        | WCDMA II | RMC 12.2Kbps | Bottom Side      | 5mm         | 1      |                    |     | 1907.6         |                           | 19.00                     | 1.406                        | 0.12                   | 0.912                        | 1.282                        |

# 12.3 Body Worn Accessory SAR

#### <WCDMA SAR>

| Plot<br>No. | Band     | Mode         | Test<br>Position | Gap<br>(mm) | Sample | Headset | Power<br>Reduction | Ch.  | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|----------|--------------|------------------|-------------|--------|---------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 03          | WCDMA II | RMC 12.2Kbps | Back             | 5mm         | 1      | -       | Receiver off       | 9538 | 1907.6         | 19.31                     | 20.50                     | 1.315                        | -0.11                  | 0.707                        | 0.930                        |

# 12.4 Product specific 10g SAR

#### <FDD LTE SAR>

| Plot<br>No. | Band       | BW<br>(MHz) | Modulation | RB<br>Size | RB<br>offset |             | Gap<br>(mm) | Sample | Power<br>Reduction | Ch.   | Freq.<br>(MHz) | Power | Limit | Scaling | Drift | Measured<br>10g SAR<br>(W/kg) |       |
|-------------|------------|-------------|------------|------------|--------------|-------------|-------------|--------|--------------------|-------|----------------|-------|-------|---------|-------|-------------------------------|-------|
| 04          | LTE Band 7 | 20M         | QPSK       | 1          | 0            | Bottom Side | 0mm         | 1      | Receiver off       | 21350 | 2560           | 19.23 | 20.00 | 1.194   | -0.03 | 1.550                         | 1.851 |

Note: The verified maximum SAR from chapter 12.1 to 12.4 are all less than original report, so no need to consider co-located SAR for original report has been performed conservatively.

Test Engineer : Nick Hu, Seven Xu, Bruce Li



# 13. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq$  30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

FCC SAR Test Report

# 14. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [9] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [10] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [11] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [12] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.

-----THE END------



Report No. : FA142611-06

Appendix A. Plots of System Performance Check

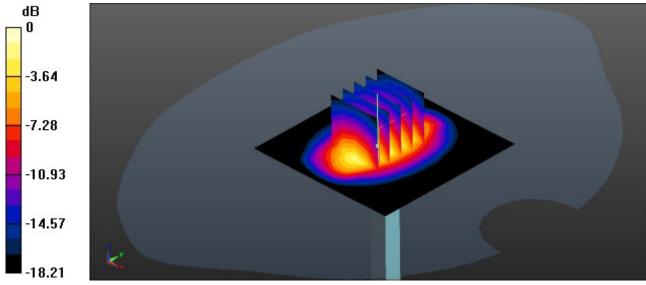
The plots are shown as follows.

### System Check\_Head\_1900MHz

### DUT: D1900V2 - SN:5d170

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL\_1900 Medium parameters used: f = 1900 MHz;  $\sigma = 1.428$  S/m;  $\varepsilon_r = 38.83$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(8.13, 8.13, 8.13); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Pin=50mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.25 W/kg

Pin=50mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.25 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.91 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.06 W/kg Maximum value of SAR (measured) = 3.24 W/kg



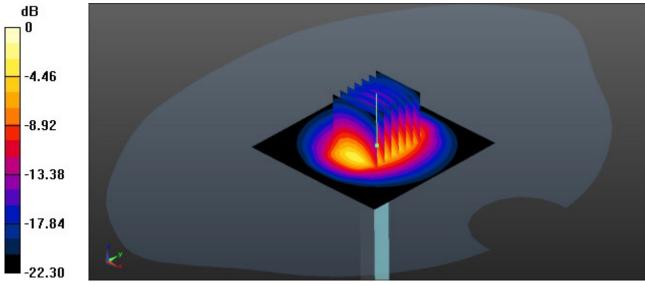
0 dB = 3.24 W/kg = 5.11 dBW/kg

### System Check\_Head\_2450MHz

### DUT: D2450V2 - SN:908

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1

Medium: HSL\_2450 Medium parameters used: f = 2450 MHz;  $\sigma = 1.809$  S/m;  $\varepsilon_r = 38.57$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(7.53, 7.53, 7.53); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Pin=50mW/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.42 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.88 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 5.50 W/kg SAR(1 g) = 2.59 W/kg; SAR(10 g) = 1.2 W/kg Maximum value of SAR (measured) = 4.39 W/kg



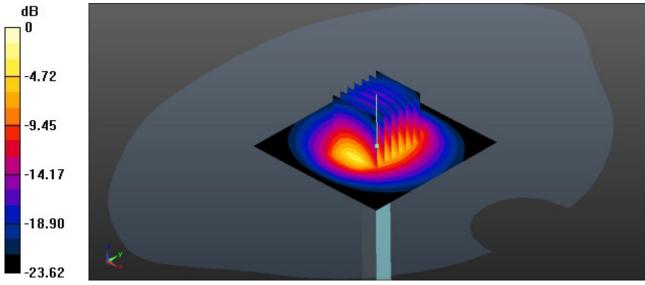
0 dB = 4.39 W/kg = 6.42 dBW/kg

### System Check\_Head\_2600MHz

#### DUT: D2600V2 - SN:1061

Communication System: UID 0, CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1

Medium: HSL\_2600 Medium parameters used: f = 2600 MHz;  $\sigma$  = 1.927 S/m;  $\epsilon_r$  = 38.263;  $\rho$  = 1000 kg/m<sup>3</sup>


Ambient Temperature : 23.1 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(7.26, 7.26, 7.26); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Pin=50mW/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.47 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.24 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 5.62 W/kg SAR(1 g) = 2.63 W/kg; SAR(10 g) = 1.17 W/kg Maximum value of SAR (measured) = 4.50 W/kg



0 dB = 4.50 W/kg = 6.53 dBW/kg



Report No. : FA142611-06

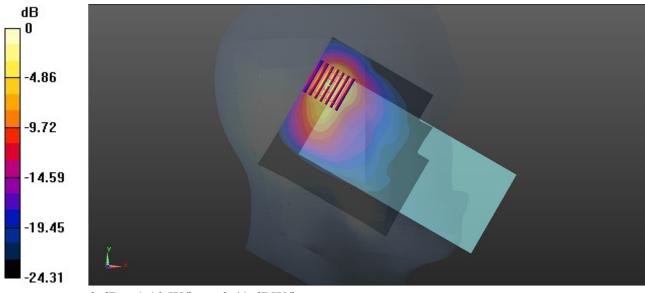
# Appendix B. Plots of High SAR Measurement

The plots are shown as follows.

# 01\_WLAN2.4GHz\_802.11b 1Mbps\_Left Tilted\_0mm\_Ch1

Communication System: UID 0, WLAN2.4GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1.018 Medium: HSL\_2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.863$  S/m;  $\varepsilon_r = 40.989$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(7.53, 7.53, 7.53); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (101x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.939 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.5630 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.591 W/kg; SAR(10 g) = 0.235 W/kg Maximum value of SAR (measured) = 1.10 W/kg

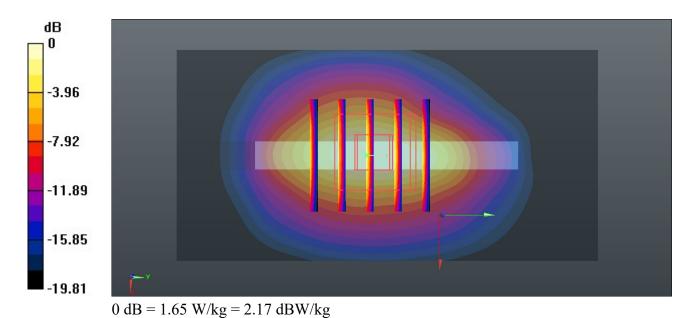


0 dB = 1.10 W/kg = 0.41 dBW/kg

# 02\_WCDMA II\_RMC 12.2Kbps\_Bottom Side\_5mm\_Ch9538

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium: HSL\_1900 Medium parameters used: f = 1908 MHz;  $\sigma = 1.432$  S/m;  $\varepsilon_r = 38.816$ ;  $\rho = 1000$ 

 $kg/m^3$ 


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(8.13, 8.13, 8.13); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (41x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.73 W/kg

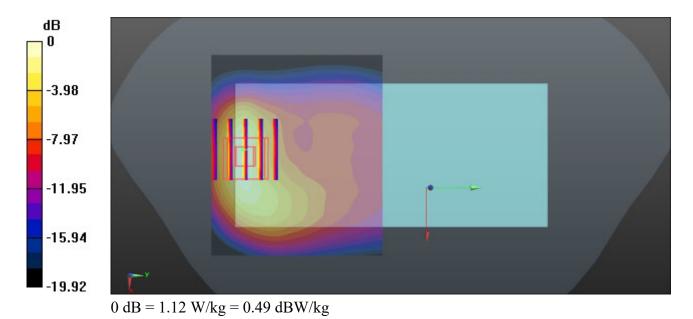
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 34.29 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.05 W/kg SAR(1 g) = 0.912 W/kg; SAR(10 g) = 0.498 W/kg Maximum value of SAR (measured) = 1.65 W/kg



### 03\_WCDMA II\_RMC 12.2Kbps\_Back\_5mm\_Ch9538

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium: HSL\_1900 Medium parameters used: f = 1908 MHz;  $\sigma = 1.432$  S/m;  $\varepsilon_r = 38.816$ ;  $\rho = 1000$ 

 $kg/m^3$ 


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(8.13, 8.13, 8.13); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.09 W/kg

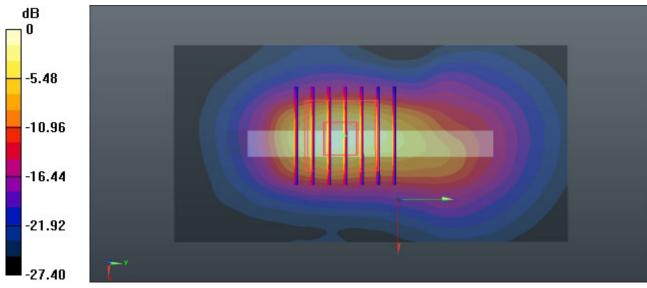
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.88 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.707 W/kg; SAR(10 g) = 0.361 W/kg Maximum value of SAR (measured) = 1.12 W/kg



### 04\_LTE Band 7\_20M\_QPSK\_1RB\_0Offset\_Bottom Side\_0mm\_Ch21350

Communication System: UID 0, LTE-FDD (0); Frequency: 2560 MHz;Duty Cycle: 1:1 Medium: HSL\_2600 Medium parameters used: f = 2560 MHz;  $\sigma = 1.885$  S/m;  $\epsilon_r = 38.404$ ;  $\rho = 1000$ 

 $kg/m^3$ 


Ambient Temperature : 23.1 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7592; ConvF(7.26, 7.26, 7.26); Calibrated: 2021.6.24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 7.53 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.99 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 10.6 W/kg SAR(1 g) = 4.19 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 8.20 W/kg



0 dB = 8.20 W/kg = 9.14 dBW/kg



Report No. : FA142611-06

# Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com http://www.chinattl.cn

Sporton

Client

Certificate No: Z19-60085

**CNAS L0570** 

CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d170 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 26, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106277 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Power sensor NRP8S 104291 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Reference Probe EX3DV4 SN 3617 31-Jan-19(SPEAG,No.EX3-3617 Jan19) Jan-20 DAE4 SN 1331 06-Feb-19(SPEAG,No.DAE4-1331 Feb19) Feb-20 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-19 (CTTL, No.J19X00336) Jan-20 NetworkAnalyzer E5071C MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan-20 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

#### lossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttf@chinattl.com http://www.chinattl.cn

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.10,2.1495 |
|------------------------------|--------------------------|--------------|
| Extrapolation                | Advanced Extrapolation   |              |
| Phantom                      | Triple Flat Phantom 5.1C |              |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer  |
| Zoom Scan Resolution         | dx, dy, dz ≈ 5 mm        |              |
| Frequency                    | 1900 MHz ± 1 MHz         |              |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) *C | 40.5±6%      | 1.44 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 *C         |              | (merc.)          |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 9.90 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 39.0 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 5.12 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 18.7 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53,3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.5±6%      | 1.56 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 "C         |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm3 (1 g) of Body TSL               | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 10.1 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 40.0 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 5.28 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 18.7 % (k=2) |



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

#### Appendix (Additional assessments outside the scope of CNAS L0570)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.7Ω+ 6.73jΩ |  |  |
|--------------------------------------|---------------|--|--|
| Return Loss                          | - 23.3dB      |  |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.8Ω+ 6.72jΩ |  |  |
|--------------------------------------|---------------|--|--|
| Return Loss                          | - 22.8dB      |  |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.066 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

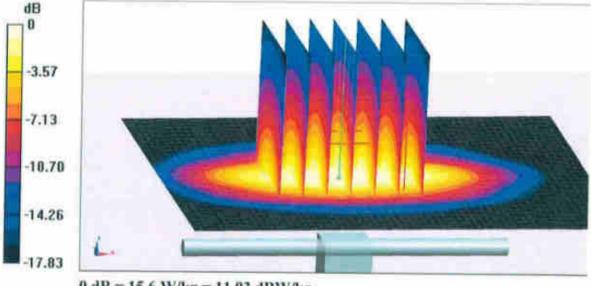
| Manufactured by | SPEAG    |
|-----------------|----------|
|                 | 1077 ( S |



Add: No.51 Xueyuan Road, Haidhan District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz;  $\sigma = 1.441 \text{ S/m}$ ;  $\varepsilon_r = 40.48$ ;  $\rho = 1000 \text{ kg/m}$ 3 Phantom section: Center Section DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

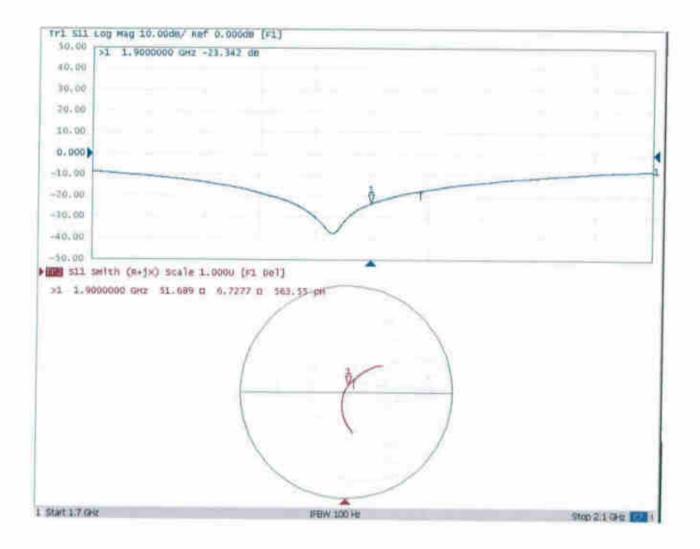
Reference Value = 97.54 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.12 W/kg

Maximum value of SAR (measured) = 15.6 W/kg




0 dB = 15.6 W/kg = 11.93 dBW/kg

Date: 03.26.2019



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

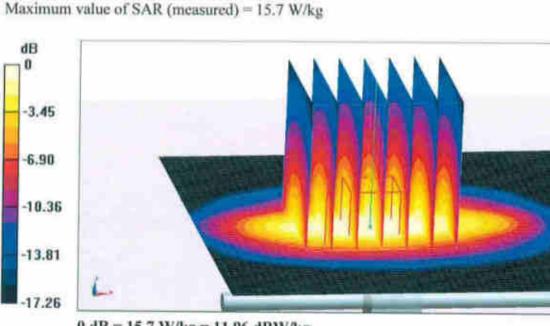
### Impedance Measurement Plot for Head TSL





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

### DASY5 Validation Report for Body TSL

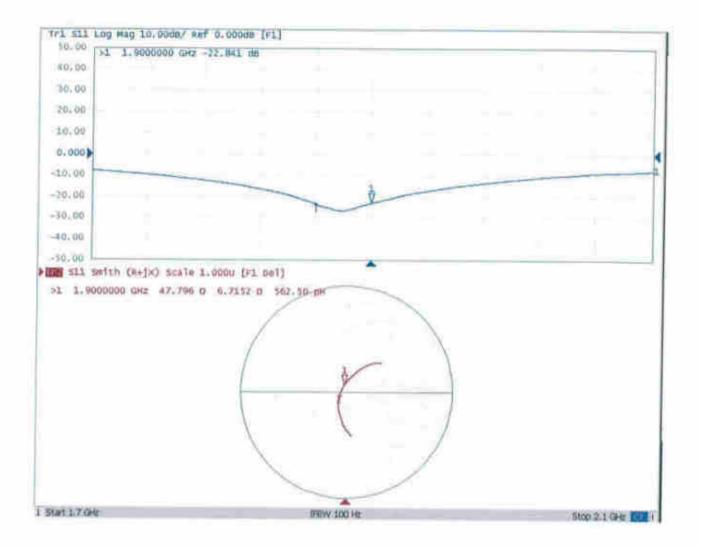

Date: 03.26.2019

Test Laboratory; CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle; 1:1 Medium parameters used: f = 1900 MHz; σ = 1.56 S/m; ε<sub>r</sub> = 54.52; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration:

> Probe: EX3DV4 - SN3617; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 1/31/2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.48 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg




0 dB = 15.7 W/kg = 11.96 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

### Impedance Measurement Plot for Body TSL

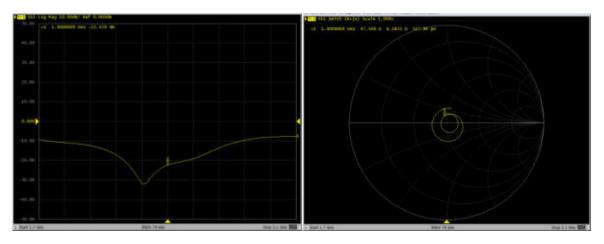




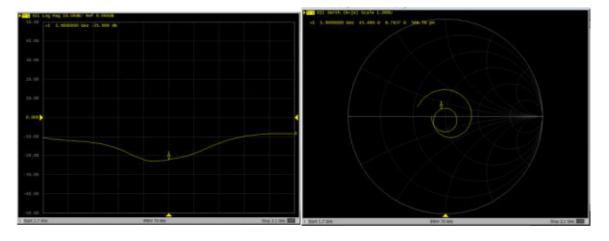
# D1900V2, Serial No. 5d170 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

| 1900V2 – serial no. 5d170 |                     |           |                            |             |                                 |                |
|---------------------------|---------------------|-----------|----------------------------|-------------|---------------------------------|----------------|
|                           | 1900 Head           |           |                            |             |                                 |                |
| Date of<br>Measurement    | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2019.3.26                 | -23.3               |           | 47.8                       |             | 6.7                             |                |
| 2020.3.25                 | -22.3               | 0.02      | 49.2                       | -1.4        | 7.4                             | -0.7           |
| 2021.3.25                 | -21.9               | 0.04      | 45.5                       | 2.3         | 6.8                             | -0.1           |


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




#### Dipole Verification Data> D1900V2, serial no. 5d170

#### 1900MHz - Head----2020.3.25



1900MHz - Head----2021.3.25





Sporton

Client



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/achinattl.com http://www.chinattl.cn

In Collaboration with

e

Certificate No: Z19-60087

日认可

CALIBRATION

**CNAS L0570** 

CALIBRATION CERTIFICATE Object D2450V2 - SN: 908 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 25, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106277 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Power sensor NRP8S 104291 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Reference Probe EX3DV4 SN 3617 31-Jan-19(SPEAG,No.EX3-3617 Jan19) Jan-20 DAE4 SN 1331 06-Feb-19(SPEAG,No.DAE4-1331\_Feb19) Feb-20 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-19 (CTTL, No.J19X00336) Jan-20 NetworkAnalyzer E5071C MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan-20 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 28, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctth//chinattl.com http://www.chinattl.en

#### Glossarv:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

#### Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

а

a

- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end . of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed . point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.10.2.1495 |
|------------------------------|--------------------------|--------------|
| Extrapolation                | Advanced Extrapolation   |              |
| Phantom                      | Triple Flat Phantom 5.1C |              |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer  |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |              |
| Frequency                    | 2450 MHz ± 1 MHz         |              |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) "C | 39.6±6%      | 1.84 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         | 1.000        |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.3 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 52.8 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL        | Condition          |                          |
| SAR measured                                          | 250 mW input power | 6.07 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 24.2 W/kg ± 18.7 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) *C | 53.8±6%      | 2.00 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 12.8 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 50.8 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 5.91 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 18.7 % (k=2) |



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

#### Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 57.3Ω+ 5.18 jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 21.6dB       |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 52.6Ω+ 5.81 JΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 24.1dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.020 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |



In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xuryuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

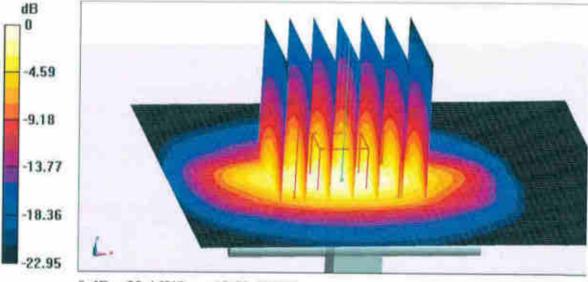
DASY5 Validation Report for Head TSL

Date: 03.25.2019

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.841 S/m; ε<sub>t</sub> = 39.63; ρ = 1000 kg/m3 Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

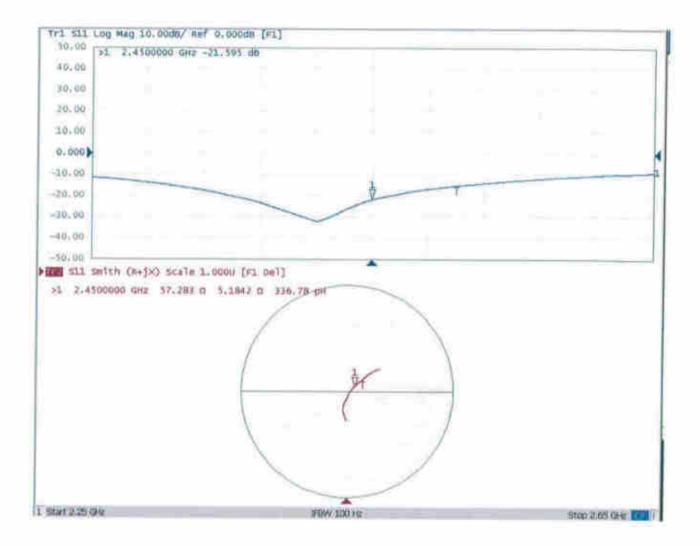

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.04 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 22.4 W/kg




0 dB = 22.4 W/kg = 13.50 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

# Impedance Measurement Plot for Head TSL





In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

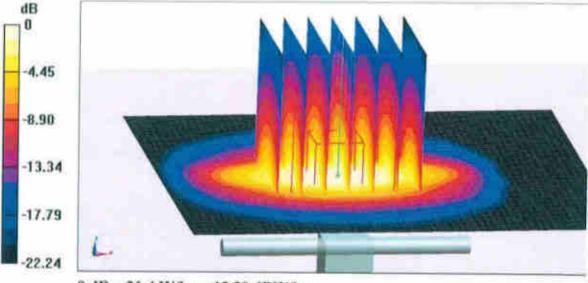
DASY5 Validation Report for Body TSL

Date: 03.25.2019

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2.003 S/m; ε<sub>r</sub> = 53.78; ρ = 1000 kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

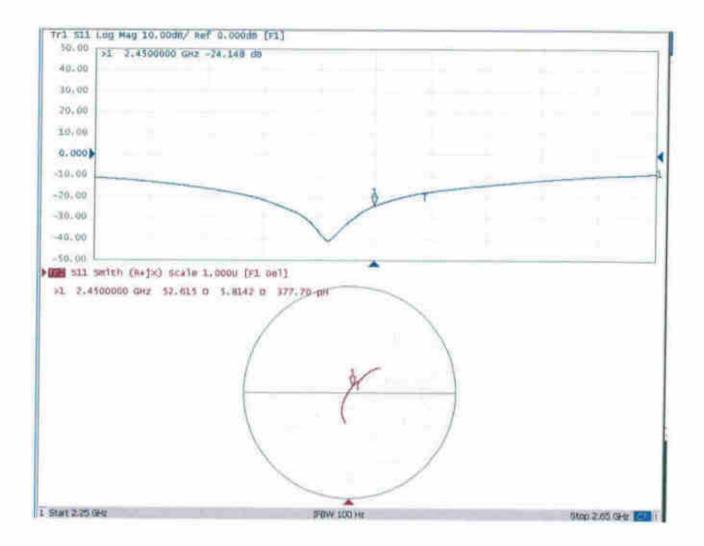

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.51 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 21.4 W/kg




0 dB = 21.4 W/kg = 13.30 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.co

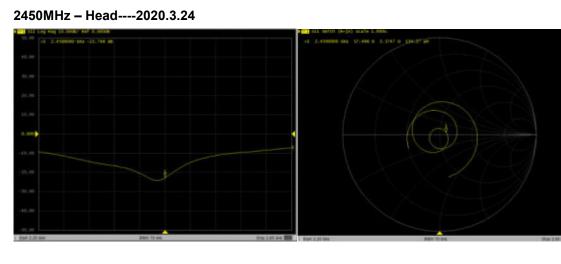
# Impedance Measurement Plot for Body TSL



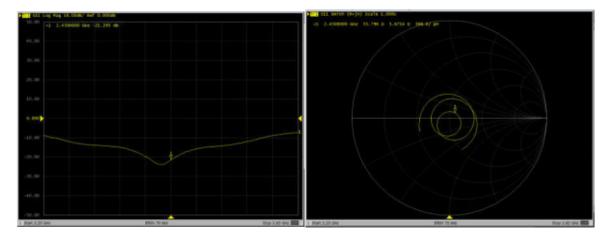


# D2450V2, Serial No. 908 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


| D2450V2 – serial no. 908 |                     |              |                            |                |                                 |                |
|--------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------|
|                          | 2450 Head           |              |                            |                |                                 |                |
| Date of<br>Measurement   | Return-Loss<br>(dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2019.3.25                | -21.60              |              | 57.28                      |                | 5.18                            |                |
| 2020.3.24                | -22.7               | -0.05        | 57.5                       | -0.18          | 2.4                             | 2.81           |
| 2021.3.24                | -21.30              | 0.01         | 55.80                      | 1.49           | 5.67                            | -0.49          |

<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



#### Dipole Verification Data> D2450V2, serial no. 908



#### 2450MHz - Head----2021.3.24



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- s Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Sporton Client

# Certificate No: D2600V2-1061\_Nov20

# CALIBRATION CERTIFICATE

| Dbject                           | D2600V2 - SN:10                    | 061                                                                                                                                                          |                                |
|----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Calibration procedure(s)         | QA CAL-05.v11<br>Calibration Proce | dure for SAR Validation Sources                                                                                                                              | between 0.7-3 GHz              |
| alibration date:                 | November 26, 20                    | 20                                                                                                                                                           |                                |
| The measurements and the uncerta | ainties with confidence pr         | onal standards, which realize the physical un<br>robability are given on the following pages an<br>ry facility: environment temperature $(22 \pm 3)^{\circ}$ | d are part of the certificate. |
| Primary Standards                | ID #                               | Cal Date (Certificate No.)                                                                                                                                   | Scheduled Calibration          |
| Power meter NRP                  | SN: 104778                         | 01-Apr-20 (No. 217-03100/03101)                                                                                                                              | Apr-21                         |
| ower sensor NRP-Z91              | SN: 103244                         | 01-Apr-20 (No. 217-03100)                                                                                                                                    | Apr-21                         |
| ower sensor NRP-Z91              | SN: 103245                         | 01-Apr-20 (No. 217-03101)                                                                                                                                    | Apr-21                         |
| leference 20 dB Attenuator       | SN: BH9394 (20k)                   | 31-Mar-20 (No. 217-03106)                                                                                                                                    | Apr-21                         |
| ype-N mismatch combination       | SN: 310982 / 06327                 | 31-Mar-20 (No. 217-03104)                                                                                                                                    | Apr-21                         |
| Reference Probe EX3DV4           | SN: 7405                           | 29-Jun-20 (No. EX3-7405_Jun20)                                                                                                                               | Jun-21                         |
| DAE4                             | SN: 601                            | 02-Nov-20 (No. DAE4-601_Nov20)                                                                                                                               | Nov-21                         |
| Secondary Standards              | ID #                               | Check Date (in house)                                                                                                                                        | Scheduled Check                |
| Power meter E4419B               | SN: GB39512475                     | 30-Oct-14 (in house check Oct-20)                                                                                                                            | In house check: Oct-22         |
| Power sensor HP 8481A            | SN: US37292783                     | 07-Oct-15 (in house check Oct-20)                                                                                                                            | In house check: Oct-22         |
| Power sensor HP 8481A            | SN: MY41092317                     | 07-Oct-15 (in house check Oct-20)                                                                                                                            | In house check: Oct-22         |
| RF generator R&S SMT-06          | SN: 100972                         | 15-Jun-15 (in house check Oct-20)                                                                                                                            | In house check: Oct-22         |
| Vetwork Analyzer Agilent E8358A  | SN: US41080477                     | 31-Mar-14 (in house check Oct-20)                                                                                                                            | In house check: Oct-21         |
|                                  | Name                               | Function                                                                                                                                                     | Signature                      |
| Calibrated by:                   | Claudio Leubler                    | Laboratory Technician                                                                                                                                        | U.Q.                           |
| Approved by:                     | Katja Pokovic                      | Technical Manager                                                                                                                                            | Mas                            |
|                                  |                                    |                                                                                                                                                              |                                |

### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- s Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 0108

Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x.v.z not applicable or not measured N/A

Multilateral Agreement for the recognition of calibration certificates

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |
|                              |                        |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity  | Conductivity     |
|-----------------------------------------|-----------------|---------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0          | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.6 ± 6 %    | 2.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | S <del></del> |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 14.5 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 56.6 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 6.37 W/kg                |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.6 Ω - 2.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 24.8 dB       |  |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) 1.149 ns |
|-------------------------------------------|
|-------------------------------------------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

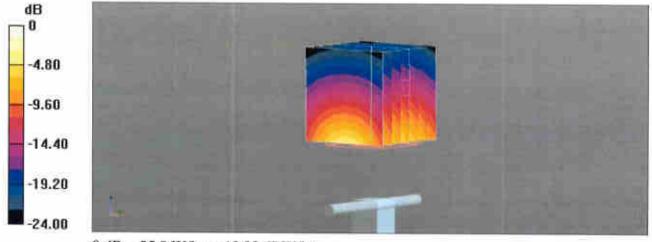
| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

# DASY5 Validation Report for Head TSL

Date: 26.11.2020

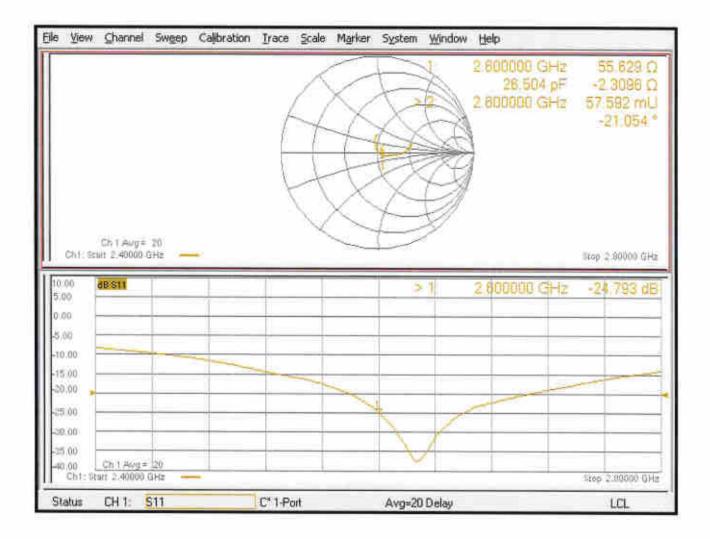
Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1061


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma = 2.03$  S/m;  $\epsilon_r = 37.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7405; ConvF(7.54, 7.54, 7.54) @ 2600 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.37 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47% Maximum value of SAR (measured) = 25.0 W/kg



0 dB = 25.0 W/kg = 13.98 dBW/kg

### Impedance Measurement Plot for Head TSL



Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

# speag

**IMPORTANT NOTICE** 

Contron the

# USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

#### Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

#### Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

#### Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton Client

Certificate No: DAE4-1303\_Jun21

Accreditation No.: SCS 0108

S

| CALIBRATION (                                    | CERTIFICATE                              |                                                                                                                                                   |                                                  |
|--------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Object                                           | DAE4 - SD 000 D                          | 04 BO - SN: 1303                                                                                                                                  | en al anti-                                      |
| Calibration procedure(s)                         | QA CAL-06.v30<br>Calibration procee      | dure for the data acquisition elec                                                                                                                | stronics (DAE)                                   |
| Calibration date:                                | June 18, 2021                            |                                                                                                                                                   |                                                  |
| The measurements and the unce                    | rtainties with confidence pro            | nal standards, which realize the physical uniobability are given on the following pages an facility: environment temperature $(22 \pm 3)^{\circ}$ | d are part of the certificate.                   |
| Primary Standards                                | ID #                                     | Cal Date (Certificate No.)                                                                                                                        | Scheduled Calibration                            |
| Keithley Multimeter Type 2001                    | SN: 0810278                              | 07-Sep-20 (No:28647)                                                                                                                              | Sep-21                                           |
| Secondary Standards                              | ID #                                     | Check Date (in house)                                                                                                                             | Scheduled Check                                  |
| Auto DAE Calibration Unit<br>Calibrator Box V2.1 | SE UWS 053 AA 1001<br>SE UMS 006 AA 1002 | 07-Jan-21 (in house check)                                                                                                                        | In house check: Jan-22<br>In house check: Jan-22 |
|                                                  | Name                                     | Function                                                                                                                                          | Signature                                        |
| Calibrated by:                                   | Dominique Steffen                        | Laboratory Technician                                                                                                                             | lea                                              |
| Approved by:                                     | Sven Kühn                                | Deputy Manager                                                                                                                                    | i.V. Bleunt                                      |
| This solibustion postificate shell according     | the reproduced ever-the f                | ull without written approval of the laboratory                                                                                                    | Issued: June 18, 2021                            |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

# Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

# DC Voltage Measurement A/D - Converter Resolution nominal

| High Range:      | 1LSB =          | 6.1μV,          | -              | -100+300 mV |
|------------------|-----------------|-----------------|----------------|-------------|
| Low Range:       | 1LSB =          | 61nV,           |                | -1+3mV      |
| DASY measurement | parameters: Aut | to Zero Time: 3 | sec; Measuring | time: 3 sec |

| Calibration Factors | x                     | Y                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 405.659 ± 0.02% (k=2) | 405.300 ± 0.02% (k=2) | 405.554 ± 0.02% (k=2) |
| Low Range           | 3.96109 ± 1.50% (k=2) | 4.00152 ± 1.50% (k=2) | 4.00674 ± 1.50% (k=2) |

# **Connector Angle**

| Connector Angle to be used in DASY system | 36.0 ° ± 1 ° |
|-------------------------------------------|--------------|
|-------------------------------------------|--------------|

# Appendix (Additional assessments outside the scope of SCS0108)

### 1. DC Voltage Linearity

| High Range |         | Reading (µV) | Difference (µV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199992.76    | -0.27           | -0.00     |
| Channel X  | + Input | 20004.34     | 2.57            | 0.01      |
| Channel X  | - Input | -19999.62    | 1.83            | -0.01     |
| Channel Y  | + Input | 199989.77    | -2.82           | -0.00     |
| Channel Y  | + Input | 20002.16     | 0.36            | 0.00      |
| Channel Y  | - Input | -20002.12    | -0.67           | 0.00      |
| Channel Z  | + Input | 199990.88    | -1.83           | -0.00     |
| Channel Z  | + Input | 20000.69     | -1.00           | -0.01     |
| Channel Z  | - Input | -20002.75    | -1.21           | 0.01      |

| Low Range         | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2002.36      | 1.32            | 0.07      |
| Channel X + Input | 202.06       | 0.66            | 0.33      |
| Channel X - Input | -197.59      | 0.94            | -0.47     |
| Channel Y + Input | 2000.87      | -0.13           | -0.01     |
| Channel Y + Input | 200.99       | -0.31           | -0.15     |
| Channel Y - Input | -198.99      | -0.44           | 0.22      |
| Channel Z + Input | 2001.05      | 0.06            | 0.00      |
| Channel Z + Input | 200.88       | -0.45           | -0.23     |
| Channel Z - Input | -199.56      | -1.01           | 0.51      |

# 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|              | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|--------------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X    | 200                               | -3.32                              | -5.07                             |
|              | - 200                             | 5.72                               | 4.11                              |
| Channel Y    | 200                               | 1.67                               | 1.56                              |
|              | - 200                             | -3.03                              | -2.98                             |
| Channel Z 20 | 200                               | -1.49                              | -1.58                             |
|              | - 200                             | -1.18                              | -0.67                             |

# 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | 0.82           | -3.93          |
| Channel Y | 200                | 7.61           | -              | 2.09           |
| Channel Z | 200                | 8.96           | 5.49           | -              |

# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| High Range (LSB) | Low Range (LSB) |
|------------------|-----------------|
| 16194            | 15648           |
| 15897            | 15178           |
| 16214            | 13846           |
|                  | 16194           |

# 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input  $10M\Omega$ 

|           | Average (µV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(µV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.86         | -1.04            | 3.29             | 0.87                   |
| Channel Y | -0.33        | -2.04            | 0.55             | 0.40                   |
| Channel Z | 0.26         | -1.05            | 1.53             | 0.48                   |

# 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

# 7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

# 8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

# 9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| Client | Sp | orton |
|--------|----|-------|
|        |    |       |

| ertificate No: | EX3-7 | 592 . | Jun21 |
|----------------|-------|-------|-------|
|                |       |       |       |

| CERTIFICATE                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EX3DV4 - SN:7592                                                                                                                                                                                                    |
| QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7<br>Calibration procedure for dosimetric E-field probes                                                                                                       |
| June 24, 2021                                                                                                                                                                                                       |
| uments the traceability to national standards, which realize the physical units of measurements (SI).<br>ncertainties with confidence probability are given on the following pages and are part of the certificate. |
| ducted in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%.                                                                                                                |
| M&TE critical for calibration)                                                                                                                                                                                      |
|                                                                                                                                                                                                                     |

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| DAE4                       | SN: 660          | 23-Dec-20 (No. DAE4-660_Dec20)    | Dec-21                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-20 (No. ES3-3013_Dec20)    | Dec-21                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 |

|                              | Name                                    | Function                                     | Signature             |
|------------------------------|-----------------------------------------|----------------------------------------------|-----------------------|
| Calibrated by:               | Jeton Kastrati                          | Laboratory Technician                        | -th                   |
| Approved by:                 | Katja Pokovic                           | Technical Manager                            | deles                 |
|                              |                                         |                                              | Issued: June 24, 2021 |
| This calibration certificate | e shall not be reproduced except in ful | I without written approval of the laboratory | <i>.</i>              |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Accreditation No.: SCS 0108

- C Service suisse d'etaionnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL                 | tissue simulating liquid                                                                     |
|---------------------|----------------------------------------------------------------------------------------------|
| NORMx,y,z           | sensitivity in free space                                                                    |
| ConvF               | sensitivity in TSL / NORMx,y,z                                                               |
| DCP                 | diode compression point                                                                      |
| CF                  | crest factor (1/duty_cycle) of the RF signal                                                 |
| A, B, C, D          | modulation dependent linearization parameters                                                |
| Polarization $\phi$ | φ rotation around probe axis                                                                 |
| Polarization 9      | 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), |
|                     | i.e., 9 = 0 is normal to probe axis                                                          |
| Connector Angle     | information used in DASY system to align probe sensor X to the robot coordinate system       |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.66     | 0.47     | 0.45     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 96.5     | 98.2     | 98.9     |           |

#### Calibration Results for Modulation Response

| UID       | Communication System Name                                                                                      |   | A<br>dB | B<br>dBõV | с     | D<br>dB   | VR<br>mV | Max<br>dev. | Max<br>Unc <sup>E</sup><br>(k=2) |
|-----------|----------------------------------------------------------------------------------------------------------------|---|---------|-----------|-------|-----------|----------|-------------|----------------------------------|
| 0         | CW                                                                                                             | X | 0.00    | 0.00      | 1.00  | 0.00      | 144.1    | ± 3.0 %     | ± 4.7 %                          |
| 0         | C/V                                                                                                            | Y | 0.00    | 0.00      | 1.00  |           | 141.6    |             |                                  |
|           |                                                                                                                | Z | 0.00    | 0.00      | 1.00  |           | 137.7    |             |                                  |
| 10352-    | Pulse Waveform (200Hz, 10%)                                                                                    | X | 2.38    | 65.86     | 9.98  | 10.00     | 60.0     | ± 4.8 %     | ±9.6 %                           |
| AAA       |                                                                                                                | Y | 20.00   | 95.84     | 23.88 | 110200203 | 60.0     |             |                                  |
|           |                                                                                                                | Z | 20.00   | 96.19     | 23.17 |           | 60.0     |             |                                  |
| 10353-    | Pulse Waveform (200Hz, 20%)                                                                                    | X | 1.87    | 65.88     | 9.28  | 6.99      | 80.0     | ± 3.3 %     | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 20.00   | 98.66     | 24.16 |           | 80.0     | -           |                                  |
|           |                                                                                                                | Z | 20.00   | 106.41    | 27.16 |           | 80.0     |             |                                  |
| 10354-    | Pulse Waveform (200Hz, 40%)                                                                                    | X | 14.56   | 83.09     | 14.04 | 3.98      | 95.0     | ± 1.8 %     | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 20.00   | 104.85    | 25.71 |           | 95.0     |             |                                  |
|           |                                                                                                                | Z | 20.00   | 140.99    | 41.95 |           | 95.0     |             |                                  |
| 10355-    | Pulse Waveform (200Hz, 60%)                                                                                    | X | 20.00   | 91.04     | 16.44 | 2.22      | 120.0    |             | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 20.00   | 113.21    | 28.19 |           | 120.0    |             |                                  |
|           |                                                                                                                | Z | 4.09    | 160.00    | 58.51 | 1         | 120.0    |             |                                  |
| 10387-    | QPSK Waveform, 1 MHz                                                                                           | X | 1.85    | 68.17     | 16.26 | 1.00      | 150.0    | ± 1.8 %     | ± 9.6 %                          |
| AAA       | di oli li di oli di | Y | 1.76    | 65.42     | 15.03 |           | 150.0    |             |                                  |
|           |                                                                                                                | Z | 2.40    | 73.96     | 19.38 | 1         | 150.0    |             |                                  |
| 10388-    | QPSK Waveform, 10 MHz                                                                                          | X | 2.45    | 69.71     | 16.86 | 0.00      | 150.0    | ± 1.2 %     | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 2.32    | 67.83     | 15.70 |           | 150.0    |             |                                  |
| 10.00     |                                                                                                                | Z | 3.08    | 74.59     | 19.54 | 1         | 150.0    |             |                                  |
| 10396-    | 64-QAM Waveform, 100 kHz                                                                                       | X | 3.02    | 72.28     | 20.05 | 3.01      | 150.0    | ± 1.1 %     | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 2.99    | 70.07     | 18.69 |           | 150.0    |             |                                  |
|           |                                                                                                                | Z | 2.37    | 69.07     | 19.36 |           | 150.0    |             |                                  |
| 10399-    | 64-QAM Waveform, 40 MHz                                                                                        | X | 3.66    | 67.90     | 16.35 | 0.00      | 150.0    | ± 1.0 %     | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 3.60    | 67.10     | 15.81 |           | 150.0    |             |                                  |
|           |                                                                                                                | Z | 3.82    | 69.12     | 17.28 |           | 150.0    |             |                                  |
| 10414-    | WLAN CCDF, 64-QAM, 40MHz                                                                                       | X | 4.79    | 65.49     | 15.58 | 0.00      | 150.0    | ± 1.8 %     | ± 9.6 %                          |
| AAA       |                                                                                                                | Y | 5.03    | 65.66     | 15.57 | ]         | 150.0    |             |                                  |
| 1998-1998 |                                                                                                                | Z | 4.97    | 66.44     | 16.32 |           | 150.0    | 1           |                                  |

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.

#### Sensor Model Parameters

|   | C1<br>fF | C2<br>fF | α<br>V <sup>-1</sup> | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V <sup>-1</sup> | Т6   |
|---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------|
| X | 42.5     | 315.42   | 35.27                | 12.30                    | 0.00                     | 4.96     | 1.54                  | 0.09                  | 1.01 |
| Y | 56.4     | 423.03   | 35.79                | 15.71                    | 0.37                     | 5.09     | 1.00                  | 0.32                  | 1.01 |
| Z | 41.0     | 307.74   | 36.24                | 10.09                    | 0.00                     | 5.10     | 0.00                  | 0.23                  | 1.01 |

### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 176.7      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

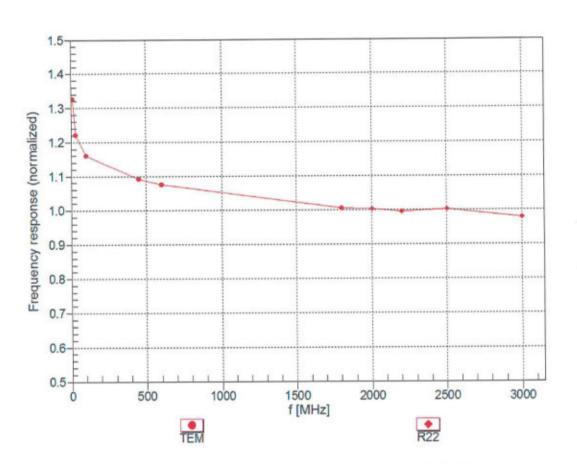
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 41.9                                  | 0.89                               | 10.25   | 10.25   | 10.25   | 0.38               | 1.01                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 9.98    | 9.98    | 9.98    | 0.46               | 0.86                       | ± 12.0 %     |
| 1450                 | 40.5                                  | 1.20                               | 8.76    | 8.76    | 8.76    | 0.35               | 0.80                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.45    | 8.45    | 8.45    | 0.35               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 8.13    | 8.13    | 8.13    | 0.29               | 0.86                       | ± 12.0 %     |
| 2000                 | 40.0                                  | 1.40                               | 7.93    | 7.93    | 7.93    | 0.30               | 0.98                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.74    | 7.74    | 7.74    | 0.36               | 0.90                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.53    | 7.53    | 7.53    | 0.35               | 0.90                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.26    | 7.26    | 7.26    | 0.52               | 0.90                       | ± 12.0 %     |
| 3300                 | 38.2                                  | 2.71                               | 7.07    | 7.07    | 7.07    | 0.40               | 1.35                       | ± 14.0 %     |
| 3500                 | 37.9                                  | 2.91                               | 6.69    | 6.69    | 6.69    | 0.40               | 1.35                       | ± 14.0 %     |
| 3700                 | 37.7                                  | 3.12                               | 6.64    | 6.64    | 6.64    | 0.40               | 1.35                       | ± 14.0 %     |
| 3900                 | 37.5                                  | 3.32                               | 6.50    | 6.50    | 6.50    | 0.40               | 1.60                       | ± 14.0 %     |
| 4100                 | 37.2                                  | 3.53                               | 6.27    | 6.27    | 6.27    | 0.40               | 1.60                       | ± 14.0 %     |
| 4200                 | 37.1                                  | 3.63                               | 6.16    | 6.16    | 6.16    | 0.40               | 1.60                       | ± 14.0 9     |
| 4400                 | 36.9                                  | 3.84                               | 6.10    | 6.10    | 6.10    | 0.40               | 1.80                       | ± 14.0 %     |
| 4600                 | 36.7                                  | 4.04                               | 5.81    | 5.81    | 5.81    | 0.40               | 1.80                       | ± 14.0 %     |
| 4800                 | 36.4                                  | 4.25                               | 5.76    | 5.76    | 5.76    | 0.40               | 1.80                       | ± 14.0 %     |
| 4950                 | 36.3                                  | 4.40                               | 5.53    | 5.53    | 5.53    | 0.40               | 1.80                       | ± 14.0 9     |
| 5250                 | 35.9                                  | 4.71                               | 5.38    | 5.38    | 5.38    | 0.40               | 1.80                       | ± 14.0 9     |
| 5600                 | 35.5                                  | 5.07                               | 4.68    | 4.68    | 4.68    | 0.40               | 1.80                       | ± 14.0 °     |
| 5750                 | 35.4                                  | 5.22                               | 4.82    | 4.82    | 4.82    | 0.40               | 1.80                       | ± 14.0 °     |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 6500                 | 34.5                                  | 6.07                    | 5.35    | 5.35    | 5.35    | 0.25               | 2.50                       | ± 18.6 %     |

# Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>F</sup> At frequencies 6-10 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

<sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.



# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)