

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT2169-1
FCC ID	: IHDT56ZW3
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	_: Aug. 21, 2021 ~ Sep. 14, 2021

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

lepwone

ACCREDITED Cert #5145.02

Approved by: Alex Wang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	-
SU		Y OF TEST RESULT	
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	6
	1.9	Specification of Accessory	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	21
	3.4	20dB Bandwidth Measurement	23
	3.5	Output Power Measurement	30
	3.6	Conducted Band Edges Measurement	31
	3.7	Conducted Spurious Emission Measurement	38
	3.8	Radiated Band Edges and Spurious Emission Measurement	48
	3.9	AC Conducted Emission Measurement	52
	3.10	Antenna Requirements	54
4	LIST	OF MEASURING EQUIPMENT	55
5	UNCE	ERTAINTY OF EVALUATION	56
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PEND	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	X C. RADIATED SPURIOUS EMISSION	
AP	PEND	X D. DUTY CYCLE PLOTS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR181701A	Rev. 01	Initial issue of report	Sep. 24, 2021

SUMMARY OF 1	TEST RESULT
--------------	-------------

Report Section	FCC Rule	Description	Limit	Result	Remark	
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-	
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-	
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-	
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-	
3.4	-	99% Bandwidth	-	Report only	-	
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-	
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-	
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-	
	3 15.247(d)	Radiated Band Edges			Under limit	
3.8		15.247(d) and Radiated Spurious 15.209(a) & 15.247(d)	15.209(a) & 15.247(d)	Pass	15.92 dB at	
		Emission			46.490 MHz	
		AC Conducted			Under limit	
3.9	15.207	Emission	15.207(a)	Pass	6.85 dB at	
		EIIIISSIUI			0.197 MHz	
3.10	15.203 &	Antonno Poquiroment	15 202 8 15 247/h	Pass		
5.10	15.247(b)	Antenna Requirement	15.203 & 15.247(b)	F d 5 5	-	

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	Mobile Cellular Phone				
Brand Name	Motorola				
Model Name	XT2169-1				
FCC ID	IHDT56ZW3				
	Conducted: 350662070020055/350662070020063				
IMEI Code	Conduction: 350662070023679/350662070023687				
	Radiation: 350662070021855				
HW Version	rsion DVT2				
SW Version	RRUB31.Q3-46				
EUT Stage	Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 12.17 dBm (0.0165 W) Bluetooth EDR (2Mbps) : 11.66 dBm (0.0147 W) Bluetooth EDR (3Mbps) : 11.85 dBm (0.0153 W)				
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.857 MHz Bluetooth EDR (2Mbps) : 1.169 MHz Bluetooth EDR (3Mbps) : 1.161 MHz				
Antenna Type / Gain	PIFA Antenna with gain -4 dBi				
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.					
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone					
Test Site Location	Jiangsu Province 2153	00 People's Republic of C	hina			
Test Sile Location	TEL : +86-512-57900158					
	FAX : +86-512-57900958					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.			
Test one NU.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309			

1.7 Test Software

I	Item Site		Manufacturer	Name	Version
ſ	1.	03CH06-KS	AUDIX	E3	6.2009-8-24al
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

1.9 Specification of Accessory

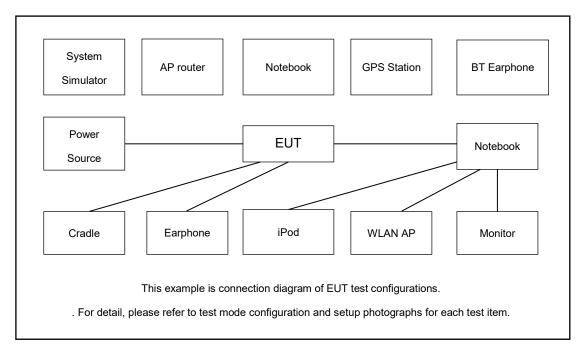
	Specification of Accessory						
AC Adapter 1(US)	Brand Name	Motorola (Salcomp)	Model Name	MC-331			
AC Adapter 1(EU)	Brand Name	Motorola (Salcomp)	Model Name	MC-332			
AC Adapter 1(UK)	Brand Name	Motorola (Salcomp)	Model Name	MC-333			
AC Adapter 1(AU)	Brand Name	Motorola (Salcomp)	Model Name	MC-335			
AC Adapter 1(AR)	Brand Name	Motorola (Salcomp)	Model Name	MC-336			
AC Adapter 1(BR)	Brand Name	Motorola (Salcomp)	Model Name	MC-337			
AC Adapter 1(PRC)	Brand Name	Motorola (Salcomp)	Model Name	MC-338			
AC Adapter 1(CHILE)	Brand Name	Motorola (Salcomp)	Model Name	MC-339			
AC Adapter 2(IN)	Brand Name	Motorola (Salcomp)	Model Name	MC-334			
AC Adapter 3(US)	Brand Name	Motorola (Chenyang)	Model Name	MC-331			
AC Adapter 3(EU)	Brand Name	Motorola (Chenyang)	Model Name	MC-332			
AC Adapter 3(AU)	Brand Name	Motorola (Chenyang)	Model Name	MC-335			
AC Adapter 3(AR)	Brand Name	Motorola (Chenyang)	Model Name	MC-336			
AC Adapter 3(BR)	Brand Name	Motorola (Chenyang)	Model Name	MC-337			
AC Adapter 4(US)	Brand Name	Motorola (Acbel)	Model Name	MC-331			
AC Adapter 4(EU)	Brand Name	Motorola (Acbel)	Model Name	MC-332			
AC Adapter 4(UK)	Brand Name	Motorola (Acbel)	Model Name	MC-333			
Battery 1	Brand Name	Motorola (ATL)	Model Name	NG50			
Battery 2	Brand Name	Motorola (Sunwoda)	Model Name	NG50			
Earphone 1	Brand Name	Motorola (Lyand)	Model Name	MH191(SH38C81577)			
Earphone 2	Brand Name	Motorola (LCHSE)	Model Name	MH191(SH38C81576)			
USB Cable 1	Brand Name	Motorola (Saibao)	Model Name	SC18D22297			
USB Cable 2	Brand Name	Motorola (Cabletech)	Model Name	SC18D22298			
USB Cable 3	Brand Name	Motorola (Luxshare)	Model Name	SC18D22299			

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases					
	Data Rate / Modulation					
т	est Item	Bluetooth BR 1Mbps Bluetooth EDR 2Mbps Bluetooth EDR 3Mbps				
-		GFSK	π/4-DQPSK	8-DPSK		
		Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
	onducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
Те	st Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
			Bluetooth BR 1Mbps GFSK			
F	Radiated	Mode 1: CH00_2402 MHz				
Те	st Cases	Mode 2: CH39_2441 MHz				
			Mode 3: CH78_2480 MHz			
	AC	Mada 1 + CSM 950 Idla + Pl	untanth Link + M/LAN Link (2)	1C) + LISP Coble 1/Charging		
Co	onducted	Mode 1 : GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable 1(Charging				
E	mission	from Adapter1) + Earphone 1+ Battery 1				
Re	mark:					
1.	1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rat					
	has the hig	the highest RF output power at preliminary tests, and no other significantly frequencies found in				
conducted spurious emission.						
2. For Radiated Test Cases, The tests were performed with Adapter 1, Battery 1, Earphone 1				attery 1, Earphone 1 and		
	USB Cable 1 .					

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
5.	SD Card	Kingston	8GB	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss. *Offset = RF cable loss.* Following shows an offset computation example with cable loss 5.60 dB.

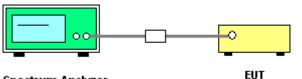
 $Offset(dB) = RF \ cable \ loss(dB)$. = 5.60 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

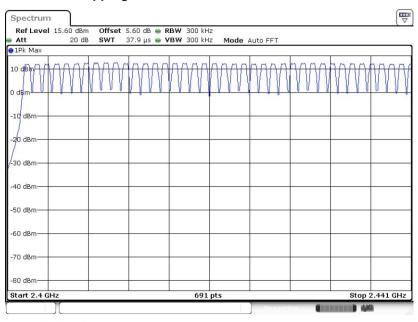

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

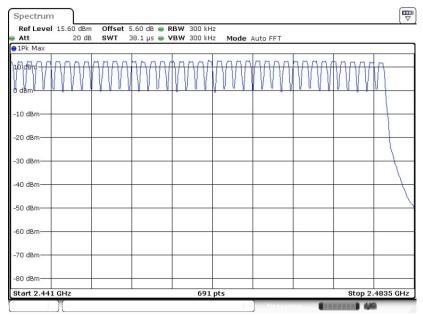
- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency


Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

Date: 24.AUG.2021 09:36:41

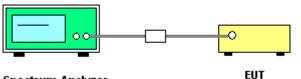
Number of Hopping Channel Plot on Channel 00 - 78

Date: 24.AUG.2021 09:37:37

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

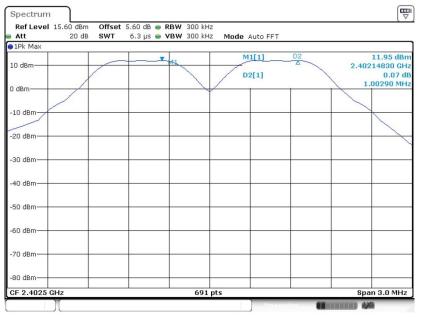
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

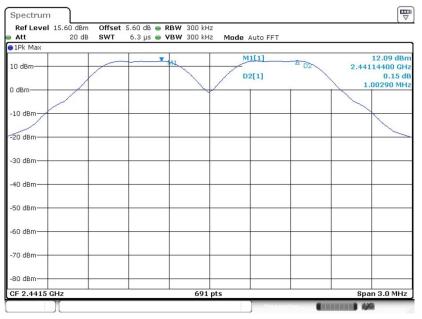
3.2.4 Test Setup

Spectrum Analyzer

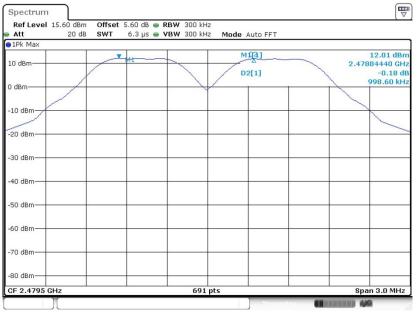


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

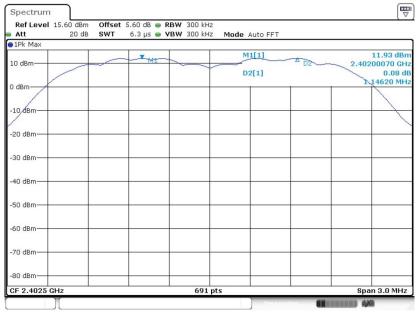

<1Mbps>

Channel Separation Plot on Channel 00 - 01

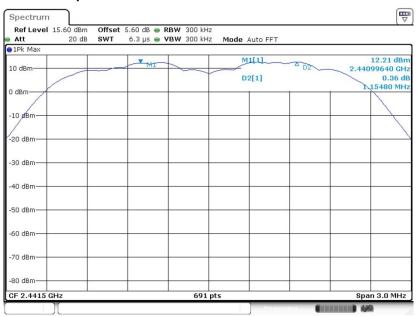

Date: 24.AUG.2021 09:34:49

Channel Separation Plot on Channel 39 - 40

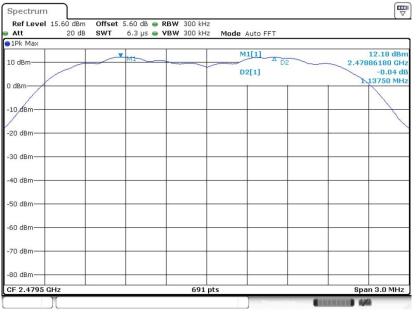
Date: 24.AUG.2021 09:49:15


Channel Separation Plot on Channel 77 - 78

Date: 24.AUG.2021 09:58:56

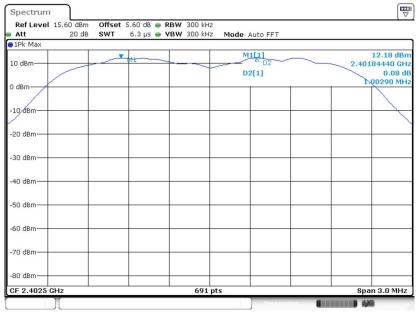

<2Mbps>

Channel Separation Plot on Channel 00 - 01

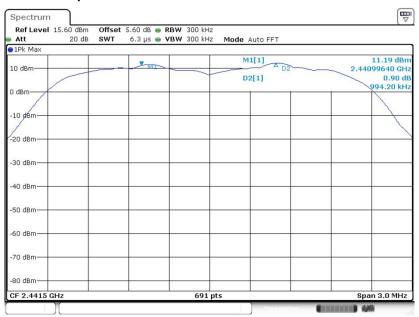

Date: 24.AUG.2021 13:23:03

Channel Separation Plot on Channel 39 - 40

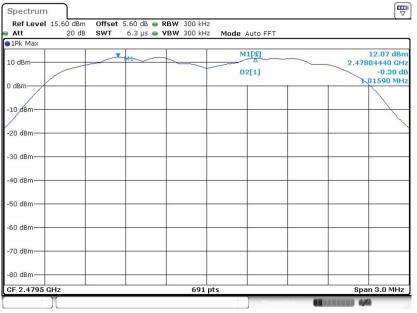
Date: 24.AUG.2021 10:50:01


Channel Separation Plot on Channel 77 - 78

Date: 24.AUG.2021 10:55:14


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 24.AUG.2021 11:55:27

Channel Separation Plot on Channel 39 - 40

Date: 24.AUG.2021 13:08:53

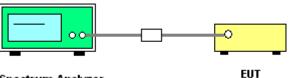
Channel Separation Plot on Channel 77 - 78

Date: 24.AUG.2021 13:13:47

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

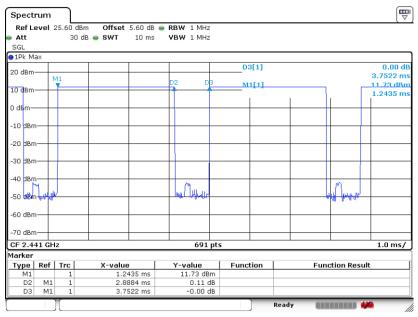

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 21.AUG.2021 09:35:45

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak;

Trace = max hold.

5. Measure and record the results in the test report.

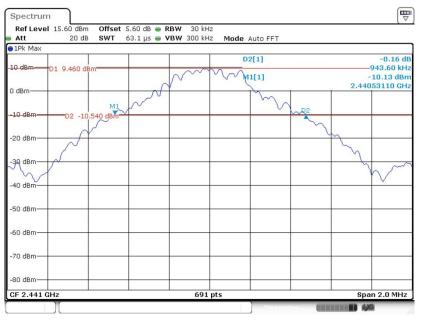
3.4.4 Test Setup

Spectrum Analyzer



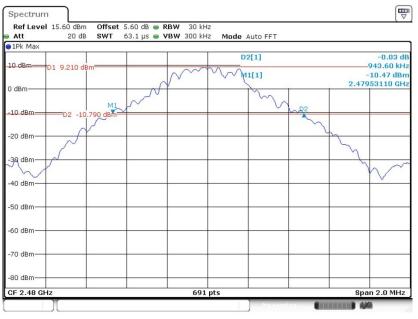
3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.


<1Mbps>

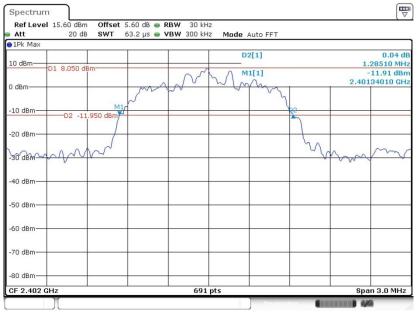
20 dB Bandwidth Plot on Channel 00

Date: 24.AUG.2021 09:33:32


20 dB Bandwidth Plot on Channel 39

Date: 24.AUG.2021 09:47:57

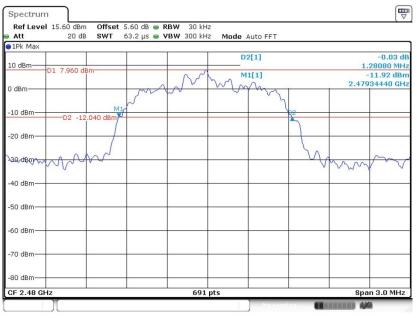
Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZW3


20 dB Bandwidth Plot on Channel 78

Date: 24.AUG.2021 09:57:11

<2Mbps>

20 dB Bandwidth Plot on Channel 00

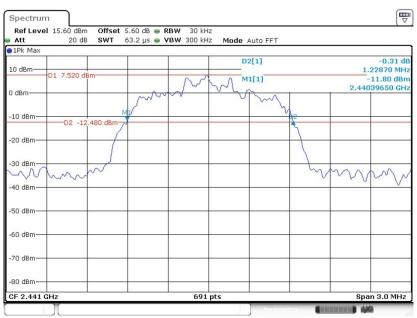

Date: 24.AUG.2021 10:35:52

20 dB Bandwidth Plot on Channel 39

Date: 24.AUG.2021 10:48:56


20 dB Bandwidth Plot on Channel 78

Date: 24.AUG.2021 10:54:21


<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 24.AUG.2021 11:54:26

Date: 24.AUG.2021 13:07:35

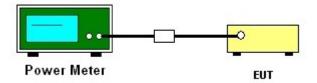
20 dB Bandwidth Plot on Channel 78

Date: 24.AUG.2021 13:12:50

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

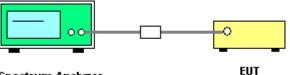
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

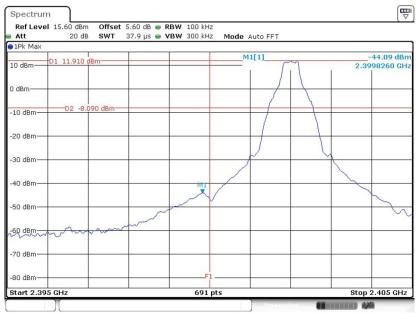

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

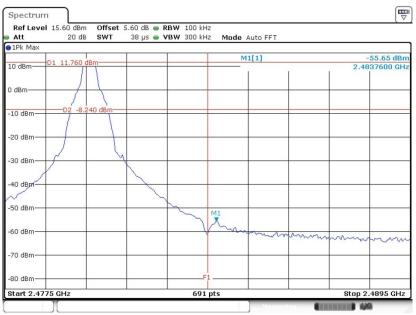
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

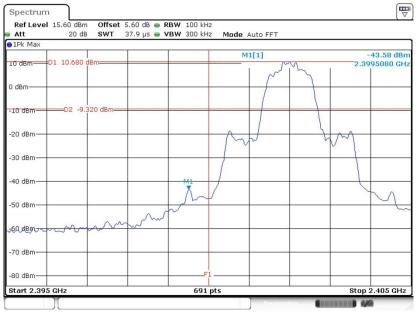
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

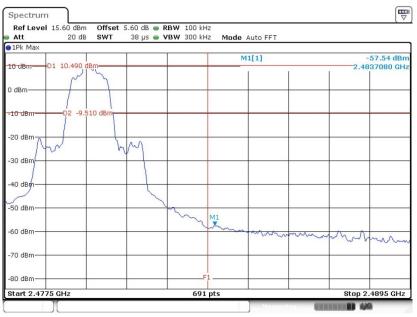
Low Band Edge Plot on Channel 00

Date: 24.AUG.2021 09:41:45

High Band Edge Plot on Channel 78



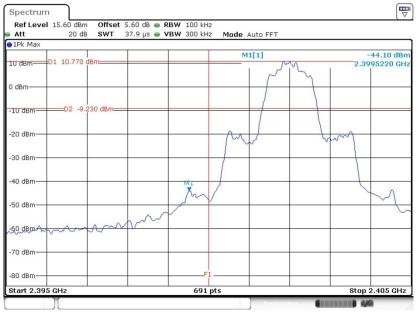
Date: 24.AUG.2021 10:01:00


<2Mbps>

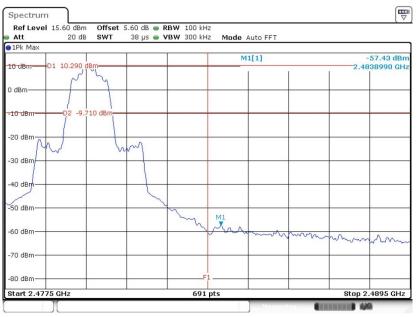
Low Band Edge Plot on Channel 00

Date: 24.AUG.2021 10:38:17

High Band Edge Plot on Channel 78



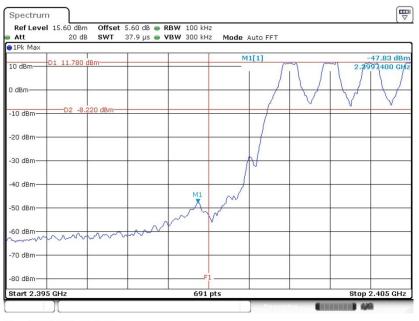
Date: 24.AUG.2021 10:56:35


<3Mbps>

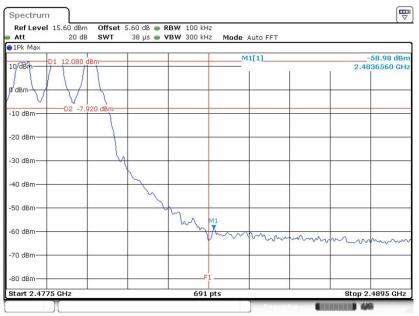
Low Band Edge Plot on Channel 00

Date: 24.AUG.2021 11:56:13

High Band Edge Plot on Channel 78


Date: 24.AUG.2021 13:14:59

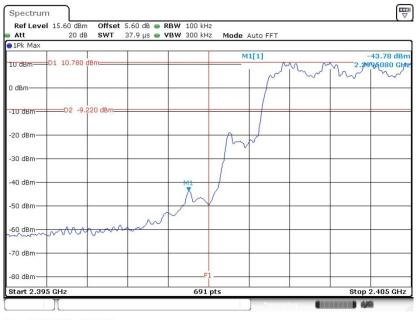
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 24.AUG.2021 09:38:40

Hopping Mode High Band Edge Plot



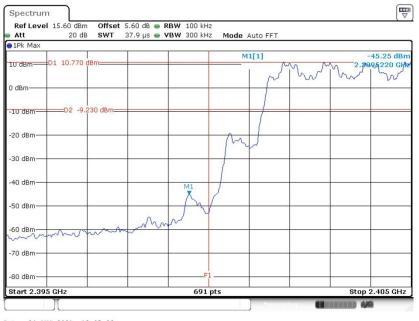
Date: 24.AUG.2021 10:04:02


<2Mbps>

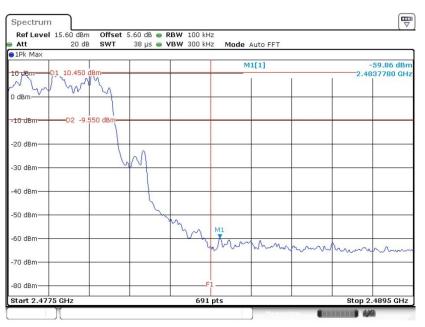
Hopping Mode Low Band Edge Plot

Date: 24.AUG.2021 10:46:29

Hopping Mode High Band Edge Plot



Date: 24.AUG.2021 10:58:13


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 24.AUG.2021 13:05:28

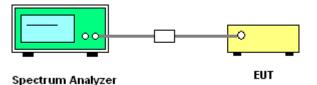
Hopping Mode High Band Edge Plot

Date: 24.AUG.2021 13:21:14

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

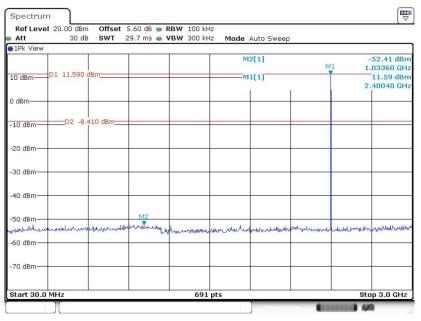

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

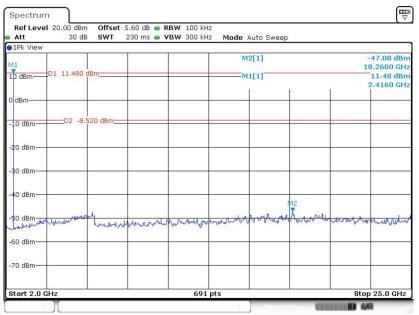
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZW3

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 24.AUG.2021 09:45:18

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.AUG.2021 09:46:15

10 dBm D1 11.890 dBm M1 2.98930 GF	Spectrum									
IPk View M2[1] M1 2.58.21 dB 10 dBm M1[1] 1.89 dB 2.4990 GF 0 dBm M1[1] 1.89 dB 2.43910 GF 0 dBm D2 8.10 dBm 0 0 -20 dBm -30 dBm -30 dBm -40 dBm							Auto Swoor			
M1 2.98930 Gł 10 dBm M1[1] 11.890 dBm 11.890 dB 0 dBm 2.43910 Gł 0 dBm 2.43910 Gł -10 dBm		50 GL	5 311	29.7 1115	DW 500 KI	iz moue	Auto Sweep	,		
10 dBm						м	2[1]		M1	-52.21 dBm 2.98930 GHz
-10 dBm	10 dBm	DI 11.890	abm-			M	1[1]			11.89 dBm 2.43910 GHz
-20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm	0 dBm									
-30 dBm	-10 dBm	D2 -8.	110 dBm							
40 dBm	-20 dBm									
-50 dBm	-30 dBm									
60 dBm	-40 dBm									
-60 dBm	-50 dBm	11 1 1 1		hastkours and				da a		N
70 dBm-	and and and		anovana		hand hardward	Nutran		and driver through	n want	
	-70 dBm									
Start 30.0 MHz 691 pts Stop 3.0 GHz	Start 30.0	MHz			691	pts				Stop 3.0 GHz

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 24.AUG.2021 10:09:23

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 20.00 dBm Att 30 dB	Offset 5.60 dB SWT 230 ms		le Auto Sweep	
1Pk View	3771 230 113	*D** 300 KH2 100	e Auto Sweep	
M1 10 dBm D1 11.680 d	Bm		M2[1] —M1[1]	-47.49 dB 18.2930 GF 11.68 dB 2.4490 GF
dBm			+ $+$	2.4490 GP
10 dBmD2 -8.3	20 dBm			
20 dBm				
30 dBm				
40 dBm			M2	
0 dBm	m home when when the second	mununum	to to a start the start th	to all wood an and a further and
50 dBm				
70 dBm				
start 2.0 GHz		691 pts		Stop 25.0 GH

Date: 24.AUG.2021 10:09:53