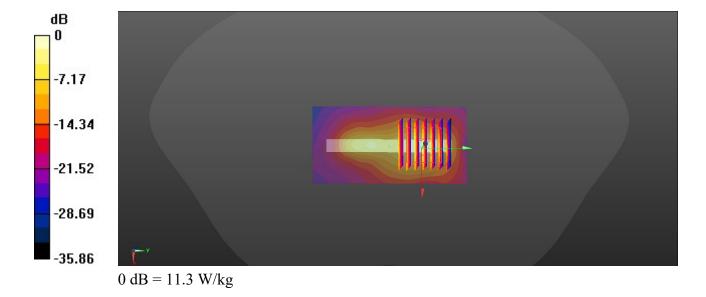
78 Band 41 20M QPSK 1RB 49Offset Bottom Side 0mm Ch40185

Communication System: UID 0, LTE (0); Frequency: 2549.5 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600_210610 Medium parameters used: f = 2549.5 MHz; $\sigma = 1.998$ S/m; $\varepsilon_r = 37.532$; $\rho = 1000$ kg/m³

Date: 2021/6/10


Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(7.94, 7.94, 7.94); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

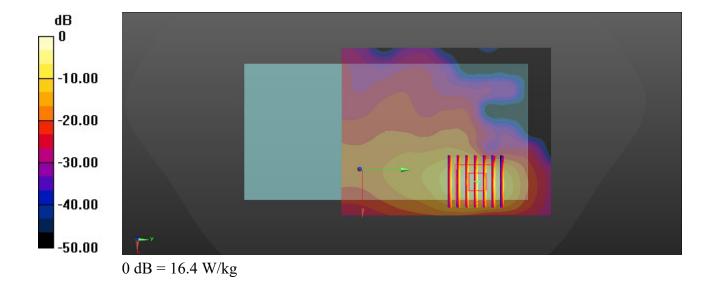
Ch40185/Area Scan (41x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 11.7 W/kg

Ch40185/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.40 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 4.71 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 11.3 W/kg

79_LTE Band 42_20M_QPSK_1RB_49Offset_Back_8mm_Ch42190

Communication System: UID 0, LTE (0); Frequency: 3460 MHz; Duty Cycle: 1:1.59 Medium: HSL_3500_210612 Medium parameters used: f = 3460 MHz; $\sigma = 2.788$ S/m; $\epsilon_r = 39.952$; $\rho = 1000$ kg/m³

Date: 2021/6/12


Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(7.4, 7.4, 7.4); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch42190/Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.8 W/kg

Ch42190/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm Reference Value = 7.979 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 22.6 W/kg SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 16.4 W/kg

80_N66_20M_BPSK_50RB_28Offset_DFT-15_Top Side_0mm_Ch354000

Communication System: UID 0, 5G NR (0); Frequency: 1770 MHz; Duty Cycle: 1:1

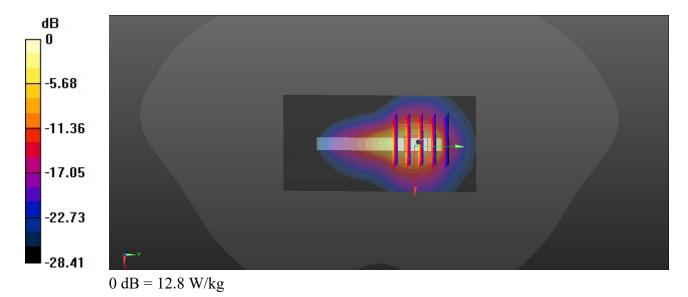
Medium: HSL_1750_210604 Medium parameters used: f = 1770 MHz; $\sigma = 1.403$ S/m; $\epsilon_r = 41.243$; ρ

Date: 2021/6/4

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:


- Probe: EX3DV4 SN7641; ConvF(9.41, 9.41, 9.41); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch354000/Area Scan (41x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.6 W/kg

Ch354000/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 43.38 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 5.35 W/kg; SAR(10 g) = 1.97 W/kgMaximum value of SAR (measured) = 12.8 W/kg

Communication System: UID 0, 5G NR (0); Frequency: 2510 MHz; Duty Cycle: 1:1

Medium: HSL 2600 210610 Medium parameters used: f = 2510 MHz; $\sigma = 1.953$ S/m; $\varepsilon_r = 37.621$; ρ

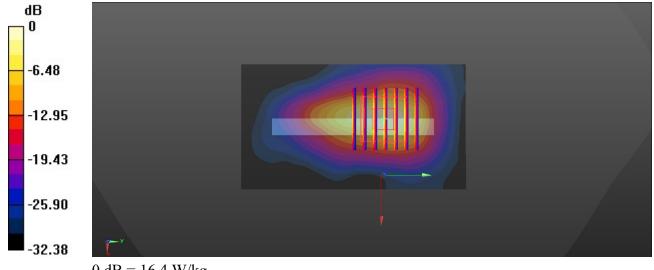
Date: 2021/6/10

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(7.94, 7.94, 7.94); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


Ch502000/Area Scan (51x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 15.8 W/kg

Ch502000/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.41 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 22.5 W/kg

SAR(1 g) = 5.6 W/kg; SAR(10 g) = 2.01 W/kg

Maximum value of SAR (measured) = 16.4 W/kg

0 dB = 16.4 W/kg

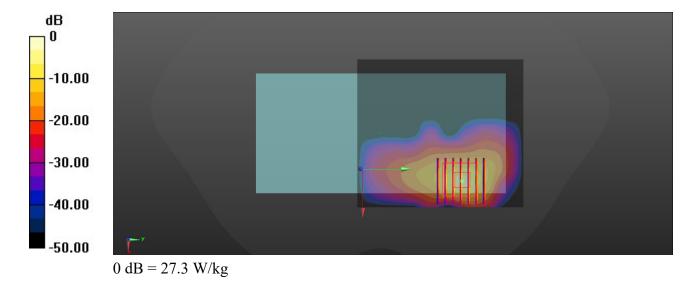
Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1

Medium: HSL_3500_210619 Medium parameters used: f = 3500.01 MHz; σ = 2.909 S/m; $ε_r = 38.635$; ρ = 1000 kg/m³

Date: 2021/6/19

Ambient Temperature: 23.8 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:


- Probe: EX3DV4 SN7641; ConvF(7.4, 7.4, 7.4); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch633334/Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 9.06 W/kg

Ch633334/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm Reference Value = 1.212 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 51.4 W/kg

SAR(1 g) = 5.2 W/kg; SAR(10 g) = 1.14 W/kgMaximum value of SAR (measured) = 27.3 W/kg

83_N78_100M_BPSK_135RB_0Offset_DFT-30_Back_0mm_Ch633334

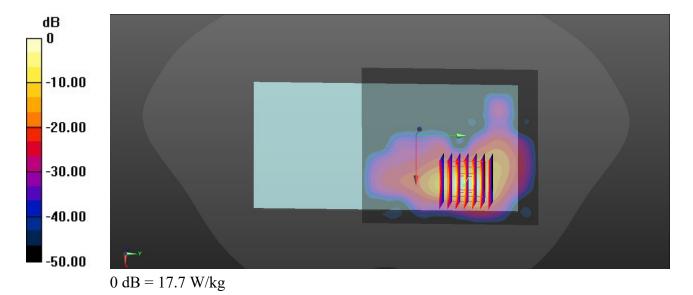
Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1

Medium: HSL_3500_210619 Medium parameters used: f = 3500.01 MHz; σ = 2.862 S/m; $ε_r = 39.829$; ρ

Date: 2021/6/19

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.8 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(7.4, 7.4, 7.4); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch633334/Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.6 W/kg

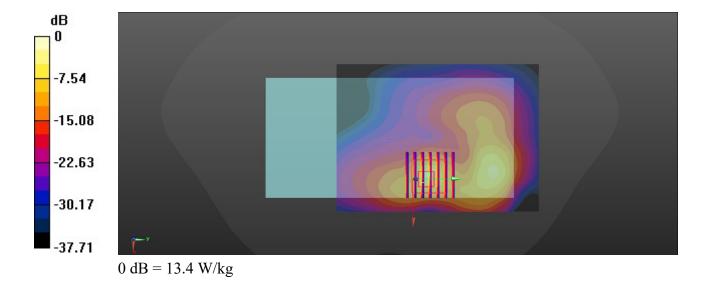
Ch633334/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm Reference Value = 2.158 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 6.03 W/kg; SAR(10 g) = 1.36 W/kgMaximum value of SAR (measured) = 17.7 W/kg

84_WLAN2.4GHz_802.11b 1Mbps_Back_0mm_Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1.017 Medium: HSL_2450_210608 Medium parameters used: f = 2412 MHz; $\sigma = 1.791$ S/m; $\epsilon_r = 39.777$; $\rho = 1000$ kg/m³

Date: 2021/6/8


Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(8.29, 8.29, 8.29); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch1/Area Scan (81x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 9.19 W/kg

Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.854 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 4.57 W/kg; SAR(10 g) = 1.27 W/kg Maximum value of SAR (measured) = 13.4 W/kg

85_WLAN5GHz_802.11n-HT40 MCS0_Back_0mm_Ch46

Communication System: UID 0, WIFI (0); Frequency: 5230 MHz; Duty Cycle: 1:1

Medium: HSL_5250_210616 Medium parameters used: f = 5230 MHz; $\sigma = 4.691$ S/m; $\epsilon_r = 36.462$; ρ

Date: 2021/6/16

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(5.68, 5.68, 5.68); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch46/Area Scan (91x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.0 W/kg

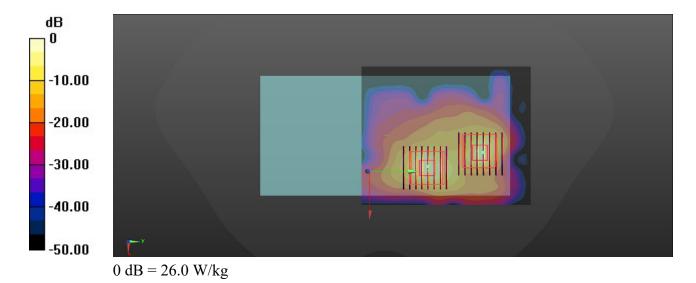
Ch46/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 52.8 W/kg

SAR(1 g) = 9.05 W/kg; SAR(10 g) = 2.01 W/kg

Maximum value of SAR (measured) = 24.0 W/kg


Ch46/Zoom Scan (8x8x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 52.3 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 26.0 W/kg

86_WLAN5GHz_802.11n-HT40 MCS0_Back_0mm_Ch54

Communication System: UID 0, WIFI (0); Frequency: 5270 MHz; Duty Cycle: 1:1

Medium: HSL_5250_210616 Medium parameters used: f = 5270 MHz; $\sigma = 4.743$ S/m; $\varepsilon_r = 36.38$; $\rho = 1000$ Lev / ω^3

Date: 2021/6/16

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(5.68, 5.68, 5.68); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch54/Area Scan (91x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 23.4 W/kg

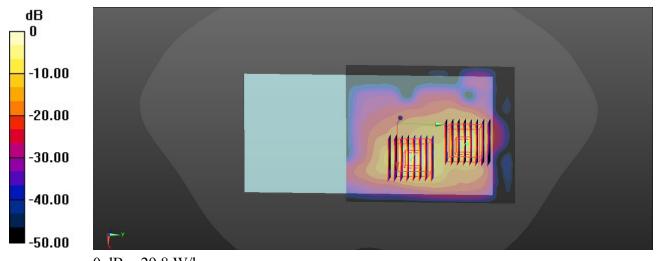
Ch54/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 56.5 W/kg

SAR(1 g) = 9.47 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 25.9 W/kg


Ch54/Zoom Scan (8x8x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 56.6 W/kg

SAR(1 g) = 8.35 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 29.8 W/kg

0 dB = 29.8 W/kg

87_WLAN5GHz_802.11n-HT40 MCS0_Back_0mm_Ch134

Communication System: UID 0, WIFI (0); Frequency: 5670 MHz; Duty Cycle: 1:1

Medium: HSL_5600_210618 Medium parameters used: f = 5670 MHz; $\sigma = 4.922$ S/m; $\varepsilon_r = 35.669$; ρ

Date: 2021/6/18

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6 °C; Liquid Temperature: 22.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(5.03, 5.03, 5.03); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch134/Area Scan (101x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 37.3 W/kg

Ch134/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.4860 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 77.2 W/kg

SAR(1 g) = 11.1 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 32.9 W/kg


Ch134/Zoom Scan (8x8x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.4860 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 68.2 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 28.2 W/kg

0 dB = 28.2 W/kg

88_WLAN5GHz_802.11ac-VHT80 MCS0_Back_0mm_Ch155

Communication System: UID 0, WIFI (0); Frequency: 5775 MHz; Duty Cycle: 1:1

Medium: HSL_5750_210618 Medium parameters used: f = 5775 MHz; $\sigma = 5.041$ S/m; $\epsilon_r = 36.549$; ρ

Date: 2021/6/18

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7641; ConvF(5.3, 5.3, 5.3); Calibrated: 2021/3/15
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1664; Calibrated: 2021/3/1
- Phantom: Twin-SAM V8.0 (Right); Type: QD 000 P41 AA; Serial: 2033
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch155/Area Scan (91x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 22.2 W/kg

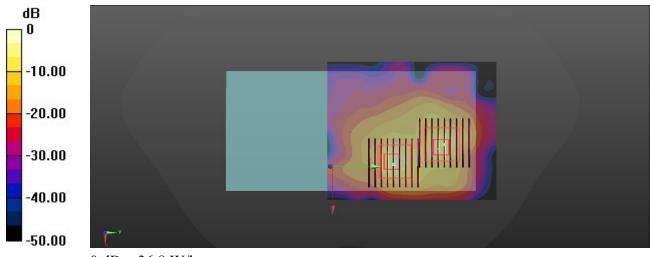
Ch155/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.6110 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 64.1 W/kg

SAR(1 g) = 9.27 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 28.6 W/kg


Ch155/Zoom Scan (9x9x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.6110 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 76.9 W/kg

SAR(1 g) = 9.04 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 36.8 W/kg

0 dB = 36.8 W/kg

Appendix C. **DASY Calibration Certificate**

Report No. : FA151407

The DASY calibration certificates are shown as follows.

Sporton International (Shenzhen) Inc.

TEL: +86-755-86379589 / FAX: +86-755-86379595

Issued Date: Jul. 08, 2021 Form version. : 200414 FCC ID: IHDT56ZW2 Page C1 of C1

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079

http://www.chinattl.cn

Client

Sporton

Z18-60532

Certificate No:

GANDERAMONNO ERMINOSAME

E-mail: cttl@chinattl.com

Object

D750V3 - SN: 1099

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 6, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: December 9, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60532

Page 1 of 8

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495		
Extrapolation	Advanced Extrapolation			
Phantom	Triple Flat Phantom 5.1C			
Distance Dipole Center - TSL	15 mm	with Spacer		
Zoom Scan Resolution	dx, dy, dz = 5 mm			
Frequency	750 MHz ± 1 MHz			

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.1 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		·

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.07 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.52 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.64 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	8.61 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.44 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	5.77 mW /g ±18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

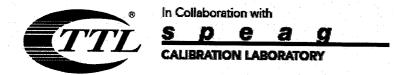
Antenna Parameters with Head TSL

Impedance, transformed to feed point	 54.2Ω- 1.12jΩ		
Return Loss	- 27.7dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8Ω- 3.37jΩ		
Return Loss	- 29.4dB		

General Antenna Parameters and Design


			
Electrical Delay (one direction)		0.900 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPFAG
	9. 5. (0

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1099

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.865$ S/m; $\epsilon_r = 43.13$; $\rho = 1000$ kg/m³

Phantom section: Right Section

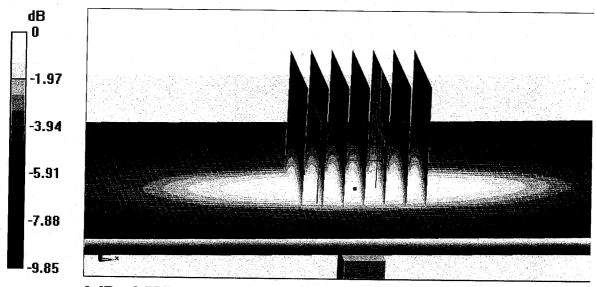
DASY5 Configuration:

 Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 750 MHz; Calibrated: 8/27/2018

Date: 12.05,2018

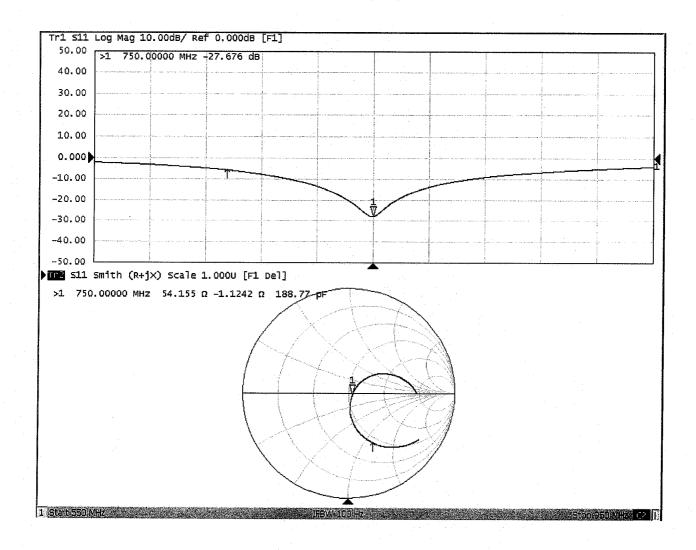
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 53.37 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.12 W/kg


SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1099

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.951$ S/m; $\varepsilon_r = 54.02$; $\rho = 1000$ kg/m³

Phantom section: Center Section

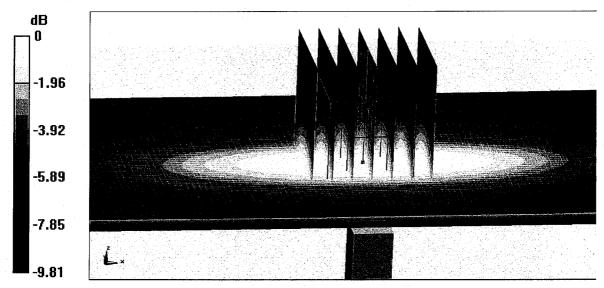
DASY5 Configuration:

 Probe: EX3DV4 - SN7514; ConvF(9.68, 9.68, 9.68) @ 750 MHz; Calibrated: 8/27/2018

Date: 12.05.2018

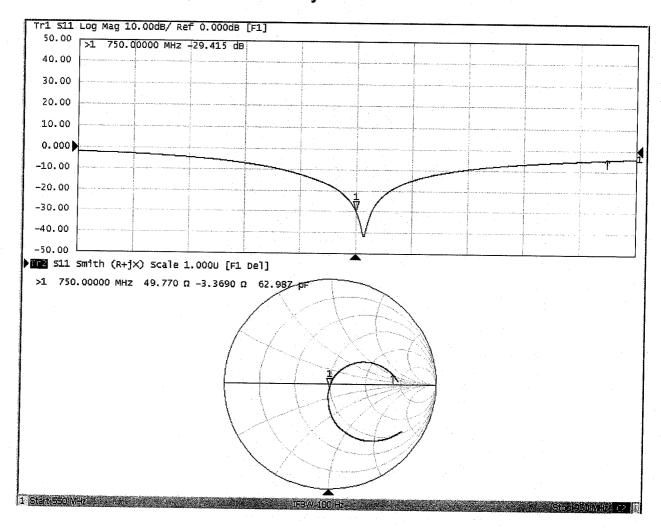
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 51.51 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.29 W/kg


SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (measured) = 2.88 W/kg

0 dB = 2.88 W/kg = 4.59 dBW/kg

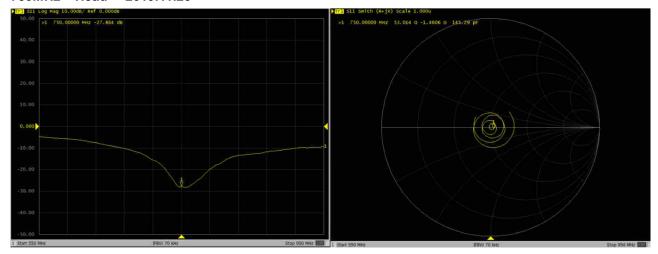
Impedance Measurement Plot for Body TSL

D750V3, Serial No. 1099 Extended Dipole Calibrations

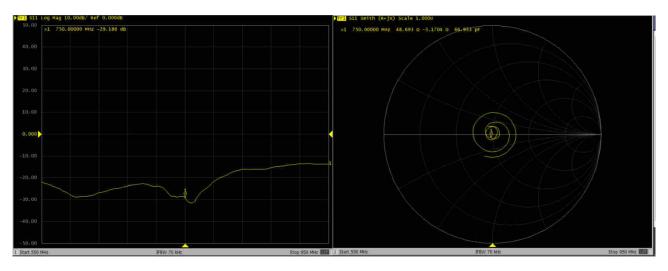
Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

	D750V3 – serial no. 1099											
750 Head					750 Body							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.12.6	-27.7		54.2		-1.12		-29.4		49.8		-3.37	
2019.11.25	-27.9	-0.7	53.0	-1.2	-1.46	-0.34	-29.2	0.7	48.7	-1.1	-3.17	0.2
2020.11.25	-27.6	-0.4	53.2	-1	-1.79	-0.67	-29.8	1.4	50.4	0.6	-3.23	0.14

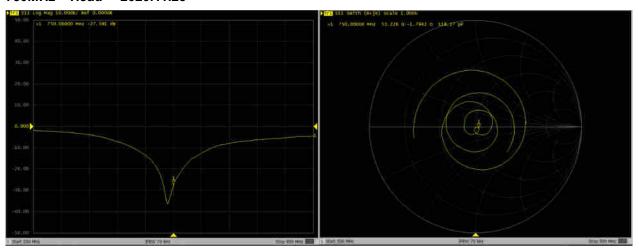
<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

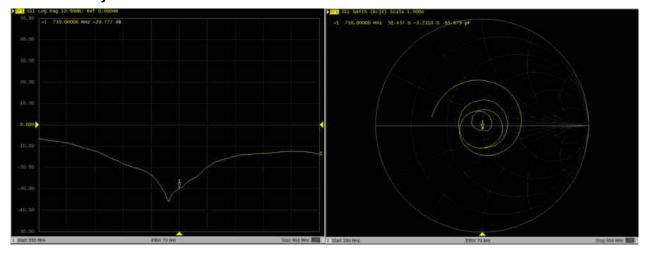
.



Dipole Verification Data> D750V3, serial no. 1099


750MHz - Head----2019.11.25

750MHz - Body----2019.11.25


750MHz - Head----2020.11.25

.

750MHz - Body----2020.11.25

.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

MRA CNA

Client

Sporton

Certificate No:

Z18-60533

OYAMIERVATIONKOERTIEKOVATE

Object

D835V2 - SN: 4d162

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 5, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: December 8, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 8

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of

30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.

Electrical Delay: One-way delay between the SMA connector and the antenna feed point.

No uncertainty required.

SAR measured: SAR measured at the stated antenna input power.

- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60533 Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and caroananems were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.61 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.35 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	***************************************	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.70 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW /g ± 18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6Ω- 2.56jΩ
Return Loss	- 28.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2Ω- 6.92jΩ
Return Loss	- 22.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)		1.306 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

-	A first mad by	SPEAG
	Manufactured by	

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.881$ S/m; $\varepsilon_r = 42.71$; $\rho = 1000$ kg/m³

Phantom section: Right Section

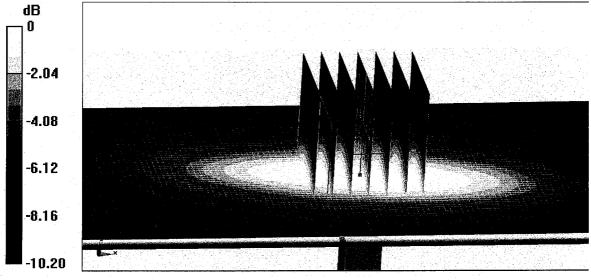
DASY5 Configuration:

 Probe: EX3DV4 - SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018

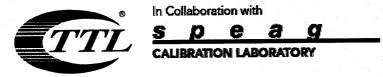
Date: 12.04.2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

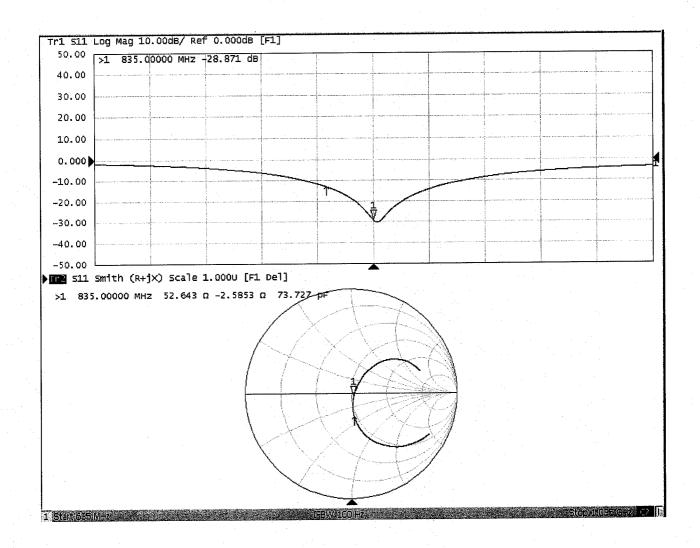
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 57.75 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 3.50 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.56 W/kg


Maximum value of SAR (measured) = 3.11 W/kg

0 dB = 3.11 W/kg = 4.93 dBW/kg

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.986$ S/m; $\varepsilon_r = 53.72$; $\rho = 1000$ kg/m³

Phantom section: Center Section

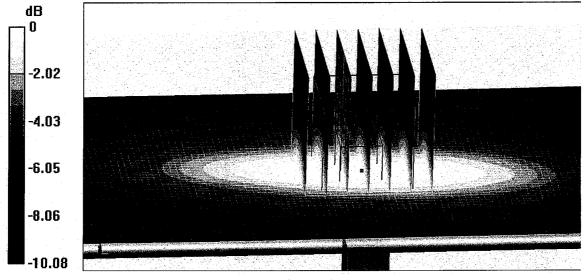
DASY5 Configuration:

Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018

Date: 12.04.2018

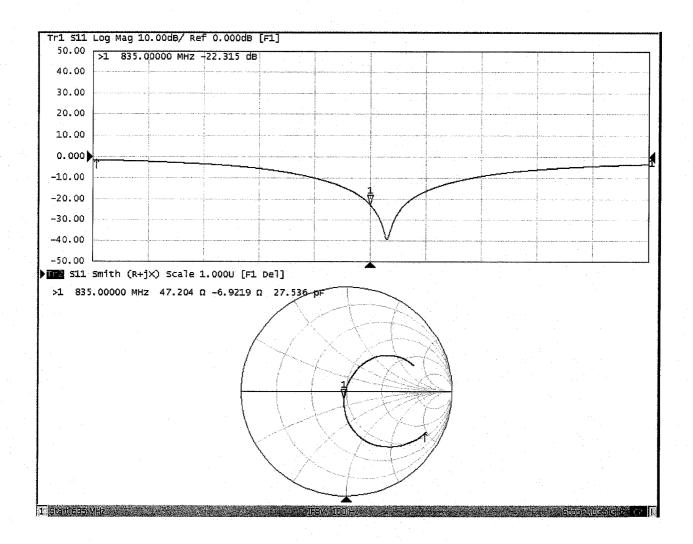
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 55.24 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.72 W/kg


SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.29 W/kg

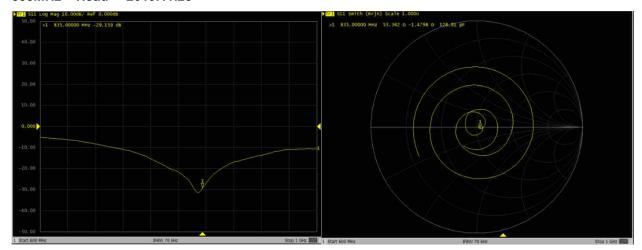
0 dB = 3.29 W/kg = 5.17 dBW/kg

Impedance Measurement Plot for Body TSL

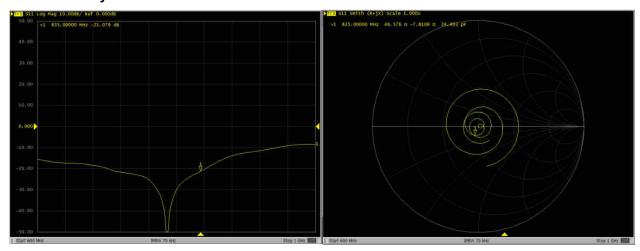
D835V2, Serial No. 4d162 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

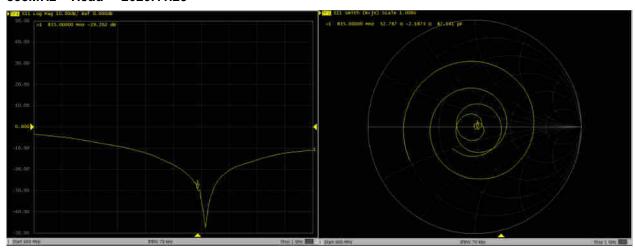
D835V2 – serial no. 4d162												
	835 Head					835 Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.12.5	-28.9		52.6		-2.56		-22.3		47.2		-6.92	
2019.11.25	-29.2	1.0	53.4	0.8	-1.48	1.08	-21.1	5.4	46.6	-0.6	-7.81	-0.89
2020.11.25	-29.3	1.4	52.8	0.2	-2.19	0.37	-22.6	1.3	47.7	0.5	-6.80	0.12


<Justification of the extended calibration>

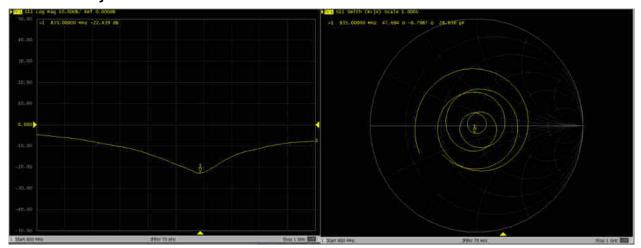
The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> 835V2, serial no. 4d162


835MHz - Head----2019.11.25

835MHz - Body----2019.11.25



835MHz - Head----2020.11.25

835MHz - Body----2020.11.25

in Collaboration with

CALIBRATION **CNAS L0570**

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z18-60258

PENARON OF THE BOANE

Object

D1750V2 - SN: 1137

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

July 30, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

	10.4	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards	ID#	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power Meter NRVD	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5		12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
Reference Probe EX3DV4	SN 7464	12-Sep-17(SPEAG,No.DAE4-1524_Sep17)	Sep-18
DAE4	SN 1524	13-Sep-17(SPEAG,No.DAE4-1024_00017)	•
		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Secondary Standards	ID#		Jan-19
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jail-13
11000000			

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: August 3, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60258

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 8 Certificate No: Z18-60258

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

SY system configuration, as far as	DASY52	52.10.1.1476
DASY Version	DASTOZ	
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Coom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were a	Temperature	Permittivity	Conductivity
LTOL moremotors	22.0 °C	40.1	1.37 mho/m
Nominal Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.33 mho/m ± 6 %
Measured Head TSL parameters			
Head TSL temperature change during test	11.0		

result with Head TSL	Condition	
SAR averaged over 1 cm^3 (1 g) of Head TSL	250 mW input power	8.91 mW / g
SAR measured		
SAR for nominal Head TSL parameters	normalized to 1W	36.5 mW /g ± 18.8 % (k=2
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
	250 mW input power	4.81 mW / g
SAR measured		19.5 mW /g ± 18.7 % (k=2
SAR for nominal Head TSL parameters	normalized to 1W	19.5 mer /g 1 10.1 /6 (1.

Body TSL parameters

The following parameters and calculations were applied.

he following parameters and calculations were	Temperature	Permittivity	Conductivity
TOL normators	22.0 °C	53.4	1.49 mho/m
Nominal Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.48 mho/m ± 6 %
Measured Body TSL parameters Body TSL temperature change during test			
Body TSL temperature change during toot			

result with Body TSL	1111	
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
	250 mW input power	9.17 mW / g
SAR measured	normalized to 1W	37.0 mW /g ± 18.8 % (k=2
SAR for nominal Body TSL parameters	Hormanzed to 144	
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
	250 mW input power	5.05 mW / g
SAR measured		20 2 12/ /= ± 40 7 9/ /k=2
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW /g ± 18.7 % (k=2

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

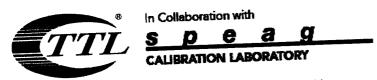
Impedance, transformed to feed point	50.3- 0.87 jΩ
	- 40.7 dB
Return Loss	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8Ω- 2.59 jΩ
	- 24.3 dB
Return Loss	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.087 ns
Electrical Delay (Crie direction)	


After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	SPEAG
Manufactured by	

Certificate No: Z18-60258 Page 4 of 8

http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.332$ S/m; $\epsilon r = 41.17$; $\rho = 1000$ kg/m³

Phantom section: Center Section

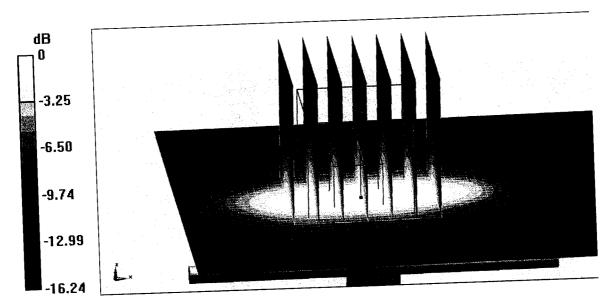
DASY5 Configuration:

Probe: EX3DV4 - SN7464; ConvF(8.7, 8.7, 8.7) @ 1750 MHz; Calibrated: 9/12/2017

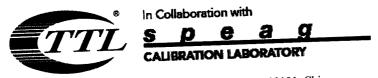
Date: 07.30.2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

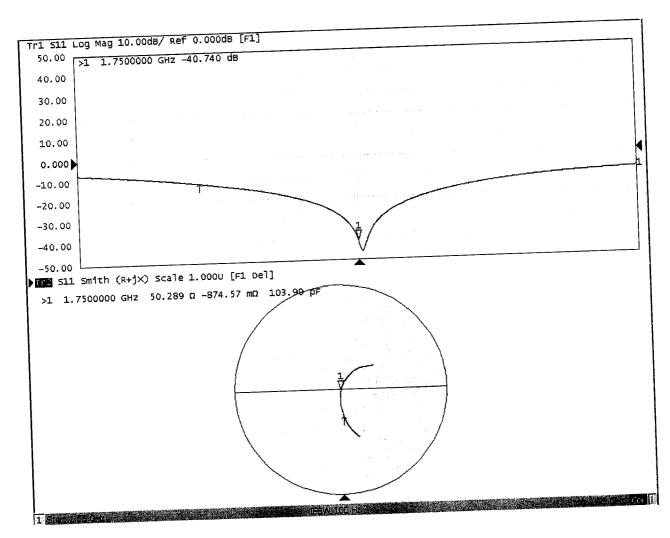
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

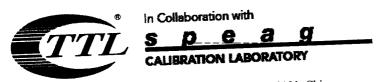

dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.50 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 8.91 W/kg; SAR(10 g) = 4.81 W/kg


Maximum value of SAR (measured) = 13.5 W/kg



0 dB = 13.5 W/kg = 11.30 dBW/kg

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.477$ S/m; $\epsilon r = 53.84$; $\rho = 1000$ kg/m³

Phantom section: Left Section

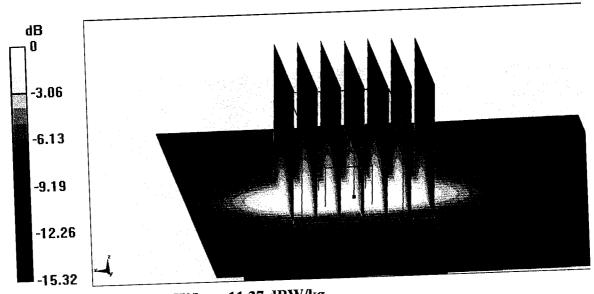
DASY5 Configuration:

Probe: EX3DV4 - SN7464; ConvF(8.6, 8.6, 8.6) @ 1750 MHz; Calibrated:

Date: 07.30.2018

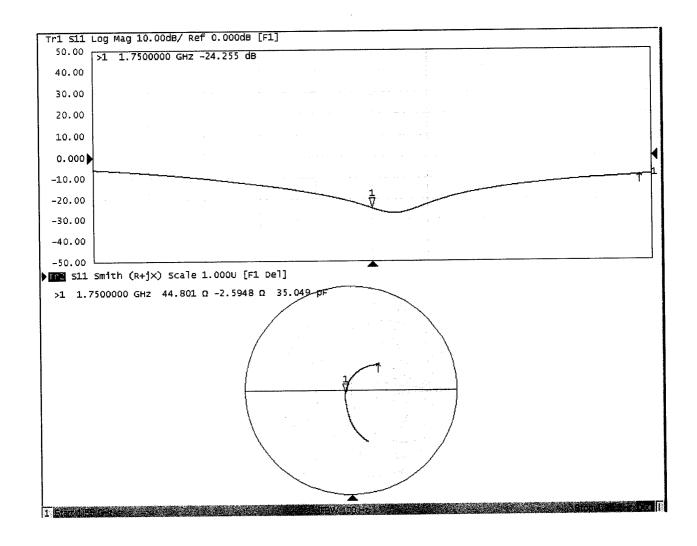
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.55 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.17 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 13.7 W/kg

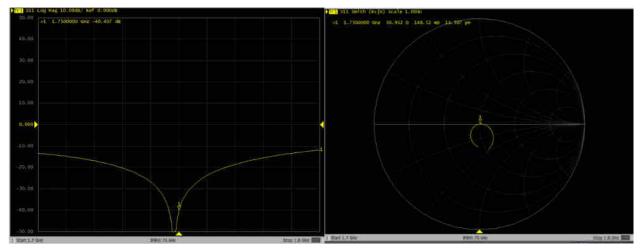
0 dB = 13.7 W/kg = 11.37 dBW/kg

Impedance Measurement Plot for Body TSL

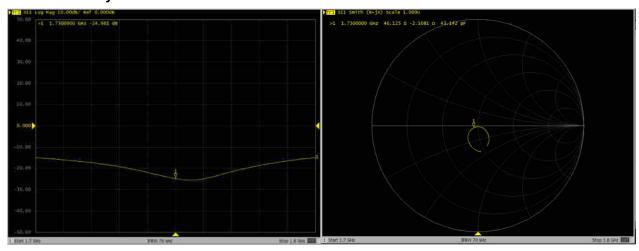
D1750V2, Serial No. 1137 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

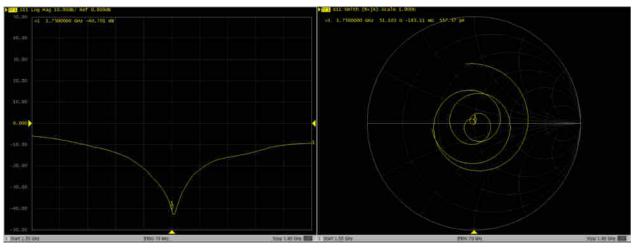
					D1750V2 – s	serial no.	1137					
1750 Head						1750 B	ody		•			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.7.30	-40.7		50.3		-0.87		-24.3		44.8		-2.59	
2019.7.23	-40.4	0.7	51	0.7	-0.15	0.72	-24.7	-1.6	46.1	1.3	-2.1	0.49
2020.7.23	-40.7	0	51.1	0.8	-0.16	0.71	24.8	-2.1	45.3	0.5	-2.86	-0.27


<Justification of the extended calibration>

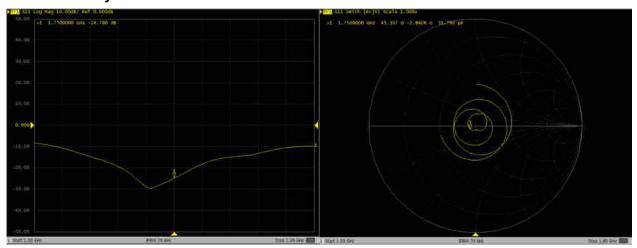
The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D1750V2, serial no. 1137


1750MHz - Head----2019.7.23

1750MHz - Body----2019.7.23



1750MHz - Head----2020.7.23

1750MHz - Body----2020.7.23

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

In Collaboration with

CALIBRATION LAB

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504

http://www.chinattl.cn

Client

Sporton

Certificate No:

Z18-60536

CANDERVATION CERTIFICATE

Object

D1900V2 - SN: 5d182

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 7, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	100596	Cal Date(Calibrated by, Certificate No.) 07-Mar-18 (CTTL, No.J18X01510) 07-Mar-18 (CTTL, No.J18X01510) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Mar-19 Mar-19 Aug-19 Aug-19
Secondary Standards	ID# MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Jan-19 Jan-19

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: December 10, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60536

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

lossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

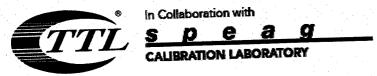
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:


Certificate No: Z18-60536

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far a	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity		
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m		
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.44 mho/m ± 6 %		
Head TSL temperature change during test	<1.0 °C				

SAR result with Head TSL

R result with Head TSL	D 100	
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.6 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
	250 mW input power	5.25 mW / g
SAR measured	normalized to 1W	20.7 mW /g ± 18.7 % (k=2)
SAR for nominal Head TSL parameters		

Body TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.56 mho/m ± 6 %	
Body TSL temperature change during test				

SAR result with Body TSL

result with Body TSL			
SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
	250 mW input power	10.2 mW / g	
SAR measured	normalized to 1W	39.9 mW /g ± 18.8 % (k=2)	
SAR for nominal Body TSL parameters	Horridized to		
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition		
	250 mW input power	5.31 mW / g	
SAR measured	normalized to 1W	20.9 mW /g ± 18.7 % (k=2)	
SAR for nominal Body TSL parameters	HOITHAILZEG TO TVV		

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1Ω+ 5.35jΩ
Return Loss	- 25.0dB
Return Loss	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9Ω+ 6.19jΩ
	- 24.0dB
Return Loss	

General Antenna Parameters and Design

- direction)	1.067 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

_		SPEAG
M	anufactured by	

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.441$ S/m; $\epsilon_r = 39.59$; $\rho = 1000$ kg/m³

Phantom section: Center Section

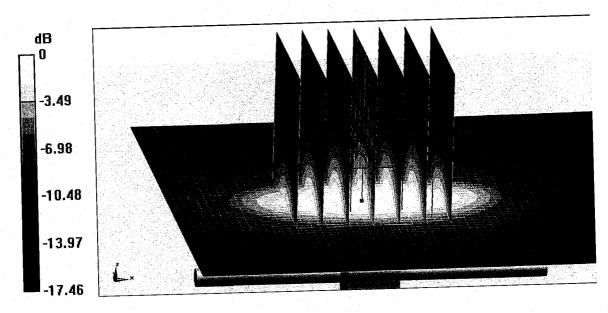
DASY5 Configuration:

Probe: EX3DV4 - SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018

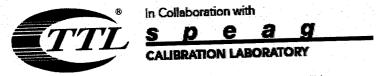
Date: 12.06.2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

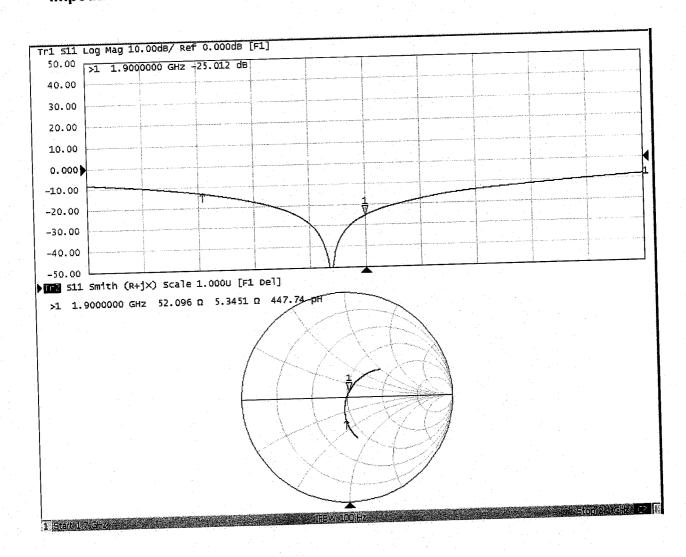
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

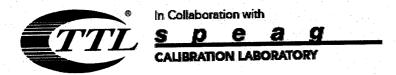

dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.91 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kg


Maximum value of SAR (measured) = 15.8 W/kg



0 dB = 15.8 W/kg = 11.99 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.564$ S/m; $\epsilon_r = 51.82$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

Certificate No: Z18-60536

 Probe: EX3DV4 - SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018

Date: 12.05.2018

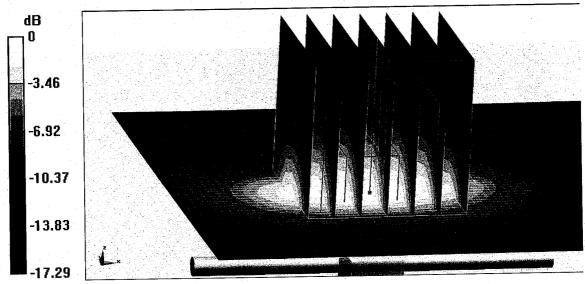
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1555; Calibrated: 8/20/2018

Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062

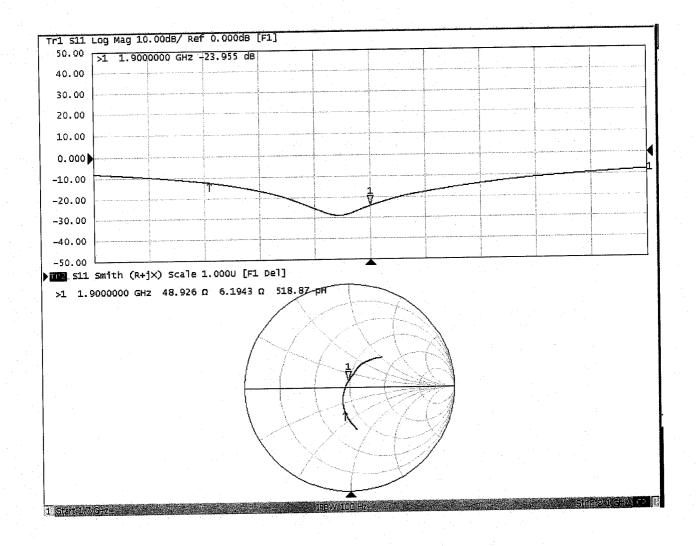
 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.9 W/kg


SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Impedance Measurement Plot for Body TSL

D1900V2, Serial No. 5d182 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D1900V2 – serial no. 5d182												
	1900 Head					1900 Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.12.7	-25		52.1		5.35		-24		48.9		6.19	
2019.11.25	-25.2	-0.8	53.9	1.8	5.15	-0.2	-24.2	-0.8	48.7	-0.2	5.93	-0.26
2020.11.25	-25.8	3.2	52.6	0.5	4.56	-0.79	-24.2	-0.8	49.6	0.7	6.11	-0.08

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.