FCC SAR Test Report

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

APPLICANT : Motorola Mobility LLC EQUIPMENT : Mobile Cellular Phone

BRAND NAME : Motorola MODEL NAME : XT2149-1

FCC ID : IHDT56ZW1

STANDARD : FCC 47 CFR Part 2 (2.1093)

We, Sporton International (Kunshan) Inc, would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Nick Hu / Supervisor

Approved by: Kat Yin / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 1 of 55 Form version. : 200414

SPORTON LAB. FCC SAR Test Report

Table of Contents

Report No. : FA141508-02

Issued Date: Jul. 28, 2021

Form version. : 200414

1. Statement of Compliance	4
2. Administration Data	4 5
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	
4.1 General Information	
4.1 General Information	 0
Maximum Tune-up Limit	
6. Proximity Sensor Triggering Test	
6.1 Proximity sensor triggering distances(Per KDB616217§6.2)	
7. RF Exposure Limits	
7.1 Uncontrolled Environment	
7.2 Controlled Environment	
8. Specific Absorption Rate (SAR)	
8.1 Introduction	
8.2 SAR Definition	
9. System Description and Setup	
9.1 E-Field Probe	
9.2 Data Acquisition Electronics (DAE)	
9.3 Phantom	
9.4 Device Holder	
10. Measurement Procedures	
10.1 Spatial Peak SAR Evaluation	
10.2 Power Reference Measurement	
10.3 Area Scan	
10.4 Zoom Scan	24
10.5 Volume Scan Procedures	24
10.6 Power Drift Monitoring	24
11. Test Equipment List	
12. System Verification	
12.1 Tissue Simulating Liquids	
12.2 Tissue Verification	
12.3 System Performance Check Results	
13. RF Exposure Positions	
13.1 Ear and handset reference point	
13.2 Definition of the cheek position	
13.3 Definition of the tilt position	
13.4 Body Worn Accessory	
13.5 Product Specific 10g SAR Exposure	
13.6 Wireless Router	
14. Conducted RF Output Power (Unit: dBm)	
15. Antenna Location	
16. SAR Test Results	
16.1 Head SAR	
16.2 Hotspot SAR	
16.4 Product Specific SAR	
17. Simultaneous Transmission Analysis	
17.1 Head Exposure Conditions	
17.1 Head Exposure Conditions	
17.3 Body-Worn Accessory Exposure Conditions	50 51
17.4 Product Specific Exposure Conditions	53
18. Uncertainty Assessment	
19. References	
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	
Annendix F. Conducted RF Output Power Table	

Revision History

Report No. : FA141508-02

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA141508-02	Rev. 01	Initial issue of report.	Jul. 16, 2021
FA141508-02	Rev. 02	Added 5G NR n78 SA and EN-DC combination: DC_5A-7A_n78A.	Jul. 28, 2021

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 3 of 55 Form version. : 200414

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Motorola Mobility LLC,

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

Mobile Cellular Phone, XT2149-1, are as follows.

	Highest 1g SAR Summary											
Equipment Frequency Class Band				(Sepa	ead aration nm)	Hotspot (Separation 5mm)	Body-worn (Separation 5mm)	Transmission				
							1g SAR (W/kg)	1g SAR (W/kg)			
Licensed		LTE Band 42		Band 42	0.	.99	0.97	0.86	1.50			
Licensed			n77/n78	0.38		0.49	0.49	1.50				
				Highest 10g	SAR S	ummar	У					
Equipme Class	Equipment Frequency					Produ	ct Specific 10g (Separation 0		Highest Simultaneous Transmission 10g SAR (W/kg)			
License	Licensed 5G NR n77/n78						1.36		2.41			
	Date of Testing:						2021/6	6/29~ 2021/6/	30			

Remark:

1. This device supports 5GNR n77 and n78, they have the same frequency, both 5GNR bands have the same target power, and the same transmission path; therefore, SAR was only assessed for 5GNR n77.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 4 of 55 Form version. : 200414

2. Administration Data

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FA141508-02

Testing Laboratory									
Test Firm	Sporton International (Kunshan) Inc.	Sporton International (Kunshan) Inc.							
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL: +86-512-57900158 FAX: +86-512-57900958								
Total Cita No	FCC Designation No.	FCC Test Firm Registration No.							
Test Site No.	CN1257	314309							

Applicant Applicant						
Company Name	Motorola Mobility LLC					
Address	222 W, Merchandise Mart Plaza, Chicago IL 60654 USA					

Manufacturer Manufacturer							
Company Name Motorola Mobility LLC							
Address	222 W, Merchandise Mart Plaza, Chicago IL 60654 USA						

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification									
Equipment Name	Mobile Cellular Phone								
Brand Name	Motorola								
Model Name	XT2149-1								
FCC ID	IHDT56ZW1								
IMEI Code	SIM1: 358869830066656 SIM2: 358869830066664								
Wireless Technology and Frequency Range	GSM850: 824 MHz ~ 849 MHz GSM1900: 1850 MHz ~ 1910 MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 2: 1850 MHz ~ 1755 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 38: 2570 MHz ~ 2665 MHz LTE Band 41: 2535 MHz ~ 2665 MHz LTE Band 66: 1710 MHz ~ 1780 MHz SG NR n5: 824 MHz ~ 849 MHz SG NR n6: 824 MHz ~ 849 MHz SG NR n6: 1710 MHz ~ 1780 MHz SG NR n6: 1710 MHz ~ 1780 MHz SG NR n7: 2500 MHz ~ 2570 MHz SG NR n6: 2500 MHz ~ 3550 MHz SG NR n7: 3450 MHz ~ 3550 MHz SG NR n78: 3450 MHz ~ 3550 MHz WLAN 2.4GHz Band: 5150 MHz ~ 2483.5 MHz WLAN 5.3GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.3GHz Band: 5735 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5735 MHz ~ 5720 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC: 13.56 MHz								
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+(16QAM uplink) LTE: QPSK, 16QAM, 64QAM 5G NR: CP-OFDM / DFT-s-OFDM, PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM WLAN 2.4GHz 802.11b/g/n HT20 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC:ASK								
HW Version	DVT2								
SW Version	RRS31.Q2								
GSM / (E)GPRS	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously								
Transfer mode	but can automatically switch between Packet and Circuit Switched Network.								
EUT Stage	Identical Prototype								
Remark:	71.								
1. 802.11n-HT40 is no	ot supported in 2.4GHz WLAN. 5600 MHz ~ 5650 MHz is notched.								

Report No. : FA141508-02

Issued Date: Jul. 28, 2021

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 6 of 55 Form version. : 200414

SPORTON LAB. FCC SAR Test Report

This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

- 4. This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications.
- This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only).
- 6. This device does not support DTM operation and supports GPRS/EGPRS mode up to multi-slot class 12.
- There are two different types of EUT, According to the difference, we chose sample 1 to perform full SAR testing.
- For dual SIM card mobile has two SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 slot to perform all tests.
- The device implements Proximity sensors/receiver detect mechanism/hotspot trigger reduced power for the power management for SAR compliance at different exposure conditions (head, body-worn, hotspot, extremity). The device will invoke corresponding work scenarios power level base on frequency bands/antennas, which can refer to appendix E power table.
- 10. For Some WWAN bands, sensor on reduced power level higher than hotspot reduced power level, so front/back sensor on SAR can represent hotspot conservatively.
- 11. For WLAN when transmit simultaneous with WWAN, power reduction will be activated to head / hotspot/ extremity. For WLAN when transmit simultaneous with WWAN and proximity sensors trigger, power reduction will be activated to body-worn.
- 12. There are three headsets, only supplier different, so only chose one headset to perform SAR testing.
- 13. The device has two batteries with the same battery capacity, only Manufacturer is different. We only chose battery 1 to perform full SAR testing.
- 14. For 5G NR test, using FTM (Factory Test Mode) to perform SAR with default 100% transmission.
- 15. 5G NR supports CP-OFDM and DFT-s-OFDM modulation, for DFT-s-OFDM power is higher than CP-OFDM, so only show DFT-s-OFDM power table and chose DFT-s-OFDM to perform SAR testing.
- 16. For DFT-s-OFDM and CP-OFDM output power measurement reduction, according to 38.101 maximum power reduction for the CP-OFDM mode will not higher than DFT-s-OFDM mode, therefore, CP-OFDM measurement is unnecessary.
- 17. 5G NR NSA EN-DC mode, standalone SAR performed for 5GNR band with the maximum power, EN-DC SAR summed 5GNR standalone SAR and LTE standalone SAR, the result of EN-DC SAR is more conservatively.
- NSA and SA mode should perform SAR separately. For the maximum power of NSA mode is the same as SA total power level, so NSA SAR can represent SA mode SAR.
 SG NR NSA mode, the power level is the same as SGNR SA mode, so 5GNR NSA mode and SA mode power table
- only show one time.
- 20. This device supports 5GNR FR1 bands as following table, including NSA mode and SA mode.
- 21. This is a variant report, for model change note, please refer to the Operation Description exhibit submitted. Based on the similarity between two models, based on SW enable 5G NR FR1 n78 SA and added LTE Band 42, 5G NR FR1 n77/ n78(3450 MHz ~ 3550 MHz) for full SAR testing, for co-located SAR analysis, some cellular bands and WLAN/Bluetooth SAR test results are leverage from original report which can be referred to Sporton Report Number FA141508.

<5G NR>

Mode	Band Duplex		SCS(KHz)	Bandwidths(BW)
	n5	FDD	15	5, 10, 15, 20
	n7	FDD	15	5, 10, 15, 20
NSA	n66	FDD	15	5, 10, 15, 20, 40
	n77	TDD	30	10, 15, 20, 40, 50, 60, 70, 80, 90, 100
	n78	TDD	30	10, 15, 20, 40, 50, 60, 70, 80, 90, 100
SA	n78	TDD	30	10, 15, 20, 40, 50, 60, 70, 80, 90, 100

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: IHDT56ZW1 Form version. : 200414 Page 7 of 55

4.2 General LTE SAR Test and Reporting Considerations

Summarize	d necessary ite	ms addres	sed in KD	B 94122	25 D05 v02	2r05		
FCC ID	IHDT56ZW1							
Equipment Name	Mobile Cellular	Phone						
Operating Frequency Range of each LTE transmission band	LTE Band 2: 18 LTE Band 4: 17 LTE Band 5: 82 LTE Band 7: 25 LTE Band 12: 6 LTE Band 13: 7 LTE Band 17: 7 LTE Band 26: 8 LTE Band 38: 2 LTE Band 41: 2 LTE Band 42: 3	10 MHz ~ 84 44 MHz ~ 84 500 MHz ~ 2 599 MHz ~ 7 77 MHz ~ 7 104 MHz ~ 8 1570 MHz ~ 8 1535 MHz ~ 8 1450 MHz ~ 8	755 MHz 19 MHz 2570 MHz 716 MHz 787 MHz 716 MHz 349 MHz 2620 MHz 2655 MHz 3550 MHz					
Channel Bandwidth	LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 13: 5MHz, 10MHz LTE Band 17: 5MHz, 10MHz LTE Band 26:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 42: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz							
uplink modulations used	QPSK / 16QAM		12, 01111 12,	10111112,	10111112, 20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
LTE Voice / Data requirements	Voice and Data							
LTE Release Version	R18, Cat13							
CA Support	Supported, Upli	ink and Dov	vnlink					
LTE MPR permanently built-in by design	QPSK 16 QAM 16 QAM 64 QAM 64 QAM 256 QAM	1.4 MHz > 5 ≤ 5 > 5 ≤ 5 > 5	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4	5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8	nsmission 10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 ≥ 12 ≥ 12	bandwidth (15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	NRB) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5
LTE A-MPR	In the base standisable A-MPR frames (Maximu A properly co	during SA um TTI)	R testing	and the	LTE SAR	tests was	transmittir	ng on all TTI
Spectrum plots for RB configuration	measurement; to not included in	therefore, s the SAR re	pectrum plo port.	ots for e	ach RB all	ocation and	offset conf	figuration are
Power reduction applied to satisfy SAR compliance	Yes, head/body detail please re			ty will tri	gger reduc	ed power fo	or some LT	E bands, the
LTE Carrier Aggregation Combinations	Inter-Band and referred to sect	Intra-Band		ombina	tions and t	he detail po	ower verific	cation please
LTE Carrier Aggregation Additional Information	1. This device component cal evaluated per F 2. This device s Additional follor MIMO, eICI, N SC-FDMA.	rriers in the CC Guidar supports mawing LTE	e uplink. ice. eximum of 2 Release fea	SAR M 2 carrier atures a	easurements in the do	nts and co wnlink and oported: Re	onducted p 2 carriers i elay, HetNe	n the uplink. et, Enhanced

Report No. : FA141508-02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 8 of 55 Form version. : 200414

			Transm	ission (H, I	M, L) char	nel numbe	rs and fred	quencies	in each LTE	band			
						LTE Ba	ind 2						
	Bandwidtl	h 1.4 MHz	Bandwid	th 3 MHz	Bandwi	dth 5 MHz	Bandwidt	h 10 MHz	Bandwidt	h 15 MHz	Bandwidt	h 20 MHz	
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	
L	18607	1850.7	18615	1851.5	18625	1852.5	18650	1855	18675	1857.5	18700	1860	
M	18900	1880	18900	1880	18900	1880	18900	1880	18900	1880	18900	1880	
Н	19193	1909.3	19185	1908.5	19175	1907.5	19150	1905	19125	1902.5	19100	1900	
						LTE Ba							
	Bandwidtl		Bandwid	th 3 MHz	Bandwi	dth 5 MHz	Bandwidt		Bandwidt	h 15 MHz	Bandwidt	h 20 MHz	
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	
L	19957	1710.7	19965	1711.5	19975	1712.5	20000	1715	20025	1717.5	20050	1720	
М	20175	1732.5	20175	1732.5	20175	1732.5	20175	1732.5	20175	1732.5	20175	1732.5	
Н	20393	1754.3	20385	1753.5	20375	1752.5	20350	1750	20325	1747.5	20300	1745	
						LTE Ba							
		dwidth 1.4			ndwidth 3			ndwidth 5			dwidth 10		
	Ch. #		eq. (MHz)	Ch. #		eq. (MHz)	Ch. #		req. (MHz)	Ch. #		eq. (MHz)	
L	20407		824.7	20415		825.5	20425		826.5	20450		829	
M	20525		836.5	20525		836.5	20525		836.5	20525		836.5	
Н	20643	3	848.3	20635)	847.5	20625		846.5	20600)	844	
	D	. J. Zaki e	N 41 1	D	de date 40	LTE Ba		alia dalah da	- NALL-	D	dwidth 20 l	V 41 1—	
		ndwidth 5		Ch. #	ndwidth 10 MHz Freq. (MHz)		Bandwidth 15 M Ch. # Freq						
L	Ch. #		eq. (MHz) 2502.5	20800		2505	_		req. (MHz)	2507.5 20850		eq. (MHz) 2510	
М	21100		2535	21100		2535	21100			21100		2535	
Н	21425		2567.5	21400		2565	_		2562.5	21350		2560	
	21420	,	2307.3	21400	,	LTE Ba		,	2302.3	21330	,	2300	
	Ran	dwidth 1.4	l MHz	Bar	ndwidth 3			ndwidth 5	MHz	Ban	dwidth 10 l	MHz	
	Ch. #		eq. (MHz)	Ch. #		eq. (MHz)			req. (MHz)	Ch. #		eq. (MHz)	
L	23017		699.7	23025		700.5	23035		701.5	23060		704	
M	23095		707.5	23095		707.5	23095		707.5	23095		707.5	
Н	23173		715.3	23165		714.5	23155		713.5	23130		711	
						LTE Ba	nd 13						
			Bandwid	lth 5 MHz					Bandwidt	h 10 MHz			
		Channel	#		Freq.(MHz	<u>z)</u>		Channel	#		Freq.(MHz)	
L		23205			779.5								
М		23230			782			23230			782		
Н		23255			784.5								
						LTE Ba	nd 17						
			Bandwid	th 5 MHz					Bandwidt	h 10 MHz			
		Channel	#		Freq.(MHz	<u>z)</u>		Channel	#		Freq. (MHz)	
L		23755			706.5			23780			709		
M		23790			710			23790			710		
Н	H 23825				713.5		23800			711			

Report No. : FA141508-02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page 9 of 55

	LTE Band 26												
	Bandwidth 1.4 MHz Band			dwidth 3 MHz Bandwidth 5 MH			z Bandwidth 10 MHz			Bandwidth 15 MHz			
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)			
L	26697	814.7	26705	815.5	26715	816.5	26740	819	26765	821.5			
М	26865	831.5	26865	831.5	26865	831.5	26865	831.5	26865	831.5			
Н	27033	848.3	27025	847.5	27015	846.5	26990	844	26965	841.5			
	LTE Band 38												
	Band	width 5 MHz		Bandwidt	h 10 MHz	Bandwidth 15 MHz			Bandwidt	h 20 MHz			
	Ch. #	Freq. (I	MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (N	ИHz)	Ch. #	Freq. (MHz)			
L	37775	2572	2.5	37800	2575	37825	2577	.5	37850	2580			
М	38000	259	5	38000	2595	38000	259	5	38000	2595			
Н	38225	2617	7.5	38200	2615	38175		2612.5		2610			
					LTE Band	41							
	Band	width 5 MHz		Bandwidt	h 10 MHz	Bandw	idth 15 MHz		Bandwidth 20 MHz				
	Ch. #	Freq. (I	MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (N	ИHz)	Ch. #	Freq. (MHz)			
L	40065	2537	7.5	40090	2540	40115	2542	.5	40140	2545			
LM	40385	2569	69.5 40390 2570 40395 2570.5		.5	40400	2571						
НМ	40705	2601	.5	40690	2600	40685	2599	.5	40670	2598			
Н	41215	2652	2.5	41190	2650	41165	2647	.5	41140	2645			

Report No. : FA141508-02

Issued Date : Jul. 28, 2021

	LTE Band 42													
	Bandwidth 5 MHz		Bandwidt	h 10 MHz	Bandwidt	h 15 MHz	Bandwidth 20 MHz							
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)						
L	42115	3452.5	42140	3455	42165	3457.5	42190	3460						
М	42590	3500	42590	3500	42590	3500	42590	3500						
Н	43065	3547.5	43040	3545	43015	3542.5	42990	3540						

						LTE Band	d 66					
	Bandwidth	1.4 MHz	Bandwid ⁻	th 3 MHz	Bandwid	th 5 MHz	Bandwidt	h 10 MHz	Bandwidt	h 15 MHz	Bandwidth	20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	131979	1710.7	131987	1711.5	131997	1712.5	132022	1715	132047	1717.5	132072	1720
М	132322	1745	132322	1745	132322	1745	132322	1745	132322	1745	132322	1745
Н	132665	1779.3	132657	1778.5	132647	1777.5	132622	1775	132597	1772.5	132572	1770

		5G NR	R Information									
	5G NR n5 :	824 MHz ~ 84	9 MHz									
Operating Frequency Range of each		2500 MHz ~ 25										
5G NR transmission band	5G NR N66:	1710 MHz ~ 1										
30 WY transmission band		3450 MHz ~ 3										
		3450 MHz ~ 3			0 MHz							
		MHz, 10MHz,	•									
		5MHz, 10MHz,										
Channel Bandwidth		5MHz, 10MH;			001411- 701411	- 001411- 0	0MI - 400MI -					
							OMHz, 100MHz					
SCS		10MHZ, 15MF 5KHz. TDD: S		IMHZ, 50MHZ,	60MHZ, 70MH	z, 80MHz, 9	OMHz, 100MHz					
303		M: PI/2 BPSK		AM / 640 AM	A DECO A M							
uplink modulations used		QPSK / 16QAN			ZOOQAIVI							
A-MPR (Additional MPR) disabled		JESK / TOWAN	// / 04QAIVI / 23	JUQAIVI								
for SAR Testing?	res											
LTE Anchor Bands for n5	LTE B7											
LTE Anchor Bands for n7	LTE B5/66											
LTE Anchor Bands for n66	LTE B7											
LTE Anchor Bands for n77	LTE B41											
LTE Anchor Bands for n78	LTE B5/7/38	3/66										
Transmiss	ion (H, M, L)	channel num	bers and free	quencies in e	ach 5G NR bai	nd						
			R Band 5									
Bandwidth 5MHz	Bandwidth			lwidth 15MHz		Bandwidth						
		Freq. (MHz)	Ch. #	Freq. (Ch. #	Freq. (MHz)					
	55800	829	166300	831		6800	834					
	67300	836.5	167300	836		57300	836.5					
H 169300 846.5 16	68800	844	168300	841	.5 16	37800	839					
D 1 : 111			R Band 7			5	001411					
Bandwidth 5MHz	Bandwidth			lwidth 15MHz	NALL-)	Bandwidth						
		Freq. (MHz)	Ch. #	Freq. (Ch. #	Freq. (MHz)					
	01000	2505	501500	250		2000	2510					
	07000	2535	507000	253		7000	2535					
H 513500 2567.5 51	13000	2565	512500	2562	2.5 51	2000	2560					
			R Band 66									
	th 10MHz	Bandwidt	th 15MHz	Bandwid	th 20MHz	Bandwi	dth 40MHz					
Ch. # Freq. Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)					
Ch. # (MHz) Ch. #												
L 342500 1712.5 343000	1715	343500	1717.5	344000	1720	346000	1730					
(IVIHZ)	1715 1745	343500 349000	1717.5 1745	344000 349000	1720 1745	346000 349000	1730 1745					

Report No. : FA141508-02

										NR Bar	nd 77									
	10MHz 15MHz 20M				dwidth MHz	Bandy 40M			lwidth ИНz		lwidth ИНz	Bandy 70M			lwidth ∕IHz		lwidth ИНz	Bandv 100N		
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	647000	3705	647168	3707.52	647334	3710.01	648000	3720	648334	3725.01	648668	3730.02	649000	3735	649334	3740.01	649668	3745.02	650000	3750
N	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840
Н	665000	3975	664834	3972.51	664668	3970.02	664000	3960	663668	3955.02	663334	3950.01	663000	3954	662668	3940.02	662334	3935.01	662000	3930

										. ID D	.=0									
										NR Bai	nd /8									
	Band	vidth	Band	lwidth	Band	lwidth	Bandv	vidth	Band	lwidth	Band	lwidth	Bandv	vidth	Band	lwidth	Band	lwidth	Bandv	vidth
	10M	Hz	151	ИHz	201	ИHz	40M	Hz	501	ИHz	601	ЛHz	70M	Hz	108	ИHz	901	ИHz	100N	1Hz
	Ch. #	Freq. (MHz)																		
L	647000	3705	647168	3707.52	647334	3710.01	648000	3720	648334	3725.01	648668	3730.02	64900	3735	649334	3740.01	649668	3745.02		
N	650000	3750	650000	3750	650000	3750	650000	3750	650000	3750	650000	3750	650000	3750	650000	3750	650000	3750	650000	3750
Н	653000	3795	652834	3792.51	652668	3790.02	652000	3780	651668	3775.02	651334	3770.01	651000	3765	650668	3760.02	650334	3755.01		

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page 11 of 55

For 3450 MHz ~ 3550 MHz

	1 01	J - 100	1011 12	00	JU IVII	14														
										NR Bai	nd 77									
	Band	dwidth	Band	dwidth	Band	width	Band	width	Band	dwidth	Band	dwidth	Band	width	Banc	lwidth	Band	width	Band	lwidth
	101	ИНz	151	MHz	201	ЛHz	401	ЛHz	501	ИHz	601	ИНz	70N	ЛHz	801	ИHz	901	ЛHz	100	MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	630334	3455.01	630550	3457.5	630668	3460.02	631334	3470.01	631668	3475.02	632000	3480	632334	3485.01	632668	3490.02	633000	3495		
M	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01
Н	636332	3544.98	636166	3542.49	636000	3540	635332	3529.98	635000	3525	634666	3519.99	634332	3514.98	634000	3510	633666	3504.99		

Report No. : FA141508-02

Issued Date : Jul. 28, 2021

_																						
											NR Bar	nd 78										
	Band	dwidth	Band	lwidth	Band	lwidth	Band	lwidth	Band	width	Band	width	Band	lwidth	Band	width	Band	width	Band	width	Band	dwidth
	101	MHz	151	ИHz	201	ИHz	301	ИHz	401	ЛHz	501	ИHz	601	ЛHz	701	ЛHz	80N	ИHz	901	ЛHz	100	MHz
	Ch. #	Freq. (MHz)																				
L	630334	3455.01	630550	3457.5	630668	3460.02	631000	3465	631334	3470.01	631668	3475.02	632000	3480	632334	3485.01	632668	3490.02	633000	3495		
M	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01	633334	3500.01
H	636332	3544.98	636166	3542.49	636000	3540	635666	3534.99	635332	3529.98	635000	3525	634666	3519.99	634332	3514.98	634000	3510	633666	3504.99		

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 12 of 55 Form version. : 200414

5. Maximum Tune-up Limit

<WWAN Tune-up Limit>

1. For some cellular band, the device has four WWAN Tx antennas, the antenna selection is based on the connection quality condition, and only one antenna will transmit at a time.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

- 2. The device implements the power management and sensor detection for SAR compliance at different exposure conditions (head, body-worn, hotspot, extremity) and the device will manage to ensure the power level not exceeding the associated power table. Details about the power management decision and sensor detection are provided in the operational description.
- 3. Below table shows maximum tune up output power configured for this EUT for various transmit conditions by manufacturer, and the detail power measurement and tune-up limit refer to appendix E.

		Default	F	lead	Bod	ly worn	Ho	otspot	Har	ndheld
TX. freq.	Ant	max. tune up limit	max. tune up limit	power reduction (dB)	max. tune up limit	power reduction (dB)	max. tune up limit	power reduction (dB)	max. tune up limit	power reduction (dB)
LTE Band42	Ant 5	24.00	16.00	8.00	21.00	3.00	21.00	3.00	21.00	3.00
FR1_N77-Only For ENDC	Ant 5	24.00	14.00	10.00	17.00	7.00	16.50	7.50	18.50	5.50
FR1_N78	Ant 5	24.00	14.00	10.00	17.00	7.00	16.50	7.50	18.50	5.50

TEL: +86-512-57900158 / FAX: +86-512-57900958

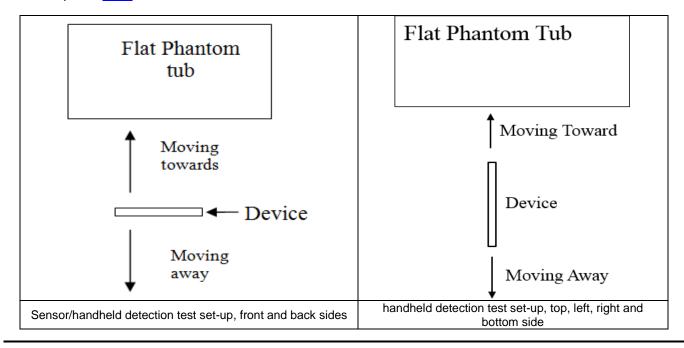
FCC ID : IHDT56ZW1 Page 13 of 55 Form version. : 200414

6. Proximity Sensor Triggering Test

6.1 Proximity sensor triggering distances(Per KDB616217§6.2)

Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed and the tissue-equivalent medium for highest frequency (5825MHz) and lowest (850MHz) frequency was used for proximity sensor triggering testing.

Report No.: FA141508-02


- 2. Capacitive proximity sensor placed coincident with antenna elements at the bottom end of the phone are utilized to determine when the device comes in proximity of the user's body at the front or back or bottom side of the device. There is no need to do sensor coverage testing for the proximity sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the proximity sensor entirely covers the antenna.
- 3. When the proximity sensor is active, GSM850/1900, WCDMA band II/IV/V, LTE band 2/4/5/7/26/66/38/41/42, 5GNR n5/n7/n66 /n77/n78 and WLAN2.4GHz/5.2GHz/5.3GHz/5.5GHz/5.8GHz reduced power will be active for front or back body worn SAR.
- P-sensor can detect handheld state, WCDMA II/IV, LTE band 2/4/5/7/66/38/41/42, 5GNR n7/n66/n77/78 for front/back/bottom/top/right/left sides of product specific 10g SAR condition reduced powers will be active for handheld SAR.
- 5. The proximity sensors used to detect the proximity of the user's body at the front or back or bottom side of the device use a detection threshold distance. The data shown in the sections below shows the distance(s).
- 6. For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance was performed for body worn:

Front: 13 mm Back: 19 mm

For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance was performed for handheld:

Front: 10 mm Back: 16 mm Bottom side: 13 mm

For ANT1 Front: 6 mm Back: 14 mm For ANT4 Top side: 14 mm For ANT5 Top side: 7 mm

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 14 of 55 Form version. : 200414

<P-Sensor>

Report No. : FA141508-02

Issued Date: Jul. 28, 2021

	Proximi	ty Sensor Triggering Distand	ce (mm)	
Docition	Fro	ont	Ba	ick
Position	Moving towards	Moving away	Moving towards	Moving away
Minimum	14	16	20	26

<har>
<handheld for ANT0></hr></br>

	Fre	ont	Ва	ıck	Botton	n Side	Right	Side
Position	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away
Minimum	11	13	17	19	14	19	5	8

	Fro	ont	Ва	ick	Botton	n Side	Left	Side
Position	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away
Minimum	7	11	15	19	11	15	11	16

< Handheld for ANT4>

	Fre	ont	Ва	ick	Top S	Side	Left	Side
Position	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away
Minimum	10	12	14	17	15	19	5	9

< Handheld for ANT5>

Position	Fro	ont	Ва	ck	Top S	Side
FUSITION	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away
Minimum	6	8	6	9	8	10

< Handheld for ANT6>

Position	Front		Back		Top S	Side	Right Side	
	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away
Minimum	10	12	11	16	14	17	8	12

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 15 of 55 Form version. : 200414

7. RF Exposure Limits

7.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

7.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles			
0.4	8.0	20.0			

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 16 of 55 Form version. : 200414

8. Specific Absorption Rate (SAR)

8.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

8.2 SAR Definition

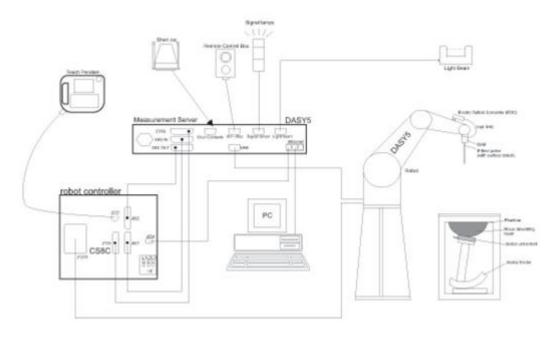
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 17 of 55 Form version. : 200414

9. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA141508-02

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page 18 of 55

9.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm

Report No.: FA141508-02

9.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

Issued Date: Jul. 28, 2021

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 19 of 55 Form version. : 200414

9.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 20 of 55 Form version. : 200414

9.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 21 of 55 Form version. : 200414

10. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA141508-02

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

10.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

10.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 23 of 55 Form version. : 200414

10.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA141508-02

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·∆z	Z _{Oom} (n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

10.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Sporton International (Kunshan) Inc.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

11. Test Equipment List

Managartanan	Name of Engineers	Towns (Manufacture)	Osais I November	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	3500MHz System Validation Kit	D3500V2	1037	2020/11/25	2021/11/24	
SPEAG	Data Acquisition Electronics	DAE4	1358	2021/4/26	2022/4/25	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3935	2021/4/29	2022/4/28	
SPEAG	SAM Twin Phantom	SAM Twin	TP-1697	NCR	NCR	
Testo	Hygrometer	608-H1	1241332102	2021/1/7	2022/1/6	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
Anritsu	Radio Communication Analyzer	MT8821C	6201432831	2021/4/13	2022/4/12	
Agilent	ENA Series Network Analyzer	E5071C	MY46106933	2020/8/1	2021/7/31	
SPEAG	Dielectric Probe Kit	DAK-3.5	1144	2020/12/2	2021/12/1	
Anritsu	Vector Signal Generator	MG3710A	6201682672	2021/1/7	2022/1/6	
Rohde & Schwarz	Power Meter	NRVD	102081	2020/8/13	2021/8/12	
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2020/8/13	2021/8/12	
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2020/8/13	2021/8/12	
EXA	Spectrum Analyzer	FSV7	101632	2021/1/7	2022/1/6	
FLUKE	DIGITAC THERMOMETER	51II	97240029	2020/8/14	2021/8/13	
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	Note 1		
Agilent	Dual Directional Coupler	11691D	MY48151020	No	te 1	
ARRA	Power Divider	A3200-2	N/A	No	te 1	
MCL	Attenuation1	BW-S10W5+	N/A	Note 1		
MCL	Attenuation2	BW-S10W5+	N/A	No	te 1	
MCL	Attenuation3	BW-S10W5+	N/A	Note 1		

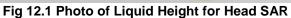
Report No.: FA141508-02

Issued Date: Jul. 28, 2021

Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check
- 2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

TEL: +86-512-57900158 / FAX: +86-512-57900958


FCC ID : IHDT56ZW1 Page 25 of 55 Form version. : 200414

12. System Verification

12.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 12.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 12.2.

Report No. : FA141508-02

Fig 12.2 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page 26 of 55

12.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA141508-02

Issued Date: Jul. 28, 2021

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)		
For Head										
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9		
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5		
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0		
2450	55.0	0	0	0	0	45.0	1.80	39.2		
2600	54.8	0	0	0.1	0	45.1	1.96	39.0		

<Tissue Dielectric Parameter Check Results>

11.000.0										
Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)			$\begin{array}{c} \text{Conductivity} \\ \text{Target } (\sigma) \end{array} \begin{array}{c} \text{Permittivity} \\ \text{Target } (\epsilon_r) \end{array}$		Delta (ε _r) (%)	Limit (%)	Date
3500	Head	22.6	2.795	38.942	2.91	37.90	-3.95	2.75	±5	2021/6/29
3500	Head	22.7	2.826	39.043	2.91	37.90	-2.89	3.02	±5	2021/6/30

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 27 of 55 Form version. : 200414

12.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

<1g SAR>

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2021/6/29	3500	Head	50	1037	3935	1358	3.24	68.00	64.8	-4.71
2021/6/30	3500	Head	50	1037	3935	1358	3.27	68.00	65.4	-3.82

<10g SAR>

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2021/6/29	3500	Head	50	1037	3935	1358	1.23	25.40	24.6	-3.15
2021/6/30	3500	Head	50	1037	3935	1358	1.23	25.40	24.6	-3.15

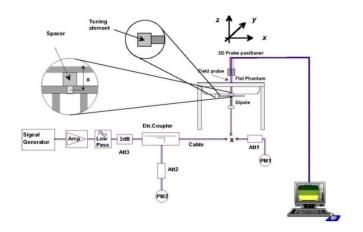


Fig 12.3.1 System Performance Check Setup

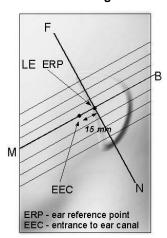
Report No.: FA141508-02

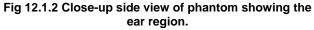
Fig 12.3.2 Setup Photo

Issued Date: Jul. 28, 2021

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 28 of 55 Form version. : 200414


13. RF Exposure Positions


13.1 Ear and handset reference point

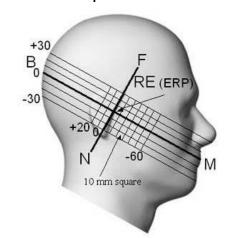

Figure 12.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 12.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 12.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 12.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

Fig 12.1.1 Front, back, and side views of SAM twin phantom

Report No.: FA141508-02

Fig 12.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Issued Date: Jul. 28, 2021

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 29 of 55 Form version. : 200414

13.2 Definition of the cheek position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 12.2.1 and Figure 12.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 12.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 12.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 12.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 12.2.3. The actual rotation angles should be documented in the test report.

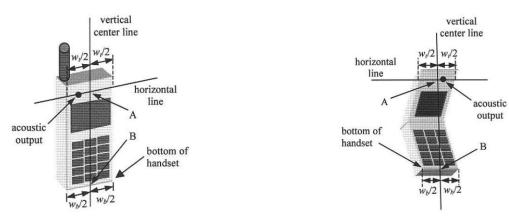
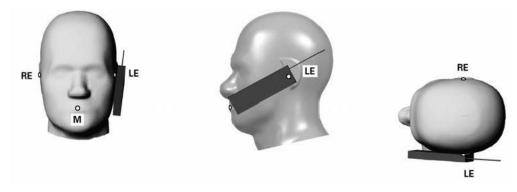


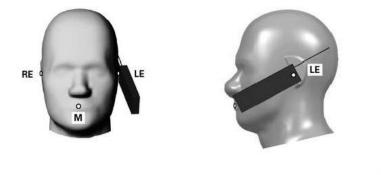
Fig 12.2.1 Handset vertical and horizontal reference lines—"fixed case

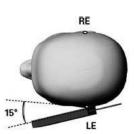
Fig 12.2.2 Handset vertical and horizontal reference lines—"clam-shell case"

Issued Date: Jul. 28, 2021

Report No.: FA141508-02




Fig 12.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.


TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 30 of 55 Form version. : 200414

13.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 12.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Issued Date: Jul. 28, 2021

Report No.: FA141508-02

Fig 12.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 31 of 55 Form version. : 200414

13.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 12.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

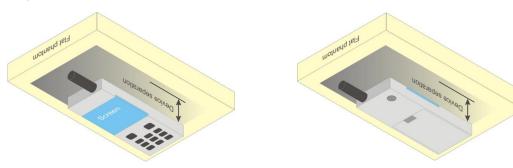


Fig 12.4 Body Worn Position

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 32 of 55 Form version. : 200414

13.5 Product Specific 10g SAR Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

- 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- 2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

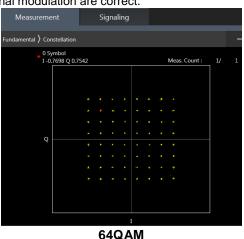
13.6 Wireless Router

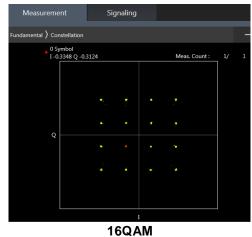
Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: IHDT56ZW1 Page 33 of 55 Form version.: 200414


14. Conducted RF Output Power (Unit: dBm)


The detailed conducted power table can refer to Appendix E.

<LTE Conducted Power>

General Note:

- Anritsu MT8821C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM/64QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM/64QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. According to 2017 TCB workshop, for 64 QAM and 16 QAM should be verified by checking the signal constellation with a call box to avoid incorrect maximum power levels due to MPR and other requirements associated with signal modulation, and the following figure is taken from the "Fundamental Measurement >> Modulation Analysis >> constellation" mode of the device connect to the MT8821C base station, therefore, the device 64QAM and 16QAM signal modulation are correct.

Issued Date: Jul. 28, 2021

Report No.: FA141508-02

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 34 of 55 Form version. : 200414

<TDD LTE SAR Measurement>

TDD LTE configuration setup for SAR measurement

SAR was tested with a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by 3GPP.

- a. 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations
- b. "special subframe S" contains both uplink and downlink transmissions, it has been taken into consideration to determine the transmission duty factor according to the worst case uplink and downlink cyclic prefix requirements for UpPTS

Report No.: FA141508-02

c. Establishing connections with base station simulators ensure a consistent means for testing SAR and recommended for evaluating SAR. The Anritsu MT8820C (firmware: #22.52#004) was used for LTE output power measurements and SAR testing.

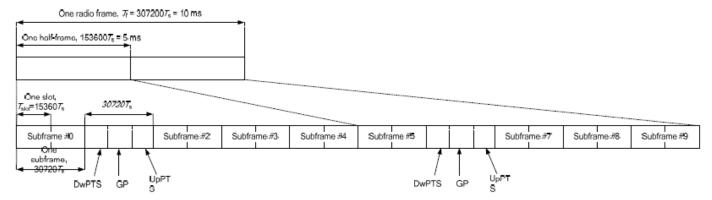


Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink	Downlink-to-Uplink		Subframe number								
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	О	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special subframe Norr		I cyclic prefix i	n downlink	Extended cyclic prefix in downlink				
configuration DwPTS		Up	PTS	DwPTS	UpPTS			
		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		
0	6592 · T _s			7680 · T _s				
1	19760 ⋅ T _s			20480 · T _s	2192 · T _e	2560 · T _s		
2	21952 · T _s	$2192 \cdot T_{\rm s}$	$2560 \cdot T_s$	23040 · T _s	2192·1 ₈			
3	24144 · T _s			25600 · T _s				
4	26336·T _s			7680 · T _s				
5	6592 · T _s			20480 ⋅ T _s	4384 · T _e	5120 · T₂		
6	19760 ⋅ T _s			23040 · T _s	4304.1 ₈	3120 · 1 _S		
7	21952 · T _s	4384 ⋅ <i>T</i> _s	5120 · <i>T</i> _s	12800 · T _s				
8	24144· <i>T</i> _s			-	-	-		
9	13168 · T _s			-	-	-		

Sporton International (Kunshan) Inc.

FCC ID: IHDT56ZW1 Page 35 of 55 Form version.: 200414

Special subframe (30720⋅T₅): Normal cyclic prefix in downlink (UpPTS)								
	Special subframe configuration	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink					
Uplink duty factor in one	0~4	7.13%	8.33%					
special subframe	5~9	14.3%	16.7%					

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

Special subframe(30720⋅T₅): Extended cyclic prefix in downlink (UpPTS)							
	Special subframe configuration	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink				
Uplink duty factor in one	0~3	7.13%	8.33%				
special subframe	4~7	14.3%	16.7%				

The highest duty factor is resulted from:

- i. Uplink-downlink configuration: 0. In a half-frame consisted of 5 subfames, uplink operation is in 3 uplink subframes and 1 special subframe.
- ii. special subframe configuration: 5-9 for normal cyclic prefix in downlink, 4-7 for extended cyclic prefix in downlink
- iii. for special subframe with extended cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.167)/5 = 63.3%
- iv. for special subframe with normal cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.143)/5 = 62.9%
- v. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The scaled TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 36 of 55 Form version. : 200414

<LTE Carrier Aggregation> (Downlink)

General Note:

 This device supports Carrier Aggregation on downlink for inter and intra band. For the device supports bands and bandwidths and configurations are provided as follow table was according to 3GPP.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

- In applying the existing power measurement procedures of KDB 941225 D05A for DL CA SAR test exclusion, only
 the subset with the largest number of combinations of frequency bands and CCs in each row need combination,
 and for this device that all the configurations were choose to power measurement.
- 3. The gray color table is covered by other combinations and no need to verify power.

	2CC Downlink Carrier Aggregation	
Number	Combination	Covered by Measurement Superset
2CC #1	CA_41A-42A	
2CC #2	CA_42C	
2CC #3	CA_7A-42A	

LTE Carrier Aggregation Conducted Power (Downlink)

- i. According to KDB941225 D05A v01r02, Uplink maximum output power measurement with downlink carrier aggregation active should be measured, using the highest output channel measured without downlink carrier aggregation, to confirm that uplink maximum output power with downlink carrier aggregation active remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output measured without downlink carrier aggregation active.
- ii. Uplink maximum output power with downlink carrier aggregation active does not show more than ¼ dB higher than the maximum output power without downlink carrier aggregation active, therefore SAR evaluation with downlink carrier aggregation active can be excluded.
- iii. The device supports downlink two carrier aggregation. For power measurement were control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- iv. Selected highest measured power when downlink carrier aggregation is inactive for conducted power comparison with downlink carrier aggregation is active, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output power measured when downlink carrier aggregation inactive.
- v. For inter-band CA, the SCC selected highest bandwidth and near the middle of its transmission band. For SCC DL RB size and offset will base on the PCC corresponding RB allocation.
- vi. For non-contiguous intra-band CA, the SCC selected to provide maximum separation from the PCC and must remain fully within the downlink transmission band.
- vii. For Intra-band, contiguous CA, the downlink channels selected to perform the uplink power measurement must satisfy 3GPP channel spacing (5.4.1A of 3GPP TS 36.521 or equivalent) and channel bandwidth (5.4.2A) requirements.

Nominal channel spacing =
$$\left[\frac{BW_{Channel(1)} + BW_{Channel(2)} - 0.1 \left| BW_{Channel(1)} - BW_{Channel(2)} \right|}{0.6} \right] 0.3 \text{ [MHz]}$$

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 37 of 55 Form version. : 200414

LTE Carrier Aggregation Conducted Power (Uplink)

1. This device supports uplink carrier aggregation for LTE CA_7C with a maximum of two 20MHz component carriers. For intra band contiguous carrier aggregation scenarios, 3GPP 36.101 Table 6.2.2A-1 specifies that the aggregate maximum allowed output power is equivalent to the single carrier scenario. For the non-contiguously allocated resource blocks which the MPR level is determined by various RB separation and RB sizes requirement, and the allowed MPR levels, settings and the conducted powers are permanently implemented in this device per the 3GPP 36.36.101 section 6.2.3A.1.3 requirements.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

- 2. According to FCC guidance, the output power with uplink CA active was measured for the high / middle / low channel configuration with the highest reported SAR for each exposure condition, the power was measured with wideband signal integration over both component carriers.
- 3. In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the subset in each row with the largest combination of frequency bands and CCs
- 4. Maximum output power measurement is required for each UL CA configuration for the required test channels described in KDB 941225 D05. The required test channel should be associated with the UL PCC. For channels at the ends of a frequency band, the SCC and subsequent CCs are added to the side within the transmission band. Otherwise, the CCs should be added alternatively to either side of the PCC.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 38 of 55 Form version. : 200414

5G NR Output Power (Unit: dBm)

General Note:

- Following 5G NR n77/n78 support SCS 30KHz DFT/CP-OFDM, PI/2 BPSK/QPSK/16QAM/64QAM/256QAM, Bandwidth 10M/15M/20M/40M/50M/60M/70M/80M/90M/100M.
- 2. For 5G NR test procedure was following step similar FCC KDB 941225 D05:
 - a. For DFT-OFDM and CP-OFDM output power measurement reduction, according to 38.101 maximum power reduction for power class2 and 3, the CP-OFDM mode will not higher than DFT-OFDM mode, therefore, similar FCC KDB 941225 D05 procedure for other modulation output power for each RB allocation configuration is > not ½ dB higher than the same configuration in DFT-QPSK and the reported SAR for the DFT-QPSK configuration is ≤ 1.45 W/kg; CP-OFDM testing is not required.

Report No.: FA141508-02

- b. For DFT-OFDM output power measurement reduction, according to 38.101 maximum power reduction for power class2 and 3, for 16QAM/64QMA/256QAM and smaller bandwidth output power will spot check largest channel bandwidth worst RB configuration to ensure the 16QAM/64QMA/256QAM and smaller bandwidth output power will not ½ dB higher than the same configuration in the largest supported bandwidth.
- c. SAR testing start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel
- d. 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure
- e. QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested
- f. PI/2 BPSK/16QAM/64QAM/256QAM output powers according to 3GPP MPR will not ½ dB higher than the same configuration in QPSK, also reported SAR for the QPSK configuration is less than 1.45 W/kg, PI/2 BPSK/16QAM/64QAM/256QAM SAR testing are not required.
- g. Smaller bandwidth output power for each RB allocation configuration for this device will not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg, smaller bandwidth SAR testing is not required for this device
- 3. Due to test setup limitations, SAR testing for NR was performed using Factory Test Mode software to establish the connection and perform SAR with 100% transmission.
- 4. For 5G NR test, using FTM (Factory Test Mode) to perform SAR with default 100% transmission.
- 5. NSA and SA mode should perform SAR separately. For the maximum power of NSA mode is the same as SA total power level, so NSA SAR can represent SA mode SAR.
- 6. 5G NR NSA mode, the power level is the same as 5GNR SA mode, so 5GNR NSA mode and SA mode power table only show one time.
- 7. 5G NR supports CP-OFDM and DFT-s-OFDM modulation, for DFT-s-OFDM power is higher than CP-OFDM, so only show DFT-s-OFDM power table and chose DFT-s-OFDM to perform SAR testing.
- 8. For DFT-s-OFDM and CP-OFDM output power measurement reduction, according to 38.101 maximum power reduction for the CP-OFDM mode will not higher than DFT-s-OFDM mode, therefore, CP-OFDM measurement is unnecessary.
- 5G NR NSA EN-DC mode, standalone SAR performed for 5GNR band with the maximum power, EN-DC SAR summed 5GNR standalone SAR and LTE standalone SAR, the result of EN-DC SAR is more conservatively.

 Sporton International (Kunshan) Inc.

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Jul. 28, 2021

FCC ID: IHDT56ZW1 Page 39 of 55 Form version.: 200414

<3GPP 38.101 MPR for EN-DC>

Table 6.2.2-1 Maximum power reduction (MPR) for power class 3

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

\$40.00	Bureau B		MPR (dB)	
Modul	ation	Edge RB allocations	Outer RB allocations	Inner RB allocations
	D'IO DDOI	≤ 3.5¹	≤ 1.21	≤ 0.21
	Pi/2 BPSK	≤ 0.5 ²	≤ 0.5 ²	O ²
DET OFFILE	QPSK	The Section 1990	≤1	0
DFT-s-OFDM	16 QAM		≤2	≤1
	64 QAM		≤ 2.5	N.F
	256 QAM		≤ 4.5	
	QPSK		≤3	≤ 1.5
OD OFFILE	16 QAM		≤3	≤2
CP-OFDM	64 QAM		≤ 3.5	# 12504.0K
Ì	256 QAM		≤ 6.5	

NOTE 1: Applicable for UE operating in TDD mode with Pi/2 BPSK modulation and UE indicates support for UE capability powerBoosting-pi/2BPSK and if the IE powerBoostPi/2BPSK is set to 1 and 40 % or less slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. The reference power of 0 dB MPR is 26 dBm.

Table 6.2.2-2 Maximum power reduction (MPR) for power class 2

Modu	lation		MPR (dB)	
		Edge RB allocations	Outer RB allocations	Inner RB allocations
	Pi/2 BPSK	≤ 3.5	≤ 0.5	0
DFT-s-	QPSK	≤ 3.5	≤1	0
OFDM	16 QAM	≤ 3.5	≤ 2	≤1
OFDIM	64 QAM	≤ 3.5	5 2	2.5
	256 QAM	100000000	≤ 4.5	
	QPSK	≤ 3.5	≤ 3	≤ 1.5
CP-OFDM	16 QAM	≤ 3.5	≤ 3	≤2
CP-OFDIM	64 QAM		≤ 3.5	
	256 QAM		≤ 6.5	

FCC EN-DC	ULLTE	UL NR
	LTE TX Ant	NR Ant
DC_5A_n78A	ANT_0	ANT_5
DC_7A_n78A	ANT_0	ANT_5
DC_38A_n78A	ANT_0	ANT_5
DC_66A_n78A	ANT_1	ANT_5
DC_41A_n77A	ANT_0	ANT_5
DC_7C_n78A	ANT_0	ANT_5
DC_41C_n77A	ANT_0	ANT_5
DC_5A-7A_n78A	ANT_0	ANT_5

Note: 1. For EN-DC component, LTE band 7 for ANT 4 is limited to EN-DC active and they will act as anchor mode. When EN-DC is not active, LTE band 7 will not transmit.

2. DC_5A-7A_n78A is added this time in this report.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 40 of 55 Form version. : 200414

NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79 with Pi/2
BPSK modulation and if the IE powerBoostPi2BPSK is set to 0 and if more than 40 % of slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79.

15. Antenna Location

The detailed antenna location information can refer to SAR Test Setup Photos.

Report No. : FA141508-02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 41 of 55 Form version. : 200414

16. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA141508-02

- b. For SAR testing of WLAN/Bluetooth signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For BT/WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measured SAR is ≥ 0.8W/kg. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.
- 4. Pre KDB648474 D04v01r03, when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. When headset SAR is less than or equal than without headset SAR, no need to verify the remaining channels for headset SAR.
- 5. The device implements Proximity sensors/receiver detect mechanism/hotspot trigger reduced power for the power management for SAR compliance at different exposure conditions (head, body-worn, hotspot, extremity).
- 6. The device will invoke corresponding work scenarios power level, which are provided in the operational description.
- 7. For Some WWAN bands, sensor on reduced power level higher than hotspot reduced power level, so front/back sensor on SAR can represent hotspot conservatively.
- 8. For WLAN when transmit simultaneous with WWAN, power reduction will be activated to head / hotspot/ extremity. For WLAN when transmit simultaneous with WWAN and proximity sensors trigger, power reduction will be activated to hody-worn.
- 9. For 5G NR test, using FTM (Factory Test Mode) to perform SAR with default 100% transmission.
- 10. This device supports 5GNR FR1 bands, including NSA mode and SA mode.
- 11. NSA and SA mode should perform SAR separately. For the maximum power of NSA mode is the same as SA total power level, so NSA SAR can represent SA mode SAR.
- 12. 5GNR NSA mode, the power level is the same as 5GNR SA mode, so 5GNR NSA mode and SA mode power table only show one time.
- 13. 5G NR supports CP-OFDM and DFT-s-OFDM modulation, for DFT-s-OFDM power is higher than CP-OFDM, so only show DFT-s-OFDM power table and chose DFT-s-OFDM to perform SAR testing.
- 14. For DFT-s-OFDM and CP-OFDM output power measurement reduction, according to 38.101 maximum power reduction for the CP-OFDM mode will not higher than DFT-s-OFDM mode, therefore, CP-OFDM measurement is unnecessary.
- 15. Per KDB648474 D04v01r03, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, when hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg, however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power (for handheld on state, the maximum full power means reduced power), including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.
 - a. For this device SAR for WWAN/WLAN transmitter scaled to maximum output power mode for product specific 10g SAR is higher than 1.2W/kg of 5GNR n77/n78 therefore product specific 10g SAR is necessary.
 - b. WLAN 5.3/5.5GHz tested the product specific 10g SAR since it has no hotspot mode.
 - c. When 10-g product specific 10g SAR is considered, SAR thresholds is specified in the procedures for SAR test reduction and exclusion should be multiplied by 2.5.
- 8. For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance was performed for body worn:

Front: 13 mm Back: 19 mm

9. For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at

Sporton International (Kunshan) Inc.

a conservative trigger distance was performed as followings. When located the same antenna, the worst SAR base on the same frequency bands chose to verify the full power distance SAR. These bands also with the same maximum full power(sensor off power level) and no need to do each band separately when located the same WWAN antenna and same proximity sensor triggered distance.

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

ANT5

Top side: 7 mm

LTE Note:

- Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM/64QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM/64QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. LTE band 7 located WWAN Ant4 only worked when EN-DC mode active, LTE band 7 can't transmit standalone. So tested those bands located WWAN ant4 in order to sum with 5GNR SAR as EN-DC SAR. LTE band 38 with the same power level as LTE band 41, so power table only show one time. LTE band 41 SAR can represent LTE band 38 SAR and sum with 5GNR as final EN-DC SAR.

5G NR Note:

- 1. For 5G NR test procedure was following step similar FCC KDB 941225 D05:
 - a. SAR testing start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
 - b. 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure
 - c. QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
 - d. PI/2 BPSK/16QAM/64QAM/256QAM output powers according to 3GPP MPR will not ½ dB higher than the same configuration in PI/2 BPSK, also reported SAR for the QPSK configuration is less than 1.45 W/kg, PI/2 BPSK/16QAM/64QAM/256QAM SAR testing are not required.
 - e. Smaller bandwidth output power for each RB allocation configuration for this device will not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg, smaller bandwidth SAR testing is not required for this device
 - f. For 5G FR1 n77 the maximum bandwidth does not support three non-overlapping channels, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: IHDT56ZW1 Page 43 of 55 Form version.: 200414

16.1 Head SAR

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cuala	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	T		T					1	35001	MHz			1	1					
	LTE Band 42	20M	QPSK	1	0	Right Cheek	0mm	Ant 5	Reduced	42590	3500	15.04	16.00	1.247	62.9	1.006	0.06	0.604	0.758
	LTE Band 42	20M	QPSK	50	0	Right Cheek	0mm	Ant 5	Reduced	42590	3500	13.89	15.00	1.291	62.9	1.006	0.02	0.525	0.682
	LTE Band 42	20M	QPSK	1	0	Right Tilted	0mm	Ant 5	Reduced	42590	3500	15.04	16.00	1.247	62.9	1.006	0.14	0.546	0.685
	LTE Band 42	20M	QPSK	50	0	Right Tilted	0mm	Ant 5	Reduced	42590	3500	13.89	15.00	1.291	62.9	1.006	0.06	0.447	0.581
	LTE Band 42	20M	QPSK	1	0	Left Cheek	0mm	Ant 5	Reduced	42590	3500	15.04	16.00	1.247	62.9	1.006	0.01	0.782	0.981
	LTE Band 42	20M	QPSK	1	0	Left Cheek	0mm	Ant 5	Reduced	42190	3460	14.77	16.00	1.327	62.9	1.006	0.01	0.723	0.965
	LTE Band 42	20M	QPSK	1	0	Left Cheek	0mm	Ant 5	Reduced	42990	3540	14.58	16.00	1.387	62.9	1.006	0.06	0.703	0.981
	LTE Band 42	20M	QPSK	50	0	Left Cheek	0mm	Ant 5	Reduced	42590	3500	13.89	15.00	1.291	62.9	1.006	0.07	0.641	0.833
	LTE Band 42	20M	QPSK	50	0	Left Cheek	0mm	Ant 5	Reduced	42190	3460	13.64	15.00	1.368	62.9	1.006	0.13	0.627	0.863
	LTE Band 42	20M	QPSK	50	0	Left Cheek	0mm	Ant 5	Reduced	42990	3540	13.67	15.00	1.358	62.9	1.006	0.12	0.622	0.850
	LTE Band 42	20M	QPSK	100	0	Left Cheek	0mm	Ant 5	Reduced	42590	3500	13.93	15.00	1.279	62.9	1.006	0.02	0.601	0.774
01	LTE Band 42	20M	QPSK	1	0	Left Tilted	0mm	Ant 5	Reduced	42590	3500	15.04	16.00	1.247	62.9	1.006	-0.07	0.788	<mark>0.989</mark>
	LTE Band 42	20M	QPSK	1	0	Left Tilted	0mm	Ant 5	Reduced	42190	3460	14.77	16.00	1.327	62.9	1.006	0.01	0.727	0.971
	LTE Band 42	20M	QPSK	1	0	Left Tilted	0mm	Ant 5	Reduced	42990	3540	14.58	16.00	1.387	62.9	1.006	-0.07	0.705	0.984
	LTE Band 42	20M	QPSK	50	0	Left Tilted	0mm	Ant 5	Reduced	42590	3500	13.89	15.00	1.291	62.9	1.006	-0.18	0.641	0.833
	LTE Band 42	20M	QPSK	50	0	Left Tilted	0mm	Ant 5	Reduced	42190	3460	13.64	15.00	1.368	62.9	1.006	0.09	0.627	0.863
	LTE Band 42	20M	QPSK	50	0	Left Tilted	0mm	Ant 5	Reduced	42990	3540	13.67	15.00	1.358	62.9	1.006	-0.03	0.618	0.844
	LTE Band 42	20M	QPSK	100	0	Left Tilted	0mm	Ant 5	Reduced	42590	3500	13.93	15.00	1.279	62.9	1.006	0.13	0.623	0.802
	FR1 n77	100M	QPSK	1	137	Right Cheek	0mm	Ant 5	Reduced	633334	3500.01	12.74	14.00	1.337	100	1.000	-0.07	0.168	0.225
	FR1 n77	100M	QPSK	135	69	Right Cheek	0mm	Ant 5	Reduced	633334	3500.01	12.53	14.00	1.403	100	1.000	-0.07	0.175	0.245
	FR1 n77	100M	QPSK	1	137	Right Tilted	0mm	Ant 5	Reduced	633334	3500.01	12.74	14.00	1.337	100	1.000	0.05	0.171	0.229
	FR1 n77	100M	QPSK	135	69	Right Tilted	0mm	Ant 5	Reduced	633334	3500.01	12.53	14.00	1.403	100	1.000	-0.07	0.171	0.240
02	FR1 n77	100M	QPSK	1	137	Left Cheek	0mm	Ant 5	Reduced	633334	3500.01	12.74	14.00	1.337	100	1.000	-0.03	0.283	0.378
	FR1 n77	100M	QPSK	135	69	Left Cheek	0mm	Ant 5	Reduced	633334	3500.01	12.53	14.00	1.403	100	1.000	-0.11	0.263	0.369
	FR1 n77	100M	QPSK	1	137	Left Tilted	0mm	Ant 5	Reduced	633334	3500.01	12.74	14.00	1.337	100	1.000	0.06	0.231	0.309
	FR1 n77	100M	QPSK	135	69	Left Tilted	0mm	Ant 5	Reduced	633334	3500.01	12.53	14.00	1.403	100	1.000	0.03	0.252	0.354

Report No. : FA141508-02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page 44 of 55

16.2 Hotspot SAR

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
									350	0MHz									
	LTE Band 42	20M	QPSK	1	0	Front	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	0.14	0.503	0.569
	LTE Band 42	20M	QPSK	50	0	Front	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	0.16	0.416	0.431
	LTE Band 42	20M	QPSK	1	0	Back	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	0.03	0.762	0.862
	LTE Band 42	20M	QPSK	1	0	Back	5mm	Ant 5	Reduced	42190	3460	20.14	21.00	1.219	62.9	1.006	0.04	0.701	0.860
	LTE Band 42	20M	QPSK	1	0	Back	5mm	Ant 5	Reduced	42990	3540	20.00	21.00	1.259	62.9	1.006	0.09	0.661	0.837
	LTE Band 42	20M	QPSK	50	0	Back	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	0.03	0.565	0.586
	LTE Band 42	20M	QPSK	100	0	Back	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	80.0	0.534	0.554
	LTE Band 42	20M	QPSK	1	0	Right Side	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	-0.15	0.115	0.130
	LTE Band 42	20M	QPSK	50	0	Right Side	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	-0.1	0.086	0.089
03	LTE Band 42	20M	QPSK	1	0	Top Side	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	-0.09	0.859	0.972
	LTE Band 42	20M	QPSK	1	0	Top Side	5mm	Ant 5	Reduced	42190	3460	20.14	21.00	1.219	62.9	1.006	0.05	0.784	0.961
	LTE Band 42	20M	QPSK	1	0	Top Side	5mm	Ant 5	Reduced	42990	3540	20.00	21.00	1.259	62.9	1.006	0.11	0.761	0.964
	LTE Band 42	20M	QPSK	50	0	Top Side	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	-0.07	0.568	0.589
	LTE Band 42	20M	QPSK	100	0	Top Side	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	0.01	0.543	0.563
	FR1 N77	100M	QPSK	1	137	Front	5mm	Ant 5	Reduced	633334	3500.01	15.46	17.00	1.426	100	1.000	0.05	0.209	0.298
	FR1 N77	100M	QPSK	135	69	Front	5mm	Ant 5	Reduced	633334	3500.01	15.23	17.00	1.503	100	1.000	0.04	0.213	0.320
	FR1 N77	100M	QPSK	1	137	Back	5mm	Ant 5	Reduced	633334	3500.01	15.46	17.00	1.426	100	1.000	-0.12	0.293	0.418
04	FR1 N77	100M	QPSK	135	69	Back	5mm	Ant 5	Reduced	633334	3500.01	15.23	17.00	1.503	100	1.000	0.07	0.325	0.489
	FR1 N77	100M	QPSK	1	137	Right Side	5mm	Ant 5	Reduced	633334	3500.01	15.46	16.50	1.271	100	1.000	-0.13	0.026	0.033
	FR1 N77	100M	QPSK	135	69	Right Side	5mm	Ant 5	Reduced	633334	3500.01	15.23	16.50	1.340	100	1.000	0.05	0.026	0.035
	FR1 N77	100M	QPSK	1	137	Top Side	5mm	Ant 5	Reduced	633334	3500.01	15.46	16.50	1.271	100	1.000	-0.13	0.319	0.405
	FR1 N77	100M	QPSK	135	69	Top Side	5mm	Ant 5	Reduced	633334	3500.01	15.23	16.50	1.340	100	1.000	-0.16	0.333	0.446

Report No. : FA141508-02

16.3 Body Worn Accessory SAR

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
									350	00MHz									
	LTE Band 42	20M	QPSK	1	0	Front	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	0.14	0.503	0.569
	LTE Band 42	20M	QPSK	50	0	Front	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	0.16	0.416	0.431
05	LTE Band 42	20M	QPSK	1	0	Back	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	0.03	0.762	<mark>0.862</mark>
	LTE Band 42	20M	QPSK	1	0	Back	5mm	Ant 5	Reduced	42190	3460	20.14	21.00	1.219	62.9	1.006	0.04	0.701	0.860
	LTE Band 42	20M	QPSK	1	0	Back	5mm	Ant 5	Reduced	42990	3540	20.00	21.00	1.259	62.9	1.006	0.09	0.661	0.837
	LTE Band 42	20M	QPSK	50	0	Back	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	0.03	0.565	0.586
	LTE Band 42	20M	QPSK	100	0	Back	5mm	Ant 5	Reduced	42590	3500	19.87	20.00	1.030	62.9	1.006	0.08	0.534	0.554
	LTE Band 42	20M	QPSK	1	0	Front	13mm	Ant 5	Full	42590	3500	22.99	24.00	1.262	62.9	1.006	-0.09	0.358	0.454
	LTE Band 42	20M	QPSK	1	0	Back	19mm	Ant 5	Full	42590	3500	22.99	24.00	1.262	62.9	1.006	0.01	0.412	0.523
	FR1 N77	100M	QPSK	1	137	Front	5mm	Ant 5	Reduced	633334	3500.01	15.46	17.00	1.426		1.000	0.05	0.209	0.298
	FR1 N77	100M	QPSK	135	69	Front	5mm	Ant 5	Reduced	633334	3500.01	15.23	17.00	1.503		1.000	0.04	0.213	0.320
	FR1 N77	100M	QPSK	1	137	Back	5mm	Ant 5	Reduced	633334	3500.01	15.46	17.00	1.426		1.000	-0.12	0.293	0.418
06	FR1 N77	100M	QPSK	135	69	Back	5mm	Ant 5	Reduced	633334	3500.01	15.23	17.00	1.503		1.000	0.07	0.325	<mark>0.489</mark>
	FR1 N77	100M	QPSK	1	137	Front	13mm	Ant 5	Full	633334	3500.01	22.64	24.00	1.368		1.000	0.03	0.204	0.279
	FR1 N77	100M	QPSK	135	69	Front	13mm	Ant 5	Full	633334	3500.01	22.60	24.00	1.380		1.000	0.01	0.203	0.280
	FR1 N77	100M	QPSK	1	137	Back	19mm	Ant 5	Full	633334	3500.01	22.64	24.00	1.368		1.000	0.13	0.301	0.412
	FR1 N77	100M	QPSK	135	69	Back	19mm	Ant 5	Full	633334	3500.01	22.60	24.00	1.380		1.000	0.16	0.315	0.435

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 45 of 55 Form version. : 200414

16.4 Product Specific SAR

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Limit	Scaling	Drift	Measured 10g SAR (W/kg)	Reported 10g SAR (W/kg)
	FR1 N77	100M	QPSK	1	137	Top Side	0mm	Ant 5	Reduced	633334	3500.01	17.66	18.50	1.213	-0.13	0.997	1.210
07	FR1 N77	100M	QPSK	135	69	Top Side	0mm	Ant 5	Reduced	633334	3500.01	17.21	18.50	1.346	0.03	1.010	1.359
	FR1 N77	100M	QPSK	1	137	Top Side	7mm	Ant 5	Full	633334	3500.01	22.64	24.00	1.368	0.01	0.426	0.583
	FR1 N77	100M	QPSK	135	69	Top Side	7mm	Ant 5	Full	633334	3500.01	22.60	24.00	1.380	0.05	0.434	0.599

Report No. : FA141508-02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 46 of 55 Form version. : 200414

16.5 Repeated SAR Measurement

<ıy>

N	ο.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Power Reduction		Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1:	st l	LTE Band 42	20M	QPSK	1	0	Top Side	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	-0.09	0.859	1	0.972
2r	nd I	LTE Band 42	20M	QPSK	1	0	Top Side	5mm	Ant 5	Reduced	42590	3500	20.49	21.00	1.125	62.9	1.006	0.08	0.842	1.020	0.953

Report No. : FA141508-02

Issued Date: Jul. 28, 2021

General Note:

- Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is \leq 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated *measured SAR*.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 47 of 55 Form version. : 200414

17. Simultaneous Transmission Analysis

			Portab	le Handset	
No.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot	Product specific 10g SAR
1.	WWAN + WLAN 2.4GHz	Yes	Yes	Yes	Yes
2.	WWAN + WLAN 5GHz	Yes	Yes	Yes	Yes
3.	WWAN + Bluetooth	Yes	Yes	Yes	Yes

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

General Note:

- This device supports VoIP in GPRS, EGPRS, WCDMA, and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.
- 2. WWAN above includes 5G NR bands.
- 3. EUT will choose each GSM, WCDMA, and LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 4. This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications.
- 5. This device 2.4GHz WLAN/ 5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WLAN Direct (GC/GO), and 5.3GHz / 5.5GHz supports WLAN Direct (GC only).
- 6. WLAN 2.4GHz and Bluetooth share the same antenna so can't transmit simultaneously.
- 7. According to the EUT character, WLAN 5GHz and Bluetooth can't transmit simultaneously.
- 8. Chose the worst zoom scan SAR of WLAN correspondingly for co-located with WWAN analysis.
- For head/hotspot/body-worn, we chose the worst zoom scan SAR of Bluetooth correspondingly for co-located with WWAN analysis.
- 10. The reported SAR summation is calculated based on the same configuration and test position.
- For simultaneous transmission analysis of 5GNR SA, since the 5GNR NSA SAR can represent 5GNR SA SAR, therefore in this section did not additionally evaluate simultaneous transmission analysis related to 5GNR SA SAR.
- 12. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) 1g Scalar SAR summation < 1.6W/kg and 10g Scalar SAR summation < 4.0W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR \leq 0.04 for 1g SAR and SPLSR \leq 0.10 for 10g SAR , simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band 1g SAR < 1.6W/kg and 10g SAR < 4.0W/kg.
- 13. For simultaneously transmission SAR analysis, SAR values only considered which we did perform SAR testing on this report, and other test results were leverage from the parent model which referred to the original report Sporton Report Number FA141508.
- 14. This is a variant report, for model change note, please refer to the Operation Description exhibit submitted. Based on the similarity between two models, based on SW enable 5G NR FR1 n78 SA andadded LTE Band 42, 5G NR n77/ n78 (3450 MHz ~ 3550 MHz) for full SAR testing, for co-located SAR analysis, some cellular bands and WLAN/Bluetooth SAR test results are leverage from original report which can be referred to Sporton Report Number FA141508.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 48 of 55 Form version. : 200414

17.1 Head Exposure Conditions

		1	2	3	4	1+2	1+3	1+4	
WWAN Band	Exposure Position	WWAN	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Bluetooth Ant 6	Summed	Summed	Summed	
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	
	Right Cheek	0.758	0.511	0.513	0.034	1.27	1.27	0.79	
LTE Band	Right Tilted	0.685	0.511	0.513	0.034	1.20	1.20	0.72	
42Ant 5	Left Cheek	0.981	0.511	0.513	0.034	1.49	1.49	1.02	
	Left Tilted	0.989	0.511	0.513	0.034	1.50	1.50	1.02	

Report No. : FA141508-02

<5G NR>

			1	5	2	3	4	1+2+5	1+3+5	1+4+5
WWAN Band	FR1 Band	R1 Band Exposure Position	WWAN	FR1	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Bluetooth Ant 6	Summed	Summed	Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Right Cheek	0.386	0.245	0.511	0.513	0.034	1.14	1.14	0.67
LTE Band 5Ant 0	FR1 n78	Right Tilted	0.187	0.240	0.511	0.513	0.034	0.94	0.94	0.46
LTE Band SAIR 0	Ant 5	Left Cheek	0.326	0.378	0.511	0.513	0.034	1.22	1.22	0.74
		Left Tilted	0.175	0.354	0.511	0.513	0.034	1.04	1.04	0.56
		Right Cheek	0.287	0.245	0.511	0.513	0.034	1.04	1.05	0.57
LTE Band 7Ant 0	FR1 n78	Right Tilted	0.145	0.240	0.511	0.513	0.034	0.90	0.90	0.42
LTL Ballu / Allt 0	Ant 5	Left Cheek	0.346	0.378	0.511	0.513	0.034	1.24	1.24	0.76
		Left Tilted	0.229	0.354	0.511	0.513	0.034	1.09	1.10	0.62
		Right Cheek	0.106	0.245	0.511	0.513	0.034	0.86	0.86	0.39
LTE Band 38Ant 0	FR1 n78	Right Tilted	0.063	0.240	0.511	0.513	0.034	0.81	0.82	0.34
LTE Band SOAIR O	Ant 5	Left Cheek	0.158	0.378	0.511	0.513	0.034	1.05	1.05	0.57
		Left Tilted	0.121	0.354	0.511	0.513	0.034	0.99	0.99	0.51
		Right Cheek	0.198	0.245	0.511	0.513	0.034	0.95	0.96	0.48
LTE Band 66Ant 1	FR1 n78	Right Tilted	0.222	0.240	0.511	0.513	0.034	0.97	0.98	0.50
LTL Ballu OOAIILT	Ant 5	Left Cheek	0.354	0.378	0.511	0.513	0.034	1.24	1.25	0.77
		Left Tilted	0.213	0.354	0.511	0.513	0.034	1.08	1.08	0.60
		Right Cheek	0.106	0.245	0.511	0.513	0.034	0.86	0.86	0.39
LTE Band 41Ant 0	FR1 n77	Right Tilted	0.063	0.240	0.511	0.513	0.034	0.81	0.82	0.34
LIL Dalla TIAIR 0	Ant 5	Left Cheek	0.158	0.378	0.511	0.513	0.034	1.05	1.05	0.57
		Left Tilted	0.121	0.354	0.511	0.513	0.034	0.99	0.99	0.51

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 49 of 55 Form version. : 200414

17.2 Hotspot Exposure Conditions

			2	3	4	1+2	1+3	1+4
WWAN Band	Exposure Position	WWAN	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Bluetooth Ant 6	Summed	Summed	Summed
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
	Front	0.569	0.194	0.152	0.072	0.76	0.72	0.64
	Back	0.862	0.362	0.252	0.072	1.22	1.11	0.93
LTE Band	Left side					0.00	0.00	0.00
42Ant 5	Right side	0.130	0.116	0.108	0.072	0.25	0.24	0.20
	Top side	0.972	0.188	0.379	0.072	1.16	1.35	1.04
	Bottom side					0.00	0.00	0.00

Report No. : FA141508-02

<5G NR>

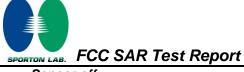
			1	5	2	3	4	1+2+5	1+3+5	1+4+5
WWAN Band	FR1 Band	Exposure Position	WWAN	FR1	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Bluetooth Ant 6	Summed	Summed	Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Front	0.300	0.320	0.194	0.152	0.072	0.81	0.77	0.69
		Back	0.550	0.489	0.362	0.252	0.072	1.40	1.29	1.11
LTE Band	FR1 n78	Left side	0.066					0.07	0.07	0.07
5Ant 0	Ant 5	Right side	0.159	0.035	0.116	0.108	0.072	0.31	0.30	0.27
		Top side		0.446	0.188	0.379	0.072	0.63	0.83	0.52
		Bottom side	0.397					0.40	0.40	0.40
		Front	0.423	0.320	0.194	0.152	0.072	0.94	0.90	0.82
		Back	0.510	0.489	0.362	0.252	0.072	1.36	1.25	1.07
LTE Band	FR1 n78	Left side	0.112					0.11	0.11	0.11
7Ant 0	Ant 5	Right side	0.089	0.035	0.116	0.108	0.072	0.24	0.23	0.20
		Top side		0.446	0.188	0.379	0.072	0.63	0.83	0.52
		Bottom side	0.506					0.51	0.51	0.51
		Front	0.408	0.320	0.194	0.152	0.072	0.92	0.88	0.80
		Back	0.510	0.489	0.362	0.252	0.072	1.36	1.25	1.07
LTE Band	FR1 n78	Left side	0.130					0.13	0.13	0.13
38Ant 0	Ant 5	Right side	0.082	0.035	0.116	0.108	0.072	0.23	0.23	0.19
		Top side		0.446	0.188	0.379	0.072	0.63	0.83	0.52
		Bottom side	0.496					0.50	0.50	0.50
		Front	0.344	0.320	0.194	0.152	0.072	0.86	0.82	0.74
		Back	0.526	0.489	0.362	0.252	0.072	1.38	1.27	1.09
LTE Band	FR1 n78	Left side	0.264					0.26	0.26	0.26
66Ant 1	Ant 5	Right side		0.035	0.116	0.108	0.072	0.15	0.14	0.11
		Top side		0.446	0.188	0.379	0.072	0.63	0.83	0.52
		Bottom side	0.364					0.36	0.36	0.36
		Front	0.408	0.320	0.194	0.152	0.072	0.92	0.88	0.80
		Back	0.510	0.489	0.362	0.252	0.072	1.36	1.25	1.07
LTE Band	FR1 n77	Left side	0.130					0.13	0.13	0.13
41Ant 0	Ant 5	Right side	0.082	0.035	0.116	0.108	0.072	0.23	0.23	0.19
		Top side		0.446	0.188	0.379	0.072	0.63	0.83	0.52
		Bottom side	0.496					0.50	0.50	0.50

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 50 of 55 Form version. : 200414

17.3 Body-Worn Accessory Exposure Conditions

		1	2	3	4	1+2	1+3	1+4
WWAN Band	Exposure Position	WWAN	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Bluetooth Ant 6	Summed	Summed	Summed
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
LTE Band	Front	0.569	0.362	0.388	0.072	0.93	0.96	0.64
42Ant 5	Back	0.862	0.362	0.388	0.072	1.22	1.25	0.93


Report No. : FA141508-02

<5G NR>

100 Mil										
			1	5	2	3	4	1+2+5	1+3+5	1+4+5
WWAN Band	FR1 Band	Exposure Position	WWAN	FR1	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Bluetooth Ant 6	Summed	Summed	Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
LTE Band	FR1 n78	Front	0.300	0.320	0.362	0.388	0.072	0.98	1.01	0.69
5Ant 0	Ant 5	Back	0.550	0.489	0.362	0.388	0.072	1.40	1.43	1.11
LTE Band	FR1 n78	Front	0.423	0.320	0.362	0.388	0.072	1.11	1.13	0.82
7Ant 0	Ant 5	Back	0.510	0.489	0.362	0.388	0.072	1.36	1.39	1.07
LTE Band	FR1 n78	Front	0.408	0.320	0.362	0.388	0.072	1.09	1.12	0.80
38Ant 0	Ant 5	Back	0.510	0.489	0.362	0.388	0.072	1.36	1.39	1.07
LTE Band	FR1 n78	Front	0.344	0.320	0.362	0.388	0.072	1.03	1.05	0.74
66Ant 1	Ant 5	Back	0.526	0.489	0.362	0.388	0.072	1.38	1.40	1.09
LTE Band	FR1 n77	Front	0.408	0.320	0.362	0.388	0.072	1.09	1.12	0.80
41Ant 0	Ant 5	Back	0.510	0.489	0.362	0.388	0.072	1.36	1.39	1.07

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 FCC ID: IHDT56ZW1 Page 51 of 55 Form version. : 200414

<Sensor off>

			1	3	1+3
	WWAN Band Exposure Positio	Exposure Position	WWAN	5GHz WLAN Ant 6	Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
ſ	LTE Band 42Ant 5	Front at 13mm	0.454	0.242	0.97
	LTE Ballu 42Allt 5	Back at 19mm	0.523	0.367	1.03

Report No. : FA141508-02

<5G NR>

130 MIN						
			1	5	3	
WWAN Band	FR1 Band	Exposure Position	WWAN	FR1	5GHz WLAN Ant 6	1+3+5 Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
LTC Dand FAnt O	FR1 n78	Front at 13mm	0.298	0.280	0.242	0.82
LTE Band 5Ant 0 Ant 5		Back at 19mm	0.243	0.435	0.367	1.05
LTE D LTA	FR1 n78	Front at 13mm	0.721	0.285	0.242	1.25
LTE Band 7Ant 0	Ant 5	Back at 19mm	0.413	0.435	0.367	1.22
LTE Band 38Ant 0	FR1 n78	Front at 13mm	0.290	0.285	0.242	0.82
LTE Band 36Ant 0	Ant 5	Back at 19mm	0.244	0.435	0.367	1.05
LTE Band 66Ant 1	FR1 n78	Front at 13mm	0.584	0.285	0.242	1.11
LIE Band Obant I	Ant 5	Back at 19mm	0.249	0.435	0.367	1.05
LTE Band 41Ant 0	FR1 n77	Front at 13mm	0.290	0.285	0.242	0.82
LTL Daild 4 TAIII 0	Ant 5	Back at 19mm	0.244	0.435	0.367	1.05

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page 52 of 55

17.4 Product Specific Exposure Conditions

<5G NR>

VOO MICE			1	5	2	3	1+2+5	1+3+5
WWAN Band	FR1 Band	Exposure Position	WWAN	FR1	2.4GHz WLAN Ant 6	5GHz WLAN Ant 6	Summed	Summed
			10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Front						
		Back	1.418		0.987	0.914	<mark>2.41</mark>	2.33
LTE Band 5Ant 0	FR1 n78	Left side						
LTE Band SAIR 0	Ant 5	Right side						
		Top side		1.359		1.001	1.36	2.36
		Bottom side						
	Front							
		Back	1.352		0.987	0.914	2.34	2.27
LTE Band 7Ant 0	FR1 n78	Left side						
LIL Band /Ant 0	Ant 5	Right side						
		Top side		1.359		1.001	1.36	2.36
		Bottom side	1.169				1.17	1.17
		Front						
		Back	1.337		0.987	0.914	2.32	2.25
LTE Band 38Ant 0	FR1 n78	Left side						
LTE Band SOAIR O	Ant 5	Right side						
		Top side		1.359		1.001	1.36	2.36
		Bottom side	1.123				1.12	1.12
		Front						
		Back	1.369		0.987	0.914	2.36	2.28
LTE Band 66Ant 1	FR1 n78	Left side						
LTE Band OUANT T	Ant 5	Right side						
		Top side		1.359		1.001	1.36	2.36
		Bottom side						
		Front						
		Back	1.337		0.987	0.914	2.32	2.25
LTE Band 41Ant 0	FR1 n77	Left side						
LIL Band 4 IAIILU	Ant 5	Right side						
		Top side		1.359		1.001	1.36	2.36
		Bottom side	1.123				1.12	1.12

Report No. : FA141508-02

Issued Date: Jul. 28, 2021

Note: For extremity SAR, always chose higher SAR between 0mm 10g SAR and sensor off distance SAR to do co-located analysis.

Test Engineer: Nick Hu, Seven Xu

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 53 of 55 Form version. : 200414

18. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

FCC ID: IHDT56ZW1

TEL: +86-512-57900158 / FAX: +86-512-57900958

Page 54 of 55

Issued Date: Jul. 28, 2021 Form version.: 200414

Report No.: FA141508-02

19. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA141508-02

Issued Date: Jul. 28, 2021

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [9] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [10] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [11] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [12] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [13] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [14] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.

----THE END-----

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : IHDT56ZW1 Page 55 of 55 Form version. : 200414

Appendix A. Plots of System Performance Check

Report No. : FA141508-02

The plots are shown as follows.

Sporton International (Kunshan) Inc.

System Check_Head_3500MHz

DUT: D3500V2 - SN:1037

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1

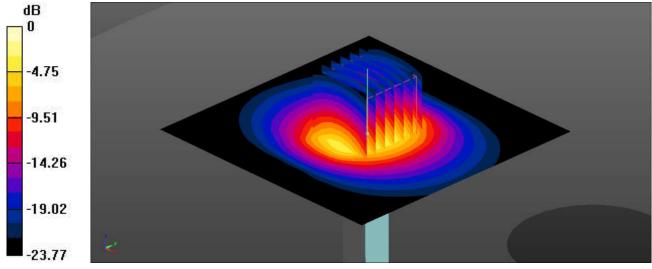
Medium: HSL_3500 Medium parameters used: f = 3500 MHz; $\sigma = 2.795$ S/m; $\varepsilon_r = 38.942$; $\rho = 1000$

Date: 2021.6.29

 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 6.48 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 48.67 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 9.05 W/kg

SAR(1 g) = 3.24 W/kg; SAR(10 g) = 1.23 W/kgMaximum value of SAR (measured) = 6.45 W/kg

0 dB = 6.45 W/kg = 8.10 dBW/kg

System Check_Head_3500MHz

DUT: D3500V2 - SN:1037

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1

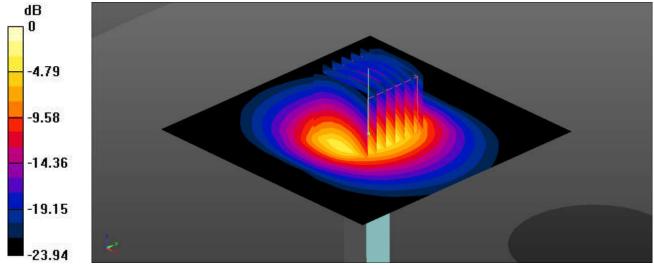
Medium: HSL_3500 Medium parameters used: f = 3500 MHz; $\sigma = 2.826$ S/m; $\varepsilon_r = 39.043$; $\rho = 1000$

Date: 2021.6.30

 kg/m^3

Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 6.58 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 49.06 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 9.11 W/kg

SAR(1 g) = 3.27 W/kg; SAR(10 g) = 1.23 W/kgMaximum value of SAR (measured) = 6.50 W/kg

0 dB = 6.50 W/kg = 8.13 dBW/kg

Appendix B. Plots of High SAR Measurement

Report No. : FA141508-02

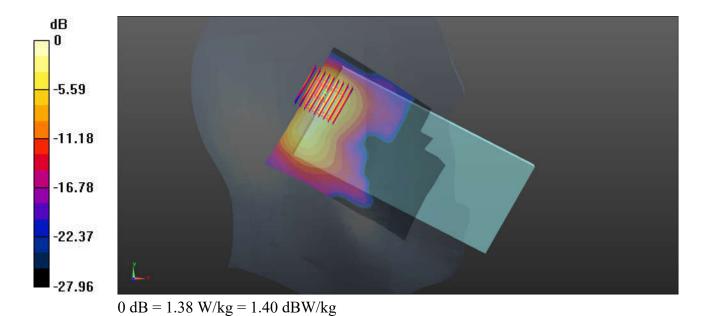
The plots are shown as follows.

Sporton International (Kunshan) Inc.

01 LTE Band 42 20M QPSK 1RB 0Offset Left Tilted 0mm Ch42590

Communication System: UID 0, LTE-TDD (0); Frequency: 3500 MHz; Duty Cycle: 1:1.59 Medium: HSL_3500 Medium parameters used: f = 3500 MHz; $\sigma = 2.795$ S/m; $\epsilon_r = 38.942$; $\rho = 1000$ kg/m³

Date: 2021.6.29


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

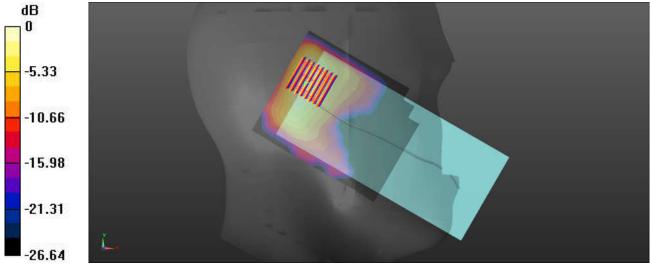
Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.51 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 21.19 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.87 W/kg **SAR(1 g) = 0.788 W/kg; SAR(10 g) = 0.332 W/kg**Maximum value of SAR (measured) = 1.38 W/kg

02_FR1 n77_100M_QPSK_1RB_137Offset_Left Cheek_0mm_Ch633334

Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1 Medium: HSL_3500 Medium parameters used: f = 3500.01 MHz; $\sigma = 2.795$ S/m; $\epsilon_r = 38.942$; $\rho = 1000$ kg/m³

Date: 2021.6.29


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.525 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 13.38 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.908 W/kg SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.118 W/kg Maximum value of SAR (measured) = 0.563 W/kg

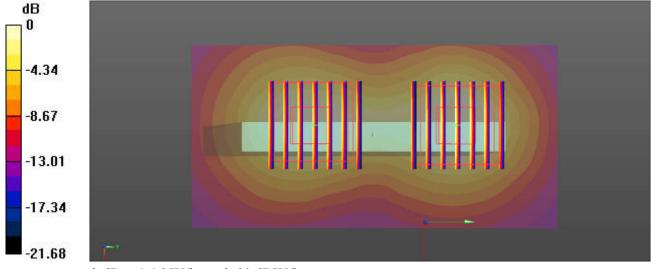
0 dB = 0.563 W/kg = -2.49 dBW/kg

03_LTE Band 42_20M_QPSK_1RB_0Offset_Top Side_5mm_Ch42590

Communication System: UID 0, LTE-TDD (0); Frequency: 3500 MHz; Duty Cycle: 1:1.59 Medium: HSL_3500 Medium parameters used: f = 3500 MHz; $\sigma = 2.826$ S/m; $\epsilon_r = 39.043$; $\rho = 1000$ kg/m³

Date: 2021.6.30

Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.71 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 15.33 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 2.47 W/kg SAR(1 g) = 0.859 W/kg; SAR(10 g) = 0.322 W/kg Maximum value of SAR (measured) = 1.71 W/kg

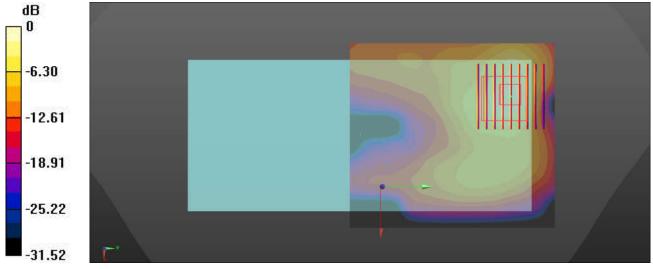
Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 15.33 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.68 W/kg SAR(1 g) = 0.627 W/kg; SAR(10 g) = 0.270 W/kg Maximum value of SAR (measured) = 1.16 W/kg

0 dB = 1.16 W/kg = 0.64 dBW/kg

04 FR1 N77 100M QPSK 135RB 69Offset Back 5mm Ch633334

Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1 Medium: HSL_3500 Medium parameters used: f = 3500.01 MHz; $\sigma = 2.826$ S/m; $\epsilon_r = 39.043$; $\rho = 1000$ kg/m³

Date: 2021.6.30


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.691 W/kg

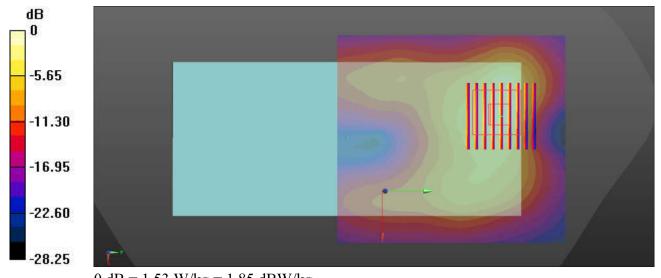
Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.4600 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.325 W/kg; SAR(10 g) = 0.130 W/kg Maximum value of SAR (measured) = 0.707 W/kg

0 dB = 0.707 W/kg = -1.51 dBW/kg

05 LTE Band 42 20M QPSK 1RB 0Offset Back 5mm Ch42590

Communication System: UID 0, LTE-TDD (0); Frequency: 3500 MHz; Duty Cycle: 1:1.59 Medium: HSL_3500 Medium parameters used: f = 3500 MHz; $\sigma = 2.826$ S/m; $\epsilon_r = 39.043$; $\rho = 1000$ kg/m³

Date: 2021.6.30


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (101x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.62 W/kg

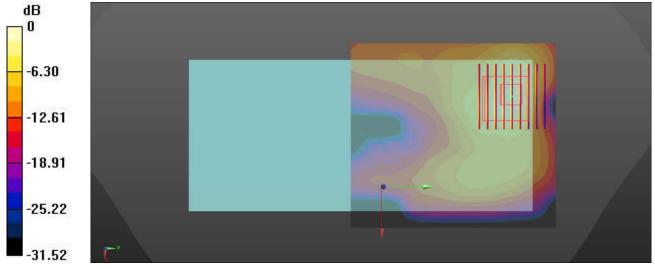
Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.695 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.34 W/kg **SAR(1 g) = 0.762 W/kg; SAR(10 g) = 0.318 W/kg**Maximum value of SAR (measured) = 1.53 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg

06_FR1 N77_100M_QPSK_135RB_69Offset_Back_5mm_Ch633334

Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1 Medium: HSL_3500 Medium parameters used: f = 3500.01 MHz; $\sigma = 2.826$ S/m; $\epsilon_r = 39.043$; $\rho = 1000$ kg/m³

Date: 2021.6.30


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.691 W/kg

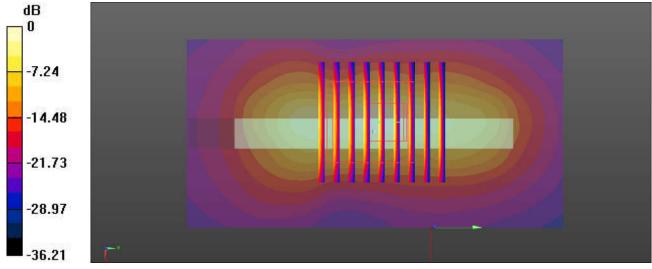
Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.4600 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.325 W/kg; SAR(10 g) = 0.130 W/kg Maximum value of SAR (measured) = 0.707 W/kg

0 dB = 0.707 W/kg = -1.51 dBW/kg

07 FR1 N77 100M QPSK 135RB 69Offset Top Side 0mm Ch633334

Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1 Medium: HSL_3500 Medium parameters used: f = 3500.01 MHz; $\sigma = 2.826$ S/m; $\epsilon_r = 39.043$; $\rho = 1000$ kg/m³

Date: 2021.6.30


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.16, 7.16, 7.16); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2021.4.26
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.62 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 53.26 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 3.68 W/kg; SAR(10 g) = 1.01 W/kg Maximum value of SAR (measured) = 10.5 W/kg

0 dB = 10.5 W/kg = 10.21 dBW/kg

Appendix C. **DASY Calibration Certificate**

Report No. : FA141508-02

The DASY calibration certificates are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jul. 28, 2021 Form version. : 200414 FCC ID: IHDT56ZW1 Page C1 of C1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Accreditation No.: SCS 0108

Certificate No: D3500V2-1037_Nov20

CALIBRATION CERTIFICATE

Object

D3500V2 - SN:1037

Calibration procedure(s)

QA CAL-22.v5

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

November 25, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
*	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	11-1
			Cl. How
			O O
Approved by:	Katja Pokovic	Technical Manager	MINI
			exces
			ALG PARTED TO THE PROPERTY OF THE PARTED TO

Issued: November 26, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1037_Nov20 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	2.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 19.5 % (k=2)

Certificate No: D3500V2-1037_Nov20 Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.1 jΩ
Return Loss	- 31.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.141 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

The same for the same of the	Properties and they
Manufactured by	SPEAG

Certificate No: D3500V2-1037_Nov20

DASY5 Validation Report for Head TSL

Date: 25.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1037

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz; $\sigma = 2.93$ S/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

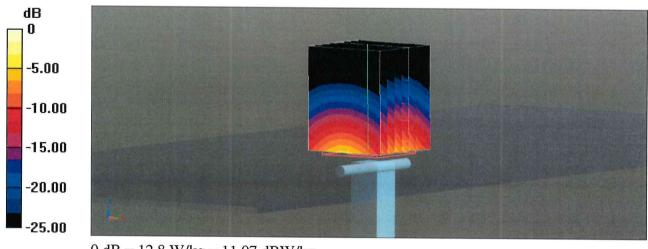
Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 31.12.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

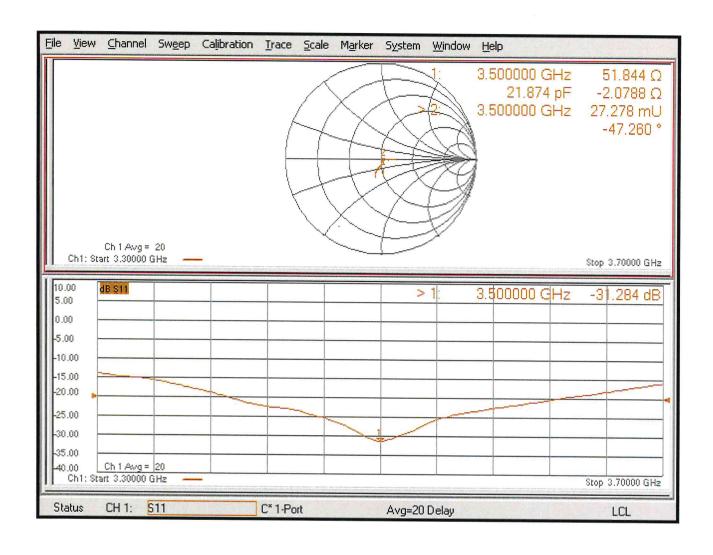
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.16 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 6.78 W/kg; SAR(10 g) = 2.53 W/kg

Smallest distance from peaks to all points 3 dB below = 8.4 mm


Ratio of SAR at M2 to SAR at M1 = 75.2%

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Head TSL

