Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD835V3-1045_Sep18

ALIBRATION CERTIFICATE

Object	CD835V3 - SN: 1	1045	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	September 19, 2	018	
		onal standards, which realize the physical ur robability are given on the following pages a	
All calibrations have been conducte		ry facility: environment temperature (22 ± 3)°	°C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
DAE4	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sel Alge
Approved by:	Katja Pokovic	Technical Manager	letter
			Issued: September 24, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E-field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

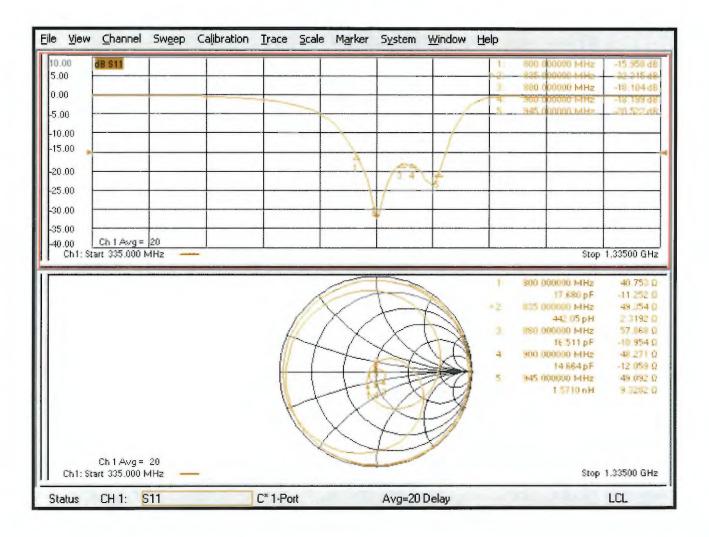
E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	109.3 V/m = 40.77 dBV/m
Maximum measured above low end	100 mW input power	108.2 V/m = 40.68 dBV/m
Averaged maximum above arm	100 mW input power	108.8 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.0 dB	40.8 Ω - 11.3 jΩ
835 MHz	32.3 dB	49.4 Ω + 2.3 jΩ
880 MHz	18.1 dB	57.9 Ω - 11.0 jΩ
900 MHz	18.2 dB	48.3 Ω - 12.1 jΩ
945 MHz	20.5 dB	49.1 Ω + 9.3 jΩ

3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

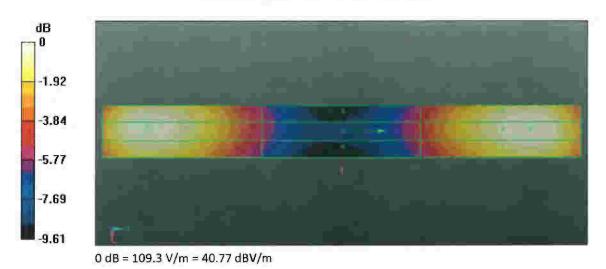
Date: 19.09.2018

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1045

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

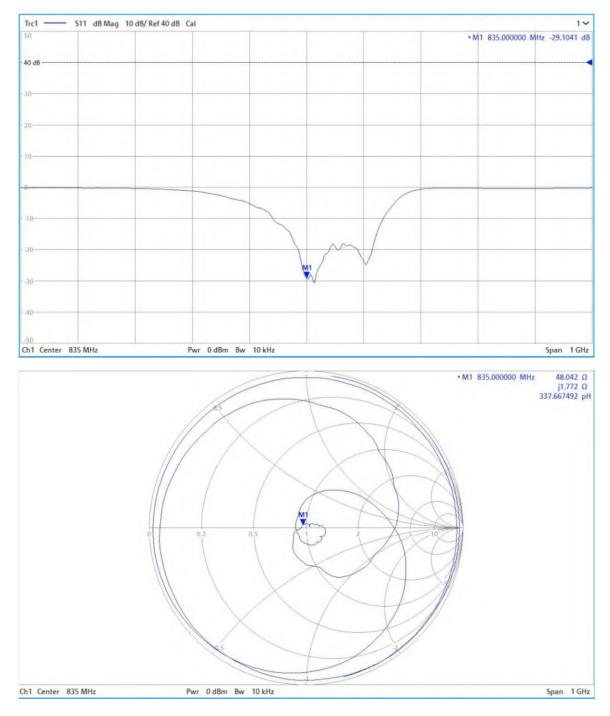
Device Reference Point: 0, 0, -6.3 mm Reference Value = 132.0 V/m; Power Drift = 0.00 dB Applied MIF = 0.00 dB RF audio interference level = 40.77 dBV/m Emission category: M3

MIF scaled E-field

Grid 1 M3	Grid 2 M3	Grid 3 M3
40.25 dBV/m	40.68 dBV/m	40.63 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.68 dBV/m	35.97 dBV/m	35.93 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.47 dBV/m	40.77 dBV/m	40.67 dBV/m

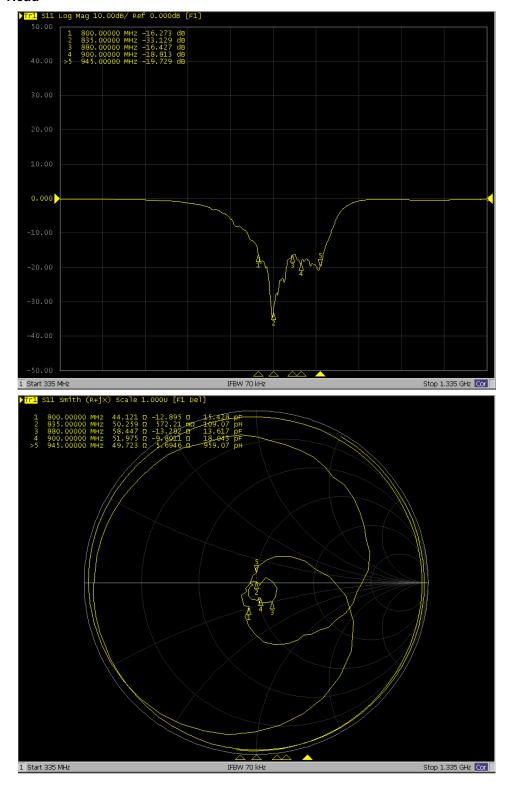
CD835V3, serial no. 1045 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


<Justification of the extended calibration>

CD 835 V3 – serial no. 1045						
	835MHZ					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
09.19.2018	-32.3		49.4		2.3	
09.18.2019	-29.104	-9.89	48.042	-1.358	1.772	-0.528
09.17.2020	-33.129	2.57	50.259	-0.859	0.57221	1.72779

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



<Dipole Verification Data> - D835 V3, serial no. 1045 (Data of Measurement : 09.18.2019) 835 MHz - Head

<Dipole Verification Data> - CD835 V3, serial no. 1045 (Data of Measurement : 9.17.2020) 835 MHz - Head

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accredited by the Swiss Accreditation Service (SAS)

Client Sporton

Certificate No:	CD1880	/3-1038	Sep18
-----------------	--------	---------	-------

CALIBRATION CERTIFICATE

September 19, 24 ts the traceability to nati- inties with confidence pr	onal standards, which realize the physical un robability are given on the following pages ar	nd are part of the certificate.
ts the traceability to nation in the traceability to nation in the second second second second second second se	onal standards, which realize the physical un robability are given on the following pages ar	nd are part of the certificate.
inties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
d in the closed laborator	e feelliku ee ivenmeet temeeteine (00 - 0)0	C and humidity < 70%.
critical for calibration)	y facility: environment temperature (22 \pm 3)°	
ID #	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
ID #	Check Date (in house)	Scheduled Check
SN: GB42420191	in the second	In house check: Oct-20
SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
SN: 832283/011		In house check: Oct-20
SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
Name	Function	Signature
Leif Klysner	Laboratory Technician	Sof Myer
Katja Pokovic	Technical Manager	alles
	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name Leif Klysner	ID # Cal Date (Certificate No.) SN: 104778 04-Apr-18 (No. 217-02672/02673) SN: 103244 04-Apr-18 (No. 217-02672) SN: 103245 04-Apr-18 (No. 217-02673) SN: 103245 04-Apr-18 (No. 217-02673) SN: 5058 (20k) 04-Apr-18 (No. 217-02682) SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) SN: 4013 05-Mar-18 (No. EF3-4013_Mar18) SN: 781 17-Jan-18 (No. DAE4-781_Jan18) ID # Check Date (in house) SN: GB42420191 09-Oct-09 (in house check Oct-17) SN: US38485102 05-Jan-10 (in house check Oct-17) SN: US37295597 09-Oct-09 (in house check Oct-17) SN: 832283/011 27-Aug-12 (in house check Oct-17) SN: US41080477 31-Mar-14 (in house check Oct-17) Name Function Leif Klysner Laboratory Technician

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	- 1000
Scan resolution	dx, dy = 5 mm	
Frequency	1730 MHz ± 1 MHz 1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1730 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	97.0 V/m = 39.74 dBV/m
Maximum measured above low end	100 mW input power	96.0 V/m = 39.65 dBV/m
Averaged maximum above arm	100 mW input power	96.5 V/m ± 12.8 % (k=2)

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	90.3 V/m = 39.11 dBV/m
Maximum measured above low end	100 mW input power	88.8 V/m = 38.97 dBV/m
Averaged maximum above arm	100 mW input power	89.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

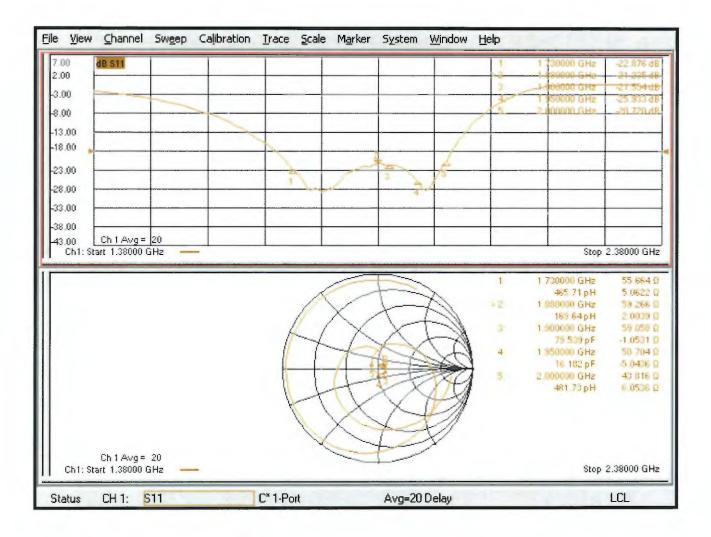
Nominal Frequencies

Frequency	Return Loss	Impedance
1730 MHz	22.9 dB	55,7 Ω + 5.1 jΩ
1880 MHz	21,2 dB	59.3 Ω + 2.0 jΩ
1900 MHz	21.6 dB	59.1 Ω - 1.1 jΩ
1950 MHz	25.9 dB	50.7 Ω - 5.0 jΩ
2000 MHz	20.7 dB	43.8 Ω + 6.1 jΩ

Additional Frequencies

Frequency	Return Loss	Impedance
1730 MHz	22.9 dB	55.7 Ω + 5.1 jΩ

3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1038

Communication System: UID 0 - CW ; Frequency: 1880 MHz, Frequency: 1730 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

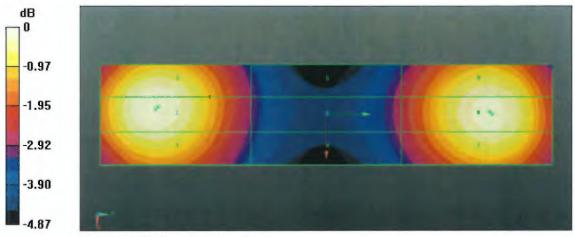
DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz, ConvF(1, 1, 1) @ 1730 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 155.2 V/m; Power Drift = -0.03 dB Applied MIF = 0.00 dB RF audio interference level = 39.11 dBV/m Emission category: M2

MIF scaled E-field


Grid 1 M2	Grid 2 M2	Grid 3 M2
38.75 dBV/m	39.11 dBV/m	39.05 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.11 dBV/m	36.24 dBV/m	36.17 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.77 dBV/m	38.97 dBV/m	38.81 dBV/m

Dipole E-Field measurement @ 1730MHz/E-Scan - 1730MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 168.4 V/m; Power Drift = 0.00 dB Applied MIF = 0.00 dB RF audio interference level = 39.74 dBV/m Emission category: M2

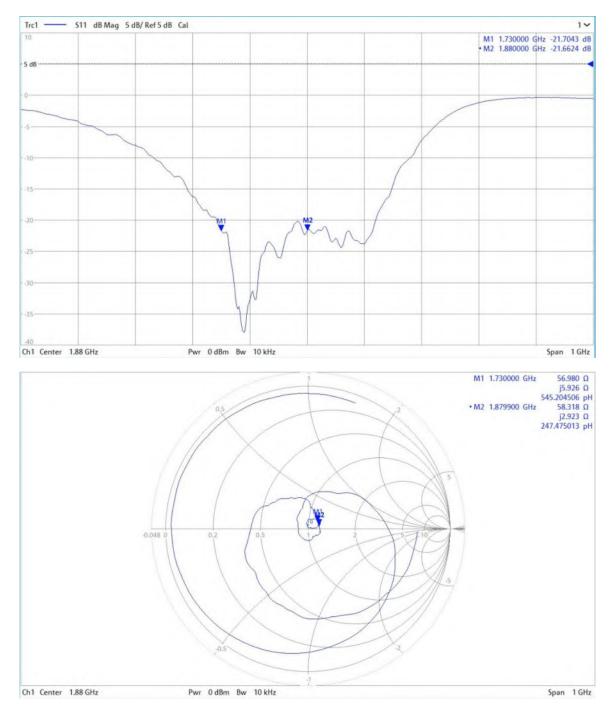
MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
39.27 dBV/m	39.65 dBV/m	39.59 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.98 dBV/m	37.17 dBV/m	37.12 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.5 dBV/m	39.74 dBV/m	39.61 dBV/m

0 dB = 90.29 V/m = 39.11 dBV/m

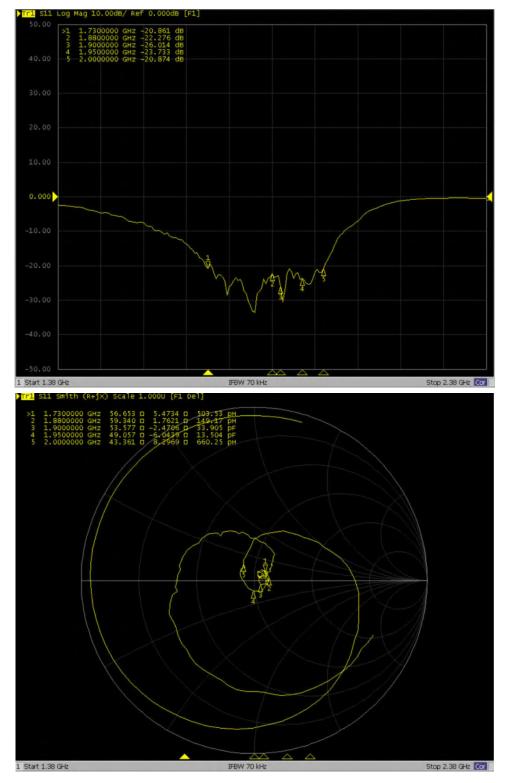
CD1880V3, serial no. 1038 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


<Justification of the extended calibration>

CD1880V3 – serial no. 1038						
		1730MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
09.19.2018	-22.9		55.7		5.1	
09.18.2019	-21.704	-5.22	56.98	1.28	5.926	0.826
09.17.2020	-20.861	-8.9	56.653	-0.953	5.4734	-0.3734
			188	0MHZ		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
09.19.2018	-21.2		59.3		2	
09.18.2019	-21.662	2.18	58.318	-0.982	2.923	0.923
09.17.2020	-22.276	5.08	59.3	-0.04	1.7621	0.2379

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



<Dipole Verification Data> - D1880 V3, serial no. 1038 (Data of Measurement : 09.18.2019) 1880 MHz - Head

<Dipole Verification Data> - CD1880 V3, serial no. 1038 (Data of Measurement : 9.17.2020) 1880 MHz - Head

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton Certificate No: CD2450V3-1186_Jan19

CALIBRATION CERTIFICATE

Object	CD2450V3 - SN:	1186	
Calibration procedure(s)	QA CAL-20.v7 Calibration Proce	edure for Validation Sources in air	r
Calibration date:	January 30, 2019)	
		onal standards, which realize the physical uni	
The measurements and the unce	rainties with confidence p	robability are given on the following pages an	u are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	ry facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
	C without for antibration'		
Calibration Equipment used (M&1	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
	014, 1006 11		
	SN: 103245		
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19
Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19)	Apr-19 Apr-19 Apr-19 Jan-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house)	Apr-19 Apr-19 Apr-19 Jan-20 Jan-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A Power sensor HP 8482A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20

Approved by:

Technical Manager

Issued: January 31, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2450 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2450 MHz

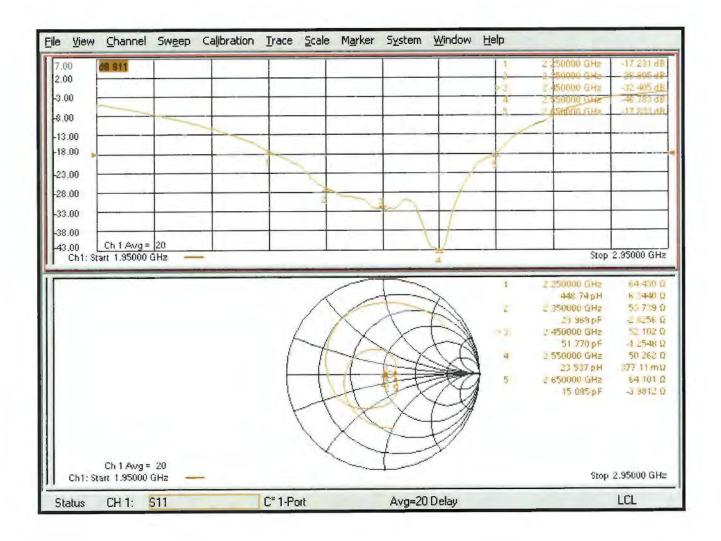
E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	84.5 V/m = 38.54 dBV/m
Maximum measured above low end	100 mW input power	83.7 V/m = 38.45 dBV/m
Averaged maximum above arm	100 mW input power	84.1 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2250 MHz	17.2 dB	64.4 Ω + 6.3 jΩ
2350 MHz	26.9 dB	53.7 Ω - 2.8 jΩ
2450 MHz	32.4 dB	52.1 Ω - 1.3 jΩ
2550 MHz	46.8 dB	50.3 Ω + 0.4 jΩ
2650 MHz	17.8 dB	64.1 Ω - 4.0 jΩ

3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

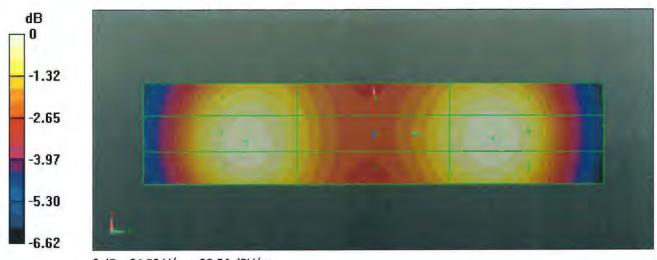
Date: 30.01.2019

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1186

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 72.75 V/m; Power Drift = -0.00 dB Applied MIF = 0.00 dB RF audio interference level = 38.54 dBV/m Emission category: M2

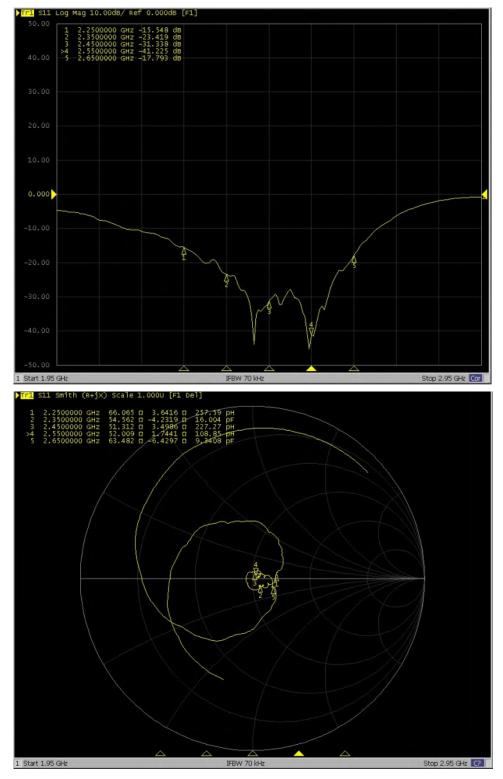
MIF scaled E-field

	Grid 2 M2 38.45 dBV/m	
	Grid 5 M2 37.67 dBV/m	
- a a construction	Grid 8 M2 38.54 dBV/m	1

0 dB = 84.53 V/m = 38.54 dBV/m

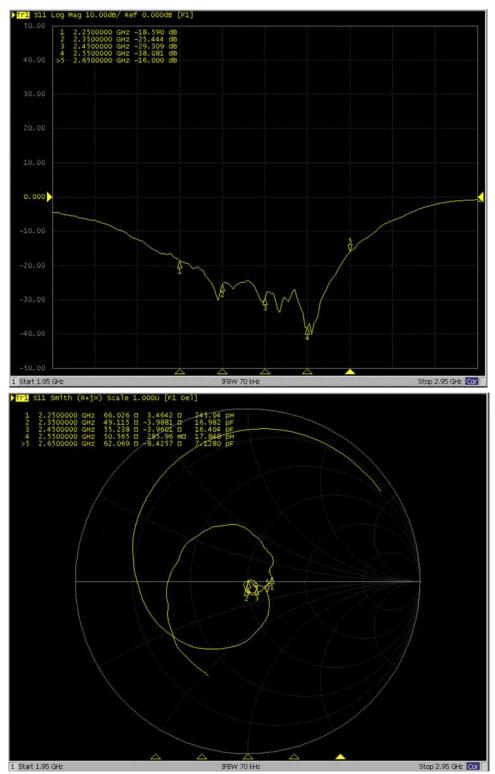
C2450V3, serial no. 1186 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


<Justification of the extended calibration>

CD 2450 V3 – serial no. 1186						
		2450MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
01.30.2019 (Cal. Report)	-32.405		52.102		-1.2548	
01.29.2020 (extended)	-31.338	3.293	51.312	0.79	3.4986	4.7534
01.28.2021 (extended)	-29.309	9.554	55.238	-3.136	-3.9601	2.7053

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



<Dipole Verification Data> - CD2450 V3, serial no. 1186 (Data of Measurement : 01.29.2020)
2450 MHz - Head

<Dipole Verification Data> - CD2450 V3, serial no. 1186 (Data of Measurement : 01.28.2021) 2450 MHz - Head

Calibration Laboratory of Schmid & Partner Engineering AG

Sporton

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: CD2450V3-1158_Jan19

CALIBRATION CERTIFICATE

Obi	ect
ັນ	000

Client

Calibration procedure(s)

QA CAL-20.v7 Calibration Procedure for Validation Sources in air

Calibration date:

January 15, 2019

CD2450V3 - SN: 1158

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	I D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20
Secondary Standards	I I ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sellen
Approved by:	Katja Pokovic	Technical Manager	, AUG
			Issued: January 17, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

ANSI-C63.19-2011 [1]

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole . positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2450 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2450 MHz

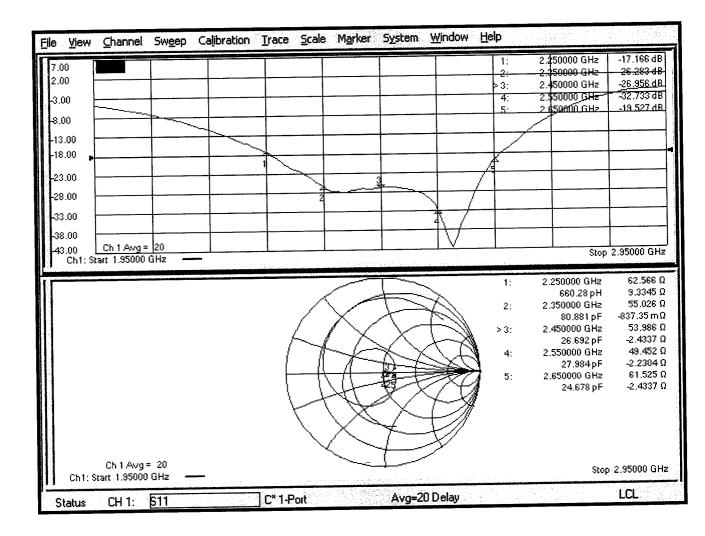
E-field 15 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW input power	85.0 V/m = 38.59 dBV/m	
Maximum measured above low end	100 mW input power	84.6 V/m = 38.55 dBV/m	
Averaged maximum above arm	100 mW input power	84.8 V/m ± 12.8 % (k=2)	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2250 MHz	17.2 dB	62.6 Ω + 9.3 jΩ
2350 MHz	26.3 dB	55.0 Ω - 0.8 jΩ
2450 MHz	27.0 dB	54.0 Ω - 2.4 jΩ
2550 MHz	32.7 dB	49.5 Ω - 2.2 jΩ
2650 MHz	19.5 dB	61.5 Ω - 2.4 jΩ

3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

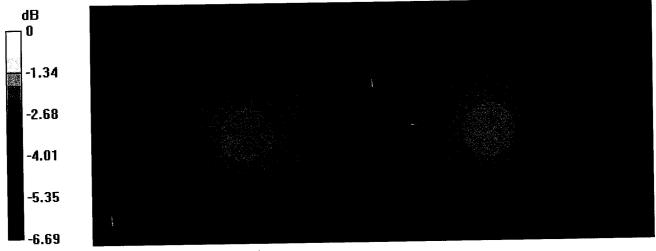
Impedance Measurement Plot

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1158

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

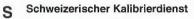

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 72.55 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.59 dBV/m Emission category: M2

MIF scaled E-field

	Grid 2 M2 38.59 dBV/m	Grid 3 M2 38.56 dBV/m
1	Grid 5 M2 37.66 dBV/m	
	Grid 8 M2 38.55 dBV/m	Grid 9 M2 38.47 dBV/m


0 dB = 84.99 V/m = 38.59 dBV/m

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: CD2600V3-1010_Mar19

ALIBRATION	CERTIFICATI	E			
Object	CD2600V3 - SN: 1010				
Calibration procedure(s)	QA CAL-20.v7 Calibration Proce	edure for Validation Sources in air			
Calibration date:	March 14, 2019				
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages and ry facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19		
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19		
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19		
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19		
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19		
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20		
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20		
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20		
	CNI- 11007005507	09-Oct-09 (in house check Oct-17)	In house check: Oct-20		
	SN: US37295597	US-OCI-US (III HOUSE CHECK OCI-I7)	In nouse check. Oct-20		
Power sensor HP 8482A	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20		
Power sensor HP 8482A RF generator R&S SMT-06					
Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20 In house check: Oct-19		
Power sensor HP 8482A RF generator R&S SMT-06	SN: 832283/011 SN: US41080477	27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18)	In house check: Oct-20		
Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A	SN: 832283/011 SN: US41080477 Name	27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18) Function	In house check: Oct-20 In house check: Oct-19		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

ANSI-C63.19-2011 [1]

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-v-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

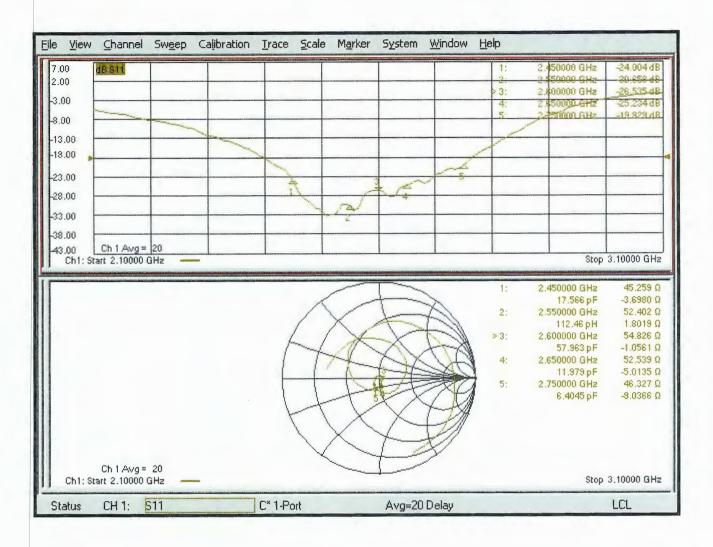
E-field 15 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW input power	84.9 V/m = 38.58 dBV/m	
Maximum measured above low end	100 mW input power	84.0 V/m = 38.49 dBV/m	
Averaged maximum above arm	100 mW input power	84.5 V/m ± 12.8 % (k=2)	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance	
2450 MHz	24.0 dB	45.3 Ω - 3.7 jΩ	
2550 MHz	30.7 dB	52.4 Ω + 1.8 jΩ	
2600 MHz	26.5 dB	54.8 Ω - 1.1 jΩ	
2650 MHz	25.2 dB	52.5 Ω - 5.0 jΩ	
2750 MHz	19.9 dB	46.3 Ω - 9.0 jΩ	

3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

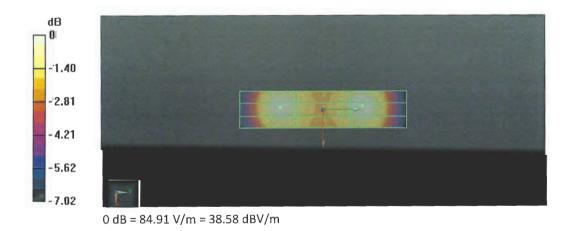
Date: 14.03.2019

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1010

Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipóle E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm

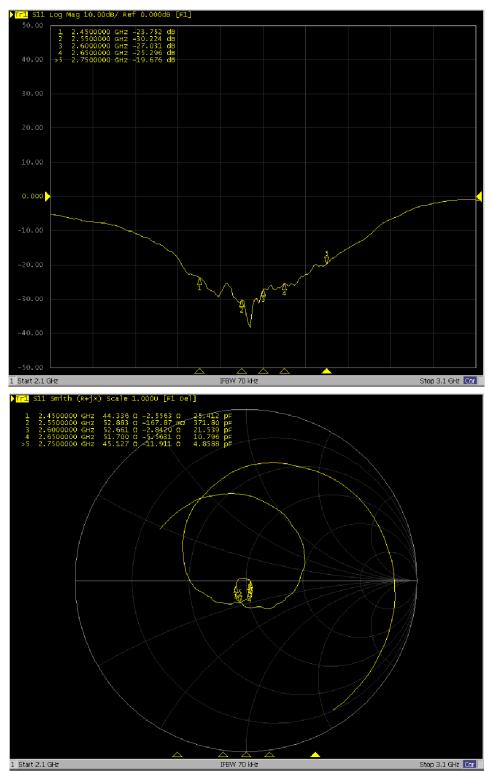
Reference Value = 62.41 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.58 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.15 dBV/m	38.49 dBV/m	38.45 dBV/m
Grid 4 M2	Grid 5 M2	(Grid 6 M2
37.72 dBV/m	38.04 dBV/m	38.01 dBV/m
Grid 7 M2	Grid 8 MZ	Grid 9 M2
38.23 dBV/m	38.58 dBV/m	38.54 dBV/m

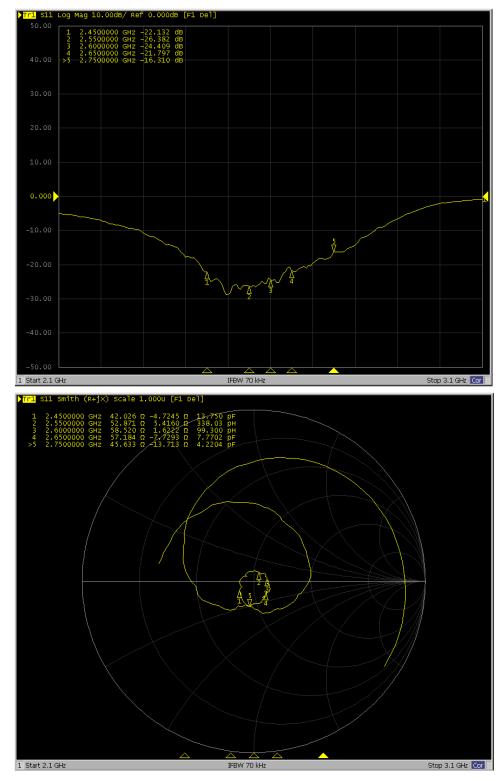
CD2600V3, serial no. 1010 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


<Justification of the extended calibration>

CD 2600 V3 – serial no. 1010						
		2600MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.14.2019 (Cal. Report)	-26.535		54.826		-1.0561	
03.13.2020 (extended)	-27.031	1.87	52.661	2.165	-2.842	1.7859
03.12.2021 (extended)	-24.409	-8.01	58.52	-3.694	1.6222	-2.6783

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



<Dipole Verification Data> - CD2600 V3, serial no. 1010 (Data of Measurement : 03.13.2020) 2600 MHz - Head

<Dipole Verification Data> - CD2600 V3, serial no. 1010 (Data of Measurement : 3.12.2021) 2600 MHz - Head

