

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT2173-1
FCC ID	: IHDT56ZV3
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	_: Jul. 08, 2021 ~ Aug. 03, 2021

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Alexang

ACCREDITED Cert #5145.02

Approved by: Alex Wang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SUI	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.5
	1.5	Modification of EUT	.5
	1.6	Specification of Accessory	.6
	1.7	Testing Location	.7
	1.8	Test Software	.7
	1.9	Applicable Standards	.8
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.9
	2.1	Carrier Frequency Channel	.9
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	
	3.1	Number of Channel Measurement	13
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	21
	3.4	20dB Bandwidth Measurement	
	3.5	Output Power Measurement	29
	3.6	Conducted Band Edges Measurement	30
	3.7	Conducted Spurious Emission Measurement	37
	3.8	Radiated Band Edges and Spurious Emission Measurement	47
	3.9	AC Conducted Emission Measurement	51
	3.10	Antenna Requirements	53
4	LIST	OF MEASURING EQUIPMENT	54
5	UNCE	ERTAINTY OF EVALUATION	55
		X A. CONDUCTED TEST RESULTS	
API	PEND	X B. AC CONDUCTED EMISSION TEST RESULT	
API	PEND	X C. RADIATED SPURIOUS EMISSION	
API	PEND	X D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR162325A	Rev. 01	Initial issue of report	Aug. 24, 2021

SUMMARY OF	TEST RESULT
------------	-------------

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
-	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 15.19 dB at 30.97 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.14 dB at 0.155 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZV3

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

	Product Feature			
Equipment	Mobile Cellular Phone			
Brand Name	Motorola			
Model Name	XT2173-1			
FCC ID	IHDT56ZV3			
	Conducted: 355302640012671/355302640012689			
IMEI Code	Conduction: 354943970012434/354943970012442			
	Radiation: 355302640010311/355302640010329			
HW Version	DVT2			
SW Version	RRWB31.Q3-25			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 10.80 dBm (0.0120 W) Bluetooth EDR (2Mbps) : 10.40 dBm (0.0110 W) Bluetooth EDR (3Mbps) : 10.50 dBm (0.0112 W)		
Antenna Type / Gain	PIFA Antenna type with gain -3.4 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Specification of Accessory

	Specification of Accessory					
AC Adapter 1(US)	Brand Name	Motorola(Salcomp)	Model Name	MC-101		
AC Adapter 1(EU)	Brand Name	Motorola(Salcomp)	Model Name	MC-102		
AC Adapter 1(UK)	Brand Name	Motorola(Salcomp)	Model Name	MC-103		
AC Adapter 1(AR)	Brand Name	Motorola(Salcomp)	Model Name	MC-106		
AC Adapter 1(CHILE)	Brand Name	Motorola(Salcomp)	Model Name	MC-109		
AC Adapter 2(BR)	Brand Name	Motorola(Chenyang)	Model Name	MC-107		
AC Adapter 3(US)	Brand Name	Motorola(Aohai)	Model Name	MC-101		
AC Adapter 3(EU)	Brand Name	Motorola(Aohai)	Model Name	MC-102		
AC Adapter 3(UK)	Brand Name	Motorola(Aohai)	Model Name	MC-103		
AC Adapter 3(AR)	Brand Name	Motorola(Aohai)	Model Name	MC-106		
AC Adapter 4(BR)	Brand Name	Motorola(Flex)	Model Name	MC-107		
AC Adapter 5(BR)	Brand Name	Motorola(Salcomp)	Model Name	MC-107		
AC Adapter 6(IN)	Brand Name	Motorola(Aohai)	Model Name	MC-204		
AC Adapter 7(IN)	Brand Name	Motorola(Chenyang)	Model Name	MC-204		
Battery 1	Brand Name	Motorola(Sunwoda)	Model Name	JK50		
Battery 2	Brand Name	Motorola(SCUD)	Model Name	JK50		
Battery 3	Brand Name	Motorola(ATL)	Model Name	JK50		
Earphone 1	Brand Name	Motorola (NEW LEADER)	Model Name	MH202(S928D09678)		
Earphone 2	Brand Name	Motorola(Lyand)	Model Name	MH191(SH38C81577)		
Earphone 3	Brand Name	Motorola(LCHSE)	Model Name	MH191(SH38C81576)		
USB Cable 1	Brand Name	Motorola(Saibao)	Model Name	SLQ-A167A		
USB Cable 2	Brand Name	Motorola (Jieye)	Model Name	JY-C03-272		

1.7 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 2153	Jiangsu Province 215300 People's Republic of China			
Test Sile Location	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Sito No	ECC Designation No	FCC Test Firm		
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.		
	CO01-KS	CN1257	314309		

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International (Shenzhen) Inc.						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
Test Site No.	Sporton Site No.	Sporton Site No. FCC Designation No. FCC Test Firm Registration No.					
	TH01-SZ	CN1256	421272				
Test Firm	Sporton International (Sh	enzhen) Inc.					
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398						
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Site No.	Tee Designation No.	Registration No.				
	03CH02-SZ	CN1256	421272				

1.8 Test Software

lt	tem	Site	Manufacturer	Name	Version
	1.	CO01-KS	AUDIX	E3	6.2009-8-24
	2.	03CH02-SZ	AUDIX	E3	6.2009-8-24a

1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

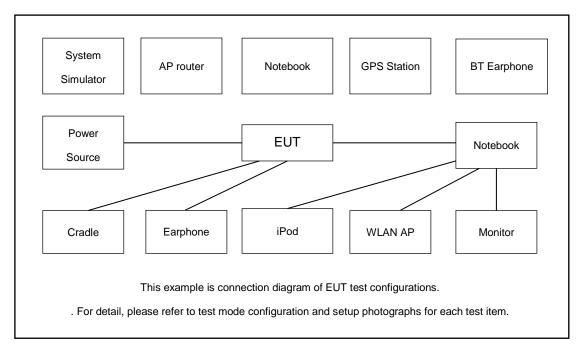
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


Summary table of Test Cases								
	Data Rate / Modulation							
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps					
	GFSK	π/4-DQPSK	8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
	d Bluetooth BR 1Mbps GFSK Mode 1: CH00_2402 MHz							
Radiated								
Test Cases	Mode 2: CH39_2441 MHz							
	Mode 3: CH78_2480 MHz							
AC								
Conducted	Mode 1 : GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable 2(Charging							
Emission	from Adapter 3) + Battery 1 + Earphone 3							
Remark:								
1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate								
has the highest RF output power at preliminary tests, and no other significantly frequencies found in								
conducted spurious emission.								

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. The tests were performed with accessories from the worst accessories of Part 15B.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m
2.	BT Base Station	Anritus	8852B	N/A	N/A	Unshielded,1.8m
3.	SD Card	Kingston	8GB	N/A	N/A	N/A
4.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
5.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
6.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss1.8dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ =1.8 +10= 11.8 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

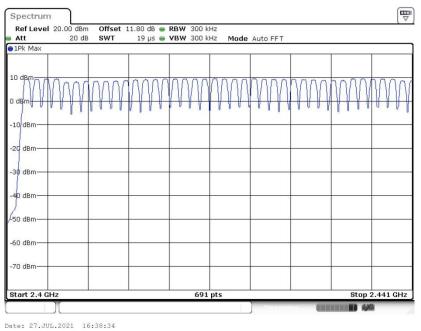
3.1.2 Measuring Instruments

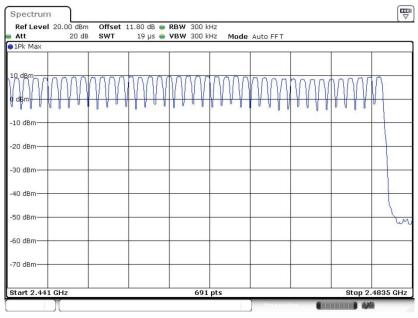
The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer


3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

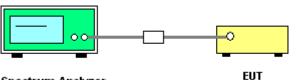
Number of Hopping Channel Plot on Channel 00 - 78

Date: 27.JUL.2021 16:38:58

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

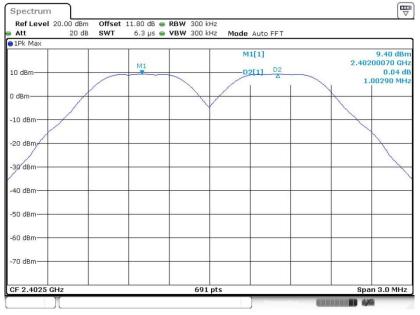
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

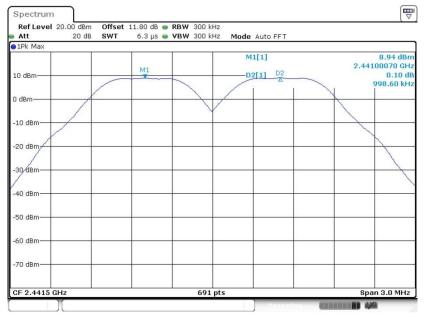
3.2.4 Test Setup

Spectrum Analyzer

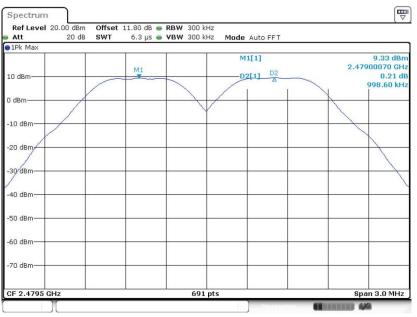


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

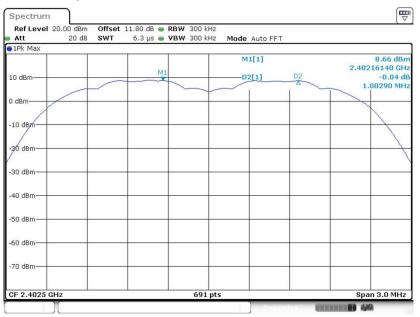

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 27.JUL.2021 16:42:16

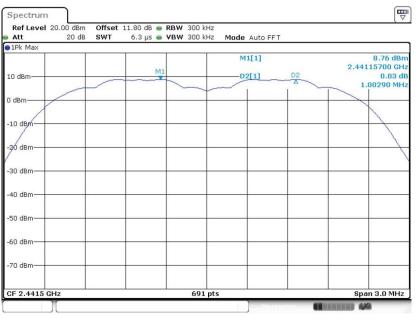
Channel Separation Plot on Channel 39 - 40

Date: 27.JUL.2021 16:45:06



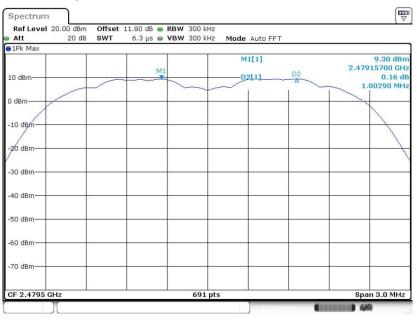
Channel Separation Plot on Channel 77 - 78

Date: 27.JUL.2021 16:46:34


<2Mbps>

Channel Separation Plot on Channel 00 - 01

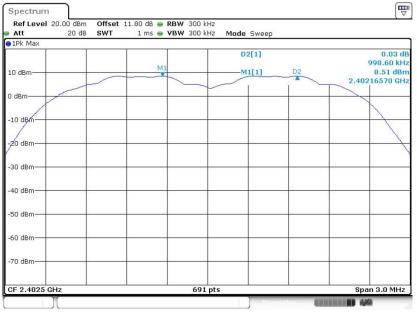
Date: 27.JUL.2021 16:48:20



Channel Separation Plot on Channel 39 - 40

Date: 27.JUL.2021 16:50:00

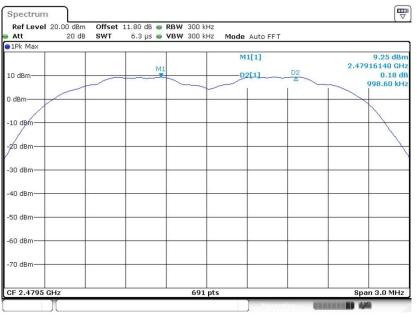
Channel Separation Plot on Channel 77 - 78



Date: 27.JUL.2021 16:53:56

<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 28.JUL.2021 15:25:51

Channel Separation Plot on Channel 39 - 40

Date: 27.JUL.2021 16:58:52

Channel Separation Plot on Channel 77 - 78

Date: 27.JUL.2021 17:00:04

3.3 **Dwell Time Measurement**

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

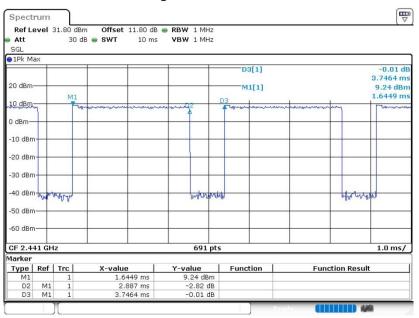
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 23.JUL.2021 11:25:37

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak;

Trace = max hold.

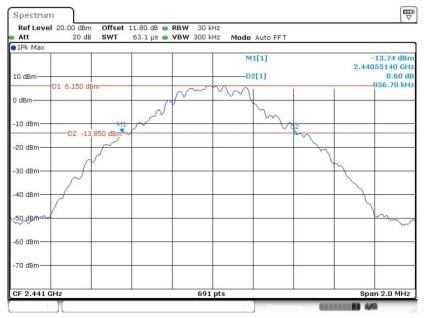
5. Measure and record the results in the test report.

3.4.4 Test Setup

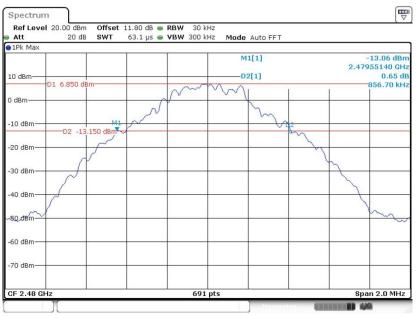
Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.


<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 27.JUL.2021 15:45:40

20 dB Bandwidth Plot on Channel 39

Date: 27.JUL.2021 15:48:15

20 dB Bandwidth Plot on Channel 78

Date: 27.JUL.2021 15:50:36

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 27.JUL.2021 16:04:56



20 dB Bandwidth Plot on Channel 39

Date: 28.JUL.2021 13:45:12

20 dB Bandwidth Plot on Channel 78

Date: 27.JUL.2021 15:55:31

<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 27.JUL.2021 16:07:13

Date: 27.JUL.2021 15:59:59

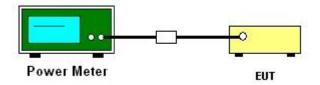
20 dB Bandwidth Plot on Channel 78

Date: 27.JUL.2021 15:57:46

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

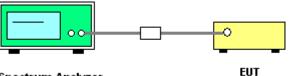
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

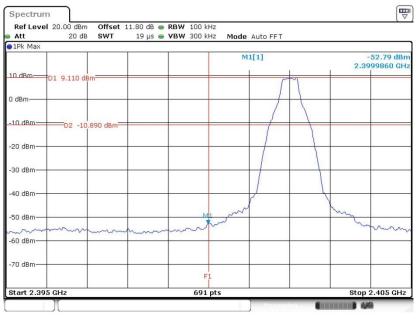

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

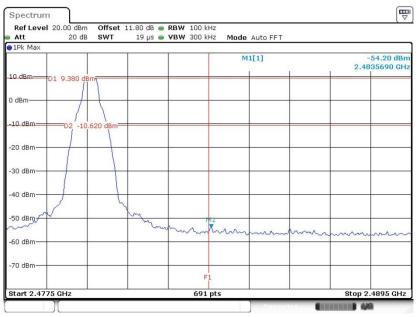
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

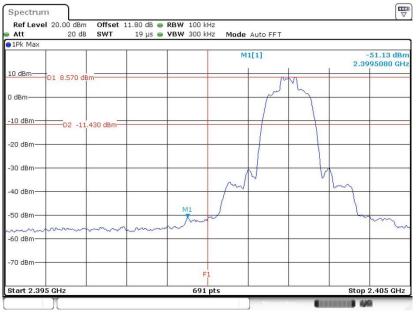
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

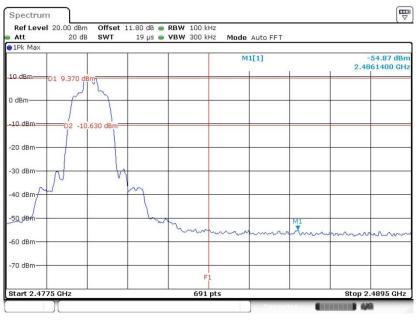
Low Band Edge Plot on Channel 00

Date: 27.JUL.2021 16:08:33

High Band Edge Plot on Channel 78



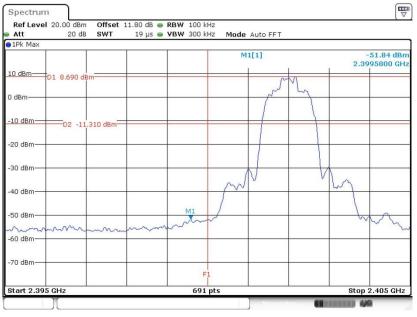
Date: 27.JUL.2021 16:12:56


<2Mbps>

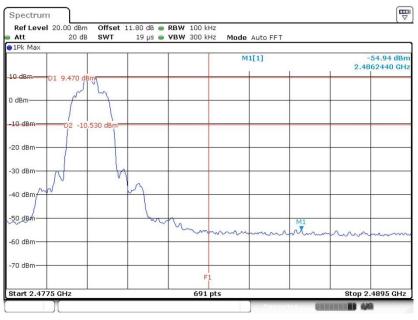
Low Band Edge Plot on Channel 00

Date: 27.JUL.2021 16:09:32

High Band Edge Plot on Channel 78



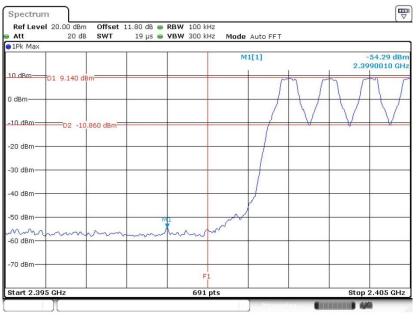
Date: 27.JUL.2021 16:12:00


<3Mbps>

Low Band Edge Plot on Channel 00

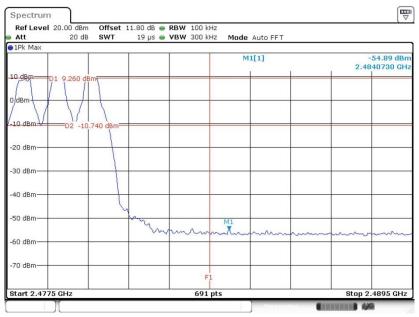
Date: 27.JUL.2021 16:10:22

High Band Edge Plot on Channel 78



Date: 27.JUL.2021 16:11:20

3.6.6 Test Result of Conducted Hopping Mode Band Edges

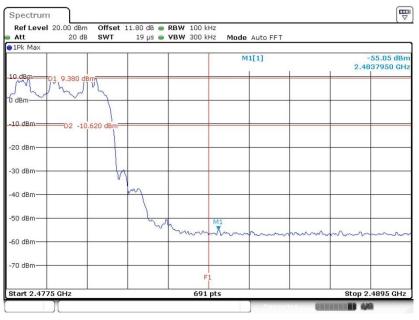

<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 27.JUL.2021 16:21:44

Hopping Mode High Band Edge Plot

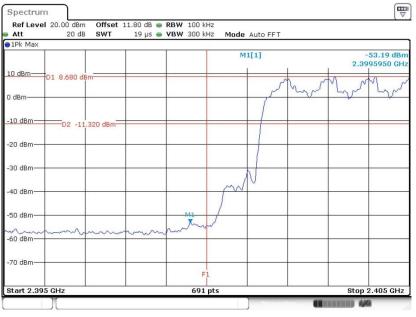
Date: 27.JUL.2021 16:27:58


<2Mbps>

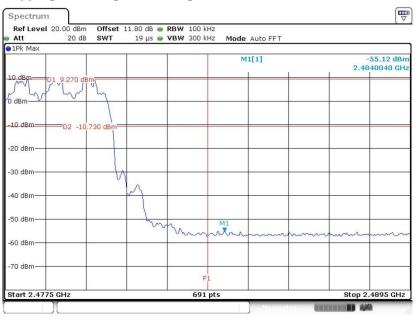
Hopping Mode Low Band Edge Plot

Date: 27.JUL.2021 16:23:54

Hopping Mode High Band Edge Plot



Date: 27.JUL.2021 16:28:57


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 27.JUL.2021 16:19:28

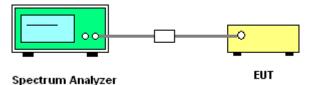
Hopping Mode High Band Edge Plot

Date: 27.JUL.2021 16:30:35

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

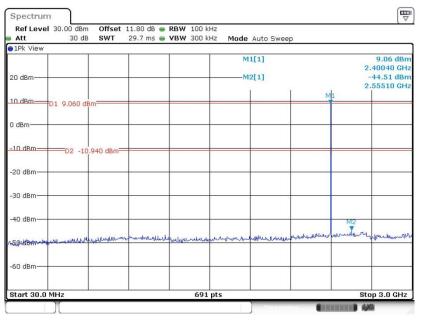

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

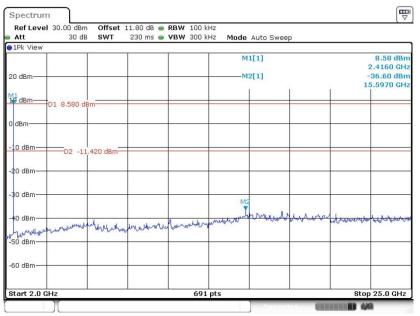
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

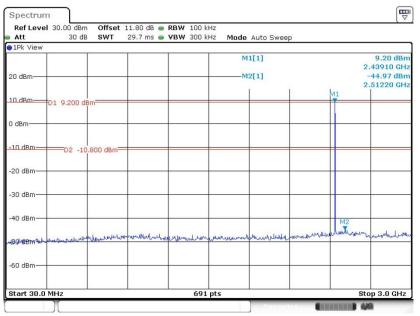
3.7.4 Test Setup


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZV3

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

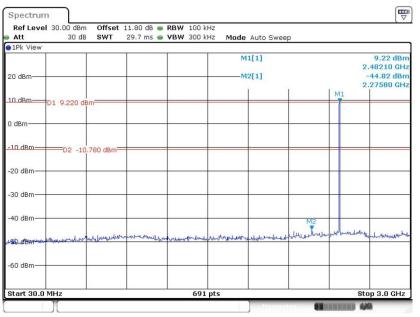
CSE Plot on Ch 00 between 30MHz ~ 3 GHz


Date: 28.JUL.2021 14:01:57

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 28.JUL.2021 14:02:35

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 28.JUL.2021 14:07:30

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

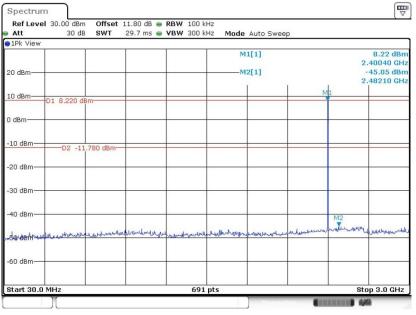
Att	30 dB SWT	230 ms 👄	VBW 300 k	Hz Mode	Auto Sweep)		
1Pk View					1[1] 2[1]			9.03 dBr 2.4490 GH -36.23 dBr
41	9.030 dBm				-[+]			8.0270 GH
) dBm								
10 dBm	-D2 -10.970 dBr	n						
20 dBm								
30 dBm				ab	Mar Id	2		
40 dBm Myrenner Mar 50 dBm	www.www.www.www.www.www.www.www.	annonometric	Managener	whith		Server and and and	ulynnautht	aller aller a
60 dBm		_						
				pts				25.0 GHz

Date: 28.JUL.2021 14:08:05

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 28.JUL.2021 14:12:26

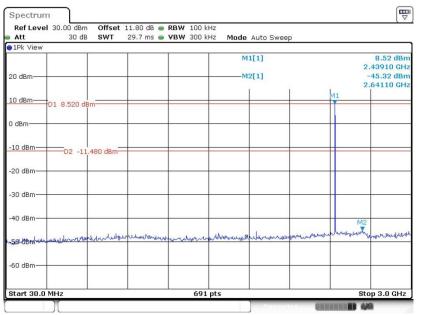
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att 30 dB	SWT 23	30 ms 🕳 VBW	300 kHz Mod	e Auto Sweep		
20 dBm				M1[1] M2[1]		9.03 dBr 2.4830 GH -37.18 dBr
M1 18 dBm-D1 9.030 dB	m					17.9930 GH
D dBm						
10.dBm02 -10	.970 dBm					
20 dBm						
30 dBm				Menne	A . Mum March 1	
40 dBm 	Month work to	without here	willing			al and a constraint and a
60 dBm	-					
Start 2.0 GHz			691 pts			Stop 25.0 GHz

Date: 28.JUL.2021 14:13:03

<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

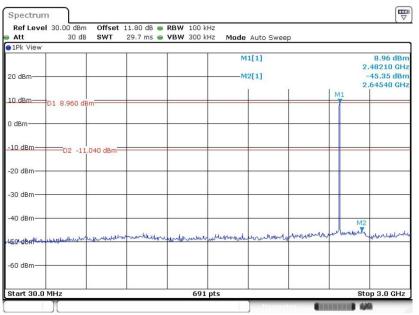

Date: 28.JUL.2021 14:04:09

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Ref Level 30			iB 👄 RBW 100				
Att 1Pk View	30 dB S	WT 230 n	ns 🖷 VBW 300	KHZ Mode	Auto Sweep		
20 dBm-					1[1] 2[1]	12	6.83 dBn 2.4160 GH: -36.84 dBn 17.6610 GH:
10 dBm-D1	6.830 dBm-						
D dBm							
10 dBm	-D2 -13.170	dBm					
-20 dBm							
-30 dBm					M2		
40 dBm	winner	unnunder	www.	refune when he had	www.	or hand when	www.
50 dBm							
-60 dBm					· · · · · ·		
Start 2.0 GHz			69	1 pts			Stop 25.0 GHz

Date: 28.JUL.2021 14:04:41

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 28.JUL.2021 14:09:10

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

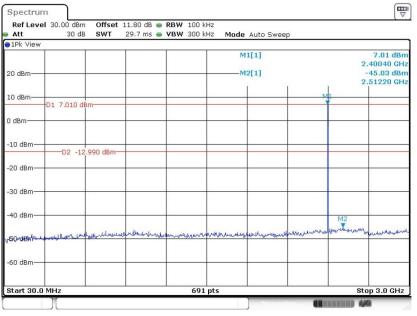
Att 3	O dB SWT	230 ms 🕳 🖌	BW 300 ki	Iz Mode	Auto Sweep	0		
1Pk View								
				M	1[1]			8.17 dBr 2.4490 GH
20 dBm				M	2[1]			-36.84 dBr
								7.6270 GH
dBm D1 8.17								
DI 8.1.								
dBm								
10 dBmD2	-11.830 dBm-							
20 dBm-								
30 dBm					M2		5	
(0.d0m				ын	NAN WAR	webs wheel		
40 dBm	delinater women when	mon which and	medurant	anan	A + And non a	O Chille Conte + -	Contraction	M. Annana M.
50 dBm								
60 dBm								
Start 2.0 GHz			691	nte			Pto	p 25.0 GHz
atart 2.0 GHZ			091	pts			310	J 23.0 GH

Date: 28.JUL.2021 14:09:48

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 28.JUL.2021 15:49:55

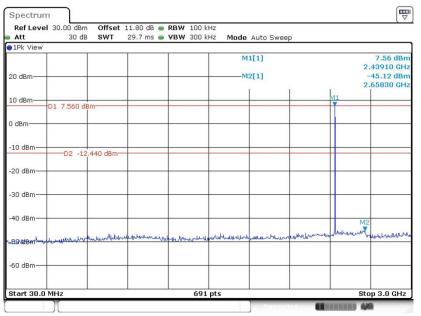
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att 30	dB SWT 23	30 ms 👄 VBW 300	kHz Mode Auto Sv	veep	
1Pk View			1		
			M1[1]		8.13 dBn 2.4830 GH
20 dBm			M2[1]		-36.89 dBr
				Τ T	18.0270 GH
10 dBm-D1 8.130	dBm			_	
0 dBm					
10 dBm	11.870 dBm				
-20 dBm-					
-30 dBm					
				MP	
40 dBm	well a la la	HIN. LAMAN	hubbergerand	on how when the	pedrum with wall
Monthehalder	a armoniar	amond by an an	1		
-50 dBm					
-60 dBm					
00 00 00					
Start 2.0 GHz		69	1 pts		Stop 25.0 GHz
		05	I pts		0000 20.0 0112

Date: 28.JUL.2021 15:50:25

<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

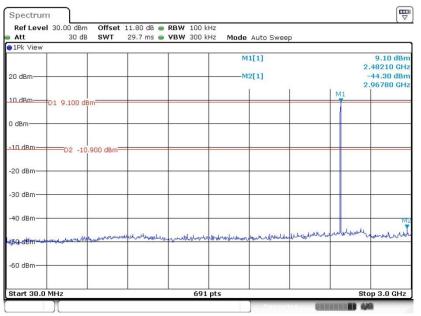

Date: 28.JUL.2021 14:05:27

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

	30.00 dBm		11.80 dB 👄						
Att	30 dB	SWT	230 ms 👄	VBW 300 k	Hz Mode	Auto Swee	ер		
1Pk View				r					
					M	1[1]			6.78 dBn 2.4160 GH;
20 dBm					M	2[1]			37.24 dBn
								1.	5.8630 GH
	D1 6.780 dB	m				-			
dBm-									
-10 dBm-									
	D2 -13.	220 dBm-	_						
-20 dBm-									
-20 aBm-						×			
-30 dBm					N	10	C		A.
-40 dBm	nd.n	A	wanyorthe	Mu mouliner	mound	A WARD	A A A A A	renner	the mathematical
	french the	mound	Mardram or						
-50 dBm							-		
-60 dBm				-					
Start 2.0 G	Hz			691	pts			Stor	25.0 GHz
Start 2.0 G	Hz			691	pts			Stop	25.0 GH

Date: 28.JUL.2021 14:06:08

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 28.JUL.2021 15:38:39

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	BO dB SWT	230 ms 👄	VBW 300 k	Hz Mode	Auto Sweep	5		
1Pk View	-		r					
				M	2[1]			-36.86 dBn 7.9270 GH
20 dBm				M	1[1]			8.13 dBr
					I I		ĩ	2.4490 GH
dBm01_8.1	30 dBm							
dBm-								
10 dBm D2	2 -11.870 dBm-							
20 dBm								
30 dBm	-							
					Ma			
40 dBm	La color	J.	a sak bulak	ductory to vot	troubly	our who	Munum	mandhille
40 dBm-	and when and	manuman	Maranar					
50 dBm								1
60 dBm								
ou ubili								
Start 2.0 GHz			691	pts			Sto	p 25.0 GHz

Date: 28.JUL.2021 15:41:55

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 28.JUL.2021 15:35:03

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att 30 dB S	WT 230 ms 👄 VE	3W 300 kHz Mod	e Auto Sweep	
1Pk View			M1[1]	9.08 dBr
20 dBm			M2[1]	2.4830 GH -36.89 dBr 17.6270 GH
D1 9.080 dBm				
) dBm				
10.dBm	dBm			
20 dBm				
30 dBm			M2	
40 dBm			my any try any	made may work the to the start
40 dBm Morrow Marraw With July 50 dBm	manunum	Markan .		a cholor with the second
60 dBm				
Start 2.0 GHz		691 pts		Stop 25.0 GHz

Date: 28.JUL.2021 15:35:36

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

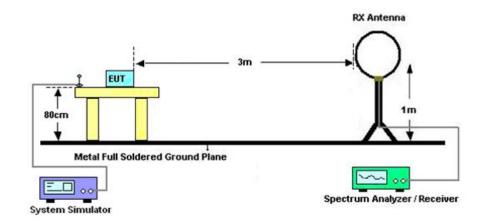
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

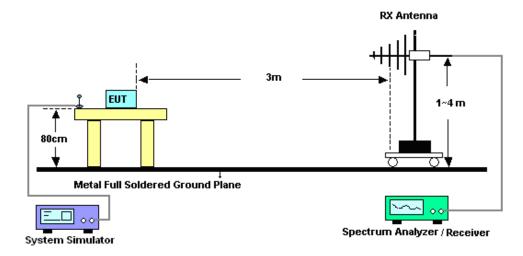
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

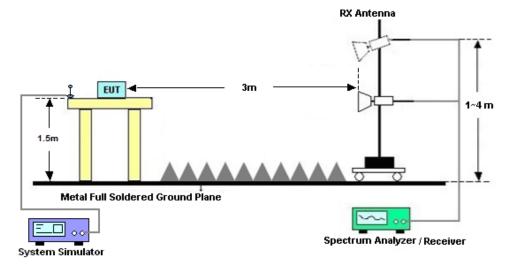
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.78dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZV3 Page Number : 49 of 55 Report Issued Date : Aug. 24, 2021 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

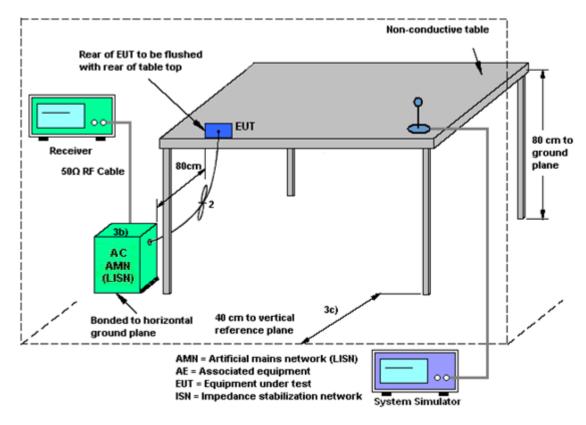
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 08, 2021	Jul. 23, 2021~ Jul. 28, 2021	Apr. 07, 2022	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 25, 2020	Jul. 23, 2021~ Jul. 28, 2021	Dec. 24, 2021	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 25, 2020	Jul. 23, 2021~ Jul. 28, 2021	Dec. 24, 2021	Conducted (TH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 13, 2021	Aug. 03, 2021	Jul. 13, 2022	Radiation (03CH02-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 22, 2020	Aug. 03, 2021	Jun. 21, 2022	Radiation (03CH02-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Jul. 15, 2021	Aug. 03, 2021	Jul. 14, 2022	Radiation (03CH02-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 25, 2021	Aug. 03, 2021	Jul. 24, 2022	Radiation (03CH02-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 11, 2021	Aug. 03, 2021	Apr. 10, 2022	Radiation (03CH02-SZ)
LF Amplifier	Burgeon	BPA-530	102211	0.01~3000Mhz	Oct. 16, 2020	Aug. 03, 2021	Oct. 15, 2021	Radiation (03CH02-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 16, 2020	Aug. 03, 2021	Oct. 15, 2021	Radiation (03CH02-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Gh z	Oct. 16, 2020	Aug. 03, 2021	Oct. 15, 2021	Radiation (03CH02-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 13, 2021	Aug. 03, 2021	Jul. 13, 2022	Radiation (03CH02-SZ)
AC Power Source	Chroma	61601	616010002 470	N/A	NCR	Aug. 03, 2021	NCR	Radiation (03CH02-SZ)
Turn Table	Chaintek	T-200	N/A	0~360 degree	NCR	Aug. 03, 2021	NCR	Radiation (03CH02-SZ)
Antenna Mast	Chaintek	MBS-400	N/A	1 m~4 m	NCR	Aug. 03, 2021	NCR	Radiation (03CH02-SZ)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 21, 2021	Jul. 08, 2021	Apr. 20, 2022	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 17, 2020	Jul. 08, 2021	Oct. 16, 2021	Conduction (CO01-KS)
AC LISN	R&S	ENV216	100334	9kHz~30MHz	Oct. 17, 2020	Jul. 08, 2021	Oct. 16, 2021	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 17, 2020	Jul. 08, 2021	Oct. 16, 2021	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	3.106

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5 4 J D
of 95% (U = 2Uc(y))	5.1dB

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR162325A

Appendix A. Test Result of Conducted Test Items

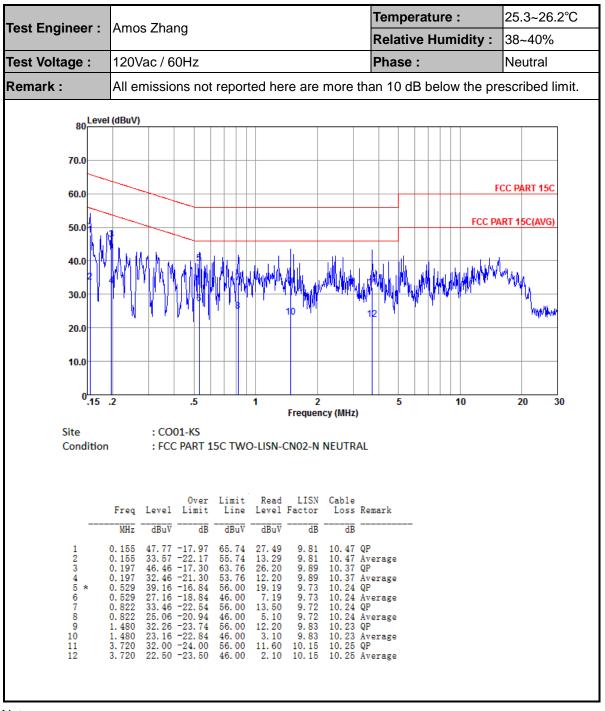
Test Engineer:	Ma Jie	Temperature:	21~25	°C
Test Date:	2021/7/23~2021/7/28	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail				
DH	1Mbps	1	0	2402	0.857	0.761	1.003	0.5711	Pass				
DH	1Mbps	1	39	2441	0.857	0.758	0.999	0.5711	Pass				
DH	1Mbps	1	78	2480	0.857	0.758	0.999	0.5711	Pass				
2DH	2Mbps	1	0	2402	1.250	1.140	1.003	0.8336	Pass				
2DH	2Mbps	1	39	2441	1.250	1.140	1.003	0.8336	Pass				
2DH	2Mbps	1	78	2480	1.250	1.143	1.003	0.8336	Pass				
3DH	3Mbps	1	0	2402	1.263	1.146	0.999	0.8423	Pass				
3DH	3Mbps	1	39	2441	1.259	1.143	0.999	0.8393	Pass				
3DH	3Mbps	1	78	2480	1.259	1.146	0.999	0.8393	Pass				

	<u>TEST RESULTS DATA</u> Dwell Time											
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail						
Nomal	79	106.67	2.89	0.31	0.4	Pass						
AFH	20	53.33	2.89	0.15	0.4	Pass						

<u>TEST RESULTS DATA</u> Peak Power Table												
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result							
	0	1	10.60	20.97	Pass							
DH5	39	1	10.70	20.97	Pass							
	78	1	10.80	20.97	Pass							
	0	1	9.90	20.97	Pass							
2DH5 [39	1	10.00	20.97	Pass							
ſ	78	1	10.40	20.97	Pass							
	0	1	10.00	20.97	Pass							
3DH5	39	1	10.20	20.97	Pass							
ſ	78	1	10.50	20.97	Pass							

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)											
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)								
	0	1	9.80	1.15								
DH5	39	1	10.00	1.15								
ĺ	78	1	10.00	1.15								
	0	1	7.40	1.14								
2DH5	39	1	7.50	1.14								
ľ	78	1	7.80	1.14	1							
	0	1	7.40	1.13	1							
3DH5	39	1	7.50	1.13	1							
ľ	78	1	7.80	1.13	1							


<u>TEST RESULTS DATA</u> Number of Hopping Frequency										
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail							
79	20	> 15	Pass							

Appendix B. AC Conducted Emission Test Results

Test Engineer : Amos Zhang Relative Humidity : 38-4 Test Voltage : 120Vac / 60Hz Phase : Line Remark : All emissions not reported here are more than 10 dB below the prescrib 80 Evel (dBuV) FCC PART 60.0 FCC PART FCC PART 50.0 FCC PART FCC PART 30.0 Test Voltage : Test Voltage : Test Voltage :	0%	
Remark : All emissions not reported here are more than 10 dB below the prescrib	38~40%	
80 Eevel (dBuV) 70.0 60.0 60.0 50.0 40.0 50.0 10 10 10 10 10 10 10 10 10 1		
70.0 60.0 50.0 40.0 70.0 FCC PART 11 11 12	ed limit.	
70.0 60.0 50.0 40.0 50.0 11 12		
70.0 60.0 50.0 40.0 50.0 40.0 50.0 11 12 12		
60.0 50.0 40.0 30.0 50.0 40.0 50.0		
50.0 50.0 40.0 30.0 12		
	r 15C	
	(AVG)	
	"(m)	
20.0		
10.0		
0.15 .2 .5 1 2 5 10 20 Frequency (MHz)	30	
Site : CO01-KS		
Condition : FCC PART 15C TWO-LISN-CN02-L LINE		
Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Remark		
MHz dBuV dB dBuV dBuV dB dB		
1 * 0.155 55.60 -10.14 65.74 35.49 9.64 10.47 QP 2 0.155 39.40 -16.34 55.74 19.29 9.64 10.47 Average		
3 0.199 51.51 -12.16 63.67 31.50 9.64 10.37 QP 4 0.199 38.21 -15.46 53.67 18.20 9.64 10.37 Average 5 0.248 45.48 -16.34 61.82 25.51 9.64 10.33 QP		
6 0.248 32.18 -19.64 51.82 12.21 9.64 10.33 Average 7 0.608 43.09 -12.91 56.00 23.19 9.66 10.24 QP		
8 0.608 27.39 -18.61 46.00 7.49 9.66 10.24 Average 9 1.426 39.25 -16.75 56.00 19.20 9.82 10.23 QP 10 1.426 26.65 -19.35 46.00 6.60 9.82 10.23 Average		
10 1.420 20.05 19.35 40.00 19.20 11.00 10.43 QP 11 16.750 29.73 -20.27 50.00 8.30 11.00 10.43 Average		

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2367.225	42.91	-31.09	74	40.85	27.83	7.51	33.28	111	120	Р	Н
		2367.225	18.12	-35.88	54	-	-	-	-	-	-	А	Н
D.T.	*	2402	107.79	-	-	105.81	27.7	7.54	33.26	111	120	Р	Н
BT CH00	*	2402	83	-	-	-	-	-	-	-	-	А	Н
2402MHz		2373.735	43.05	-30.95	74	41.05	27.77	7.51	33.28	369	87	Р	V
240211112		2373.735	18.26	-35.74	54	-	-	-	-			А	V
	*	2402	105.29	-	-	103.31	27.7	7.54	33.26	369	87	Р	V
	*	2402	80.5	-	-	-	-	-	-	-	-	А	V
		2389.8	43.36	-30.64	74	41.38	27.7	7.54	33.26	152	108	Р	Н
		2389.8	18.57	-35.43	54	-	-	-	-	-	-	А	Н
	*	2441	107.97	-	-	106.06	27.6	7.54	33.23	152	108	Р	Н
	*	2441	83.18	-	-	-	-	-	-	-	-	А	Н
		2492.16	42.26	-31.74	74	40.53	27.4	7.53	33.2	152	108	Р	Н
BT		2492.16	17.47	-36.53	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2347.52	43.45	-30.55	74	41.33	27.9	7.51	33.29	367	88	Р	V
2441111172		2347.52	18.66	-35.34	54	-	-	-	-	-	-	А	V
	*	2441	105.75	-	-	103.84	27.6	7.54	33.23	367	88	Р	V
	*	2441	80.96	-	-	-	-	-	-	-	-	А	V
		2485.3	43.09	-30.91	74	41.31	27.47	7.53	33.22	367	88	Р	V
		2485.3	18.3	-35.7	54	-	-	-	-	-	-	А	V

	*	2480	107.92	-	-	106.14	27.47	7.53	33.22	146	118	Р	Н
	*	2480	83.13	-	-	-	-	-	-	-	-	А	Н
		2483.76	44.34	-29.66	74	42.56	27.47	7.53	33.22	146	118	Р	Н
BT		2483.76	19.55	-34.45	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz	*	2480	104.92	-	-	103.14	27.47	7.53	33.22	349	90	Р	V
	*	2480	80.13	-	-	-	-	-	-	-	-	А	V
		2483.64	43.4	-30.6	74	41.62	27.47	7.53	33.22	349	90	Р	V
		2483.64	18.61	-35.39	54	-	-	-	-	-	-	А	V
Remark		o other spurio I results are P		st Peak	and Avera	ge limit line	э.						

BT (Harmonic	@ 3m)
---------------------	-------

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
BT CH 00 2402MHz		4804	41.13	-32.87	74	55.48	31.1	8.68	54.13	151	219	Р	н
		4804	16.34	-37.66	54	-	-	-	-	-	-	А	Н
		4804	40.31	-33.69	74	54.66	31.1	8.68	54.13	186	205	Р	V
		4804	15.52	-38.48	54	-	-	-	-	-	-	А	V
		4882	42.31	-31.69	74	56.47	31.13	8.79	54.08	150	258	Р	Н
		4882	17.52	-36.48	54	-	-	-	-	-	-	А	Н
		7323	46.75	-27.25	74	52.99	36.4	11.09	53.73	152	309	Р	Н
BT		7323	21.96	-32.04	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	41.45	-32.55	74	55.61	31.13	8.79	54.08	159	185	Р	V
244 111112		4882	16.66	-37.34	54	-	-	-	-	-	-	А	V
		7323	46.91	-27.09	74	53.15	36.4	11.09	53.73	196	265	Р	V
		7323	22.12	-31.88	54	-	-	-	-	-	-	А	V
		4960	47.49	-26.51	74	61.17	31.37	8.98	54.03	118	289	Р	Н
		4960	22.7	-31.3	54	-	-	-	-	-	-	А	Н
		7440	48.25	-25.75	74	54.35	36.5	11.12	53.72	158	273	Р	Н
BT		7440	23.46	-30.54	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz		4960	41.8	-32.2	74	55.48	31.37	8.98	54.03	198	189	Р	V
		4960	17.01	-36.99	54	-	-	-	-	-	-	А	V
		7440	47.37	-26.63	74	53.47	36.5	11.12	53.72	196	209	Р	V
		7440	22.58	-31.42	54	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	е.						