

FCC RF Test Report

APPLICANT	:	Motorola Mobility LLC
EQUIPMENT	:	Mobile Cellular Phone
BRAND NAME	:	Motorola
MODEL NAME	:	XT2128-2
FCC ID	:	IHDT56ZQ3
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter

The product was completed on Mar. 08, 2021. We, Sporton International (ShenZhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc., the test report shall not be reproduced except in full.

Dorque Cher

Reviewed by: Derreck Chen / Supervisor

Fire Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

TABL	LE OF CONTENTS	2
REVI	SION HISTORY	3
	MARY OF THE TEST RESULT	
1. GE	ENERAL DESCRIPTION	5
1.1	1 Applicant	5
1.2	2 Manufacturer	5
1.3	3 Product Feature of Equipment Under Test	5
1.4	4 Product Specification of Equipment Under Test	6
1.5	5 Modification of EUT	6
1.6	5 Testing Location	7
1.7	7 Test Software	8
1.8	3 Applicable Standards	8
1.9		
2. TE	ST CONFIGURATION OF EQUIPMENT UNDER TEST	9
2.1	1 Descriptions of Test Mode	9
2.2	2 Connection Diagram of Test System	
2.3	3 Table for Supporting Units	
2.4	4 EUT Operation Test Setup	
3. TE	ST RESULTS	11
3.1		
3.2		
3.3		
3.4		
3.5	5 Radiated Emissions Measurement	
3.6		
-	ST OF MEASURING EQUIPMENT	
5. UN	ICERTAINTY OF EVALUATION	22
APPE	ENDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPE	ENDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B	1. Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Mar. 09, 2021

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 11.91 dB at
	15.215(c)	20dB Spectrum Bandwidth	Complies	0.610MHz -
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 56.62 dBµV/m at 13.560 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 7.23 dB at 71.710MHz
3.6	15.203	Antenna Requirements	Complies	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Description

1.1 Applicant

Motorola Mobility LLC

222 W,Merchandise Mart Plaza,Chicago,IL60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago, IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment Mobile Cellular Phone				
Brand Name	Motorola			
Model Name	XT2128-2			
FCC ID	IHDT56ZQ3			
	GSM/WCDMA/LTE			
	WLAN 2.4GHz 802.11b/g/n HT20			
FUT our north Dedies emplication	WLAN 5GHz 802.11a/n HT20/HT40			
EUT supports Radios application	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
	NFC, FM Receiver and GNSS			
	Conducted: 354244970711699/354244970711707			
IMEI Code	Conduction: 354244970700254/354244970700262			
	Radiation: 354244970700270/354244970700288			
HW Version	DVT2			
SW Version	RTA31.09			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range	13.553 ~ 13.567MHz	
Channel Number	1	
20dBW	2.57 KHz	
99%OBW	2.19 KHz	
Antenna Type	PIFA Antenna	
Type of Modulation	ASK	

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Site	Sporton International (Shenzhen) Inc.			
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595			
Test Site No.	Sporton Site No. FCC Designation FCC Test Firm No. Registration No.			
	TH01-SZ	CO01-SZ		
Test Engineer	Chen Hong	Yan Zheng		
Temperature	22~24°C	22~25°C	CN1256	421272
Relative Humidity	53~55%	50~55%		

Test Site	Sporton International (Shenzhen) Inc.			
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398			
Test Site No.	Sporton Site No. 03CH01-SZ	FCC Designation No.	FCC Test Firm Registration No.	
Test Engineer	Liangxiangxiong			
Temperature			421272	
Relative Humidity	48~49%			

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH01-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

1.9 Specification of Accessory

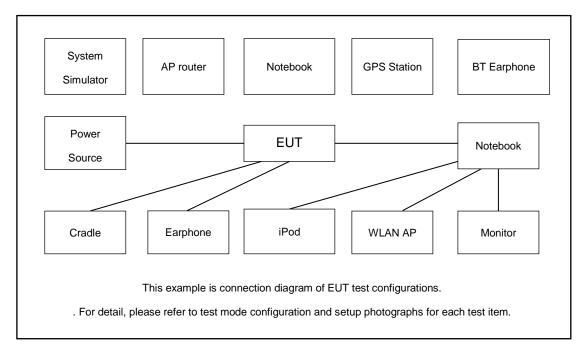
Specification of Accessory				
AC Adapter 1(US)	Brand Name	Motorola (Chenyang)	Model Name	MC-101
AC Adapter 1(EU)	Brand Name	Motorola (Chenyang)	Model Name	MC-102
AC Adapter 1(UK)	Brand Name	Motorola (Chenyang)	Model Name	MC-103
AC Adapter 1(AU)	Brand Name	Motorola (Chenyang)	Model Name	MC-105
AC Adapter 2(US)	Brand Name	Motorola (Salcomp)	Model Name	MC-101
AC Adapter 2(EU)	Brand Name	Motorola (Salcomp)	Model Name	MC-102
AC Adapter 2(UK)	Brand Name	Motorola (Salcomp)	Model Name	MC-103
AC Adapter 2(AU)	Brand Name	Motorola (Salcomp)	Model Name	MC-105
AC Adapter 3(US)	Brand Name	Motorola (Aohai)	Model Name	MC-101
AC Adapter 3(EU)	Brand Name	Motorola (Aohai)	Model Name	MC-102
Battery	Brand Name	Motorola (Sunwoda)	Model Name	JK50
Earphone 1	Brand Name	Motorola (Juwei)	Model Name	JWEP1123-T03
Earphone 2	Brand Name	Motorola (Juwei)	Model Name	JWEP1182-T03H
Earphone 3	Brand Name	Motorola (New Leader)	Model Name	NLD-EM313A-11SF
Earphone 4	Brand Name	Motorola (LIANYUN)	Model Name	SH38C81577
Earphone 5	Brand Name	Motorola (Lianchuang)	Model Name	SH38C81576
USB Cable 1	Brand Name	Motorola (Chuangyitong)	Model Name	88806-025
USB Cable 2	Brand Name	Motorola (Yihuaxing)	Model Name	T365-011B
USB Cable 3	Brand Name	Motorola (I SHENG)	Model Name	SC18C28955

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.


Test Items			
AC Power Line Conducted Emissions Field Strength of Fundamental Emis			
20dB Spectrum Bandwidth	Frequency Stability		
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz		

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

	Test Cases	
AC	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB	
Conducted	Cable1(Charging from Adapter1) + Earphone 5 + Battery1 + NFC Tx for	
Emission	Sample 1	
Remark:		
For Radiated Test Cases, The tests were performance with Battery1 , Adapter1 , Earphone5		
and USB Cable1		

2.2 Connection Diagram of Test System

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	NFC Card	N/A	N/A	N/A	N/A	N/A
3.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
4.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
5.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

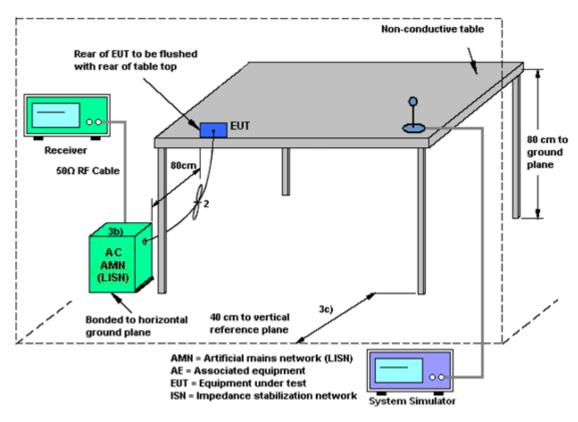
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

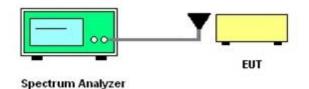
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

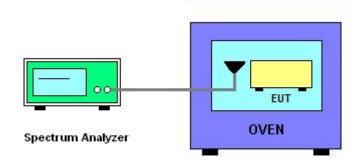
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

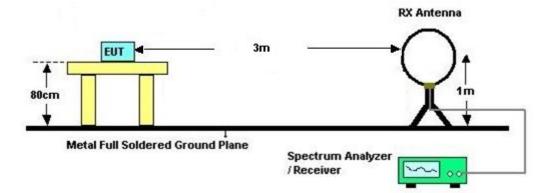
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications		FCC CFR 47 Part	15 section 15.225					
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.							
	Field Strength	Field Strength	Field Strength	Field Strength				
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m				
1.705~13.110	30	29.5	48.58	69.5				
13.110~13.410	106	40.5	59.58	80.5				
13.410~13.553	334	50.5	69.58	90.5				
13.553~13.567	15848	84.0	103.08	124.0				
13.567~13.710	334	50.5	69.58	90.5				
13.710~14.010	106	40.5	59.58	80.5				
14.010~30.000	30	29.5	48.58	69.5				

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(μV/m)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

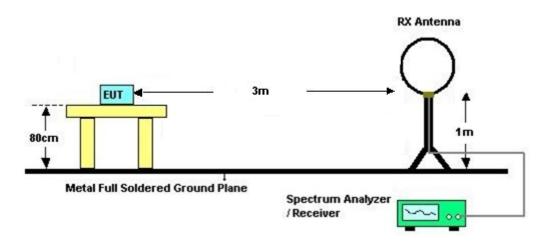
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

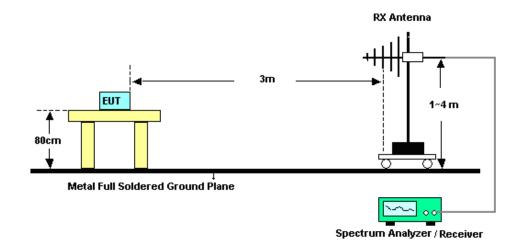
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 17, 2020	Jan. 09, 2021	Apr. 16, 2021	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangrou p	LP-150U	H2014081 803	-40~+150°C	Jul. 22, 2020	Jan. 09, 2021	Jul. 21, 2021	Conducted (TH01-SZ)
EMI Test Receiver&SA	Agilent	N9038A	MY522601 85	20Hz~26.5GHz	Jul. 21, 2020	Jan. 26, 2021~ Mar. 03, 2021	Jul. 20, 2021	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 22, 2020	Jan. 26, 2021~ Mar. 03, 2021	Jul. 21, 2021	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Jul. 15, 2020	Jan. 26, 2021~ Mar. 03, 2021	Jul. 14, 2021	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 17, 2020	Jan. 26, 2021~ Mar. 03, 2021	Apr. 16, 2021	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	NCR	Jan. 26, 2021~ Mar. 03, 2021	NCR	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jan. 26, 2021~ Mar. 03, 2021	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jan. 26, 2021~ Mar. 03, 2021	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 25, 2020	Jan. 13, 2021~ Mar. 08, 2021	Dec. 24, 2021	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2 LISN	00103912	9kHz~30MHz	Dec. 25, 2020	Jan. 13, 2021~ Mar. 08, 2021	Dec. 24, 2021	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 15, 2020	Jan. 13, 2021~ Mar. 08, 2021	Oct. 14, 2021	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 21, 2020	Jan. 13, 2021~ Mar. 08, 2021	Jul. 20, 2021	Conduction (CO01-SZ)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

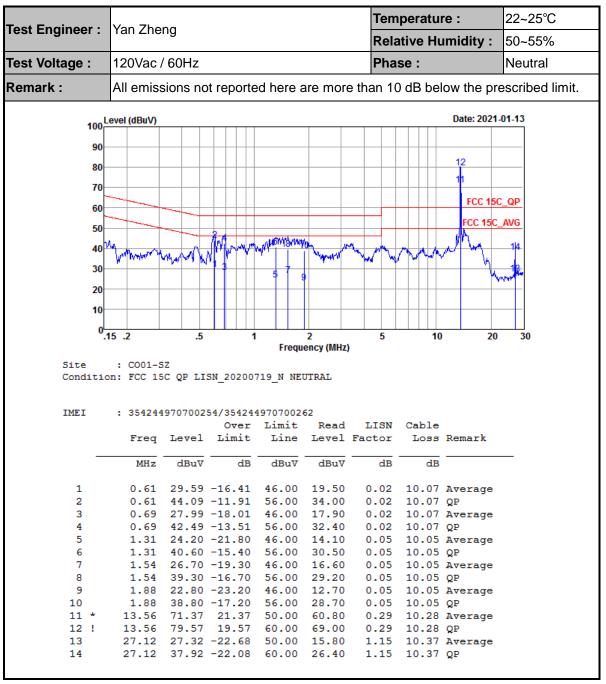
Measuring Uncertainty for a Level of Confidence	2.7dB
of 95% (U = 2Uc(y))	2.708

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.8dB
of 95% (U = 2Uc(y))	2.000

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

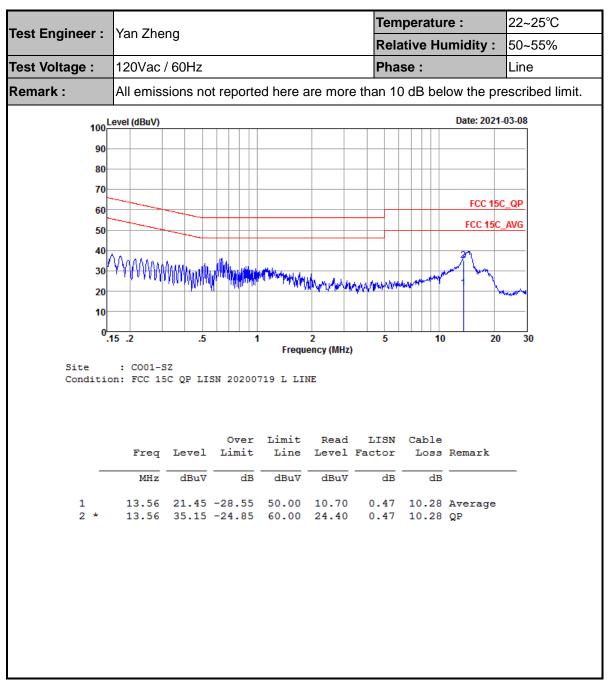
Measuring Uncertainty for a Level of Confidence	4.7 dB
of 95% (U = 2Uc(y))	4.7 dB


Appendix A. Test Results of Conducted Emission Test

	Yan Zheng					Tem	peratu	22~25°C			
Test Engineer :		ng				Rela	ative Hu	umidity :	50~55%		
Test Voltage :	120Vac	120Vac / 60Hz							Line		
Remark :	All emiss	Il emissions not reported here are more than 10 dB below the pro-									
100	100 Level (dBuV) Date: 2021-01-13										
90-											
80								12			
70-								1			
60								FCC 15C	_QP		
00								FCC 15C	MG		
50-			2						AVO		
40	50. Let de 1. J.	-	Marcan	AV 8 40	the pr	m m	4	N N N	-1/4		
30-	MANNA AN	WAWNY W		7 9	" My we	M N	mm	M WW	18		
			3	1				- M	and the		
20											
10											
0-											
	15.2	.5	1		2	5	10	20	30		
Frequency (MHz)											
Site : CO01-SZ											
			SN 20200	-		,					
	: CO01-S on: FCC 15		SN_20200	-		,					
Conditio	on: FCC 15	C QP LI	-	719_L LI	1E	,					
	on: FCC 15	C QP LI	- 54/35424	719_L LI	NE 52						
Conditio	on: FCC 15	C QP LI	- 54/35424 Over	719_L LI 49707002 Limit	NE 52 Read	LISN	Cable	Domont			
Conditio	on: FCC 15	C QP LI	- 54/35424	719_L LI 49707002 Limit	NE 52 Read			Remark			
Conditio	on: FCC 15	C QP LI	- 54/35424 Over	719_L LI 49707002 Limit	NE 52 Read	LISN		Remark			
Conditio	on: FCC 15 : 354244 Freq	SC QP LI 19707002 Level dBuV	- 54/35424 Over Limit	719_L LI 49707002 Limit Line dBuV	NE 52 Read Level dBuV	LISN Factor dB	Loss dB	Remark 			
Conditio IMEI 	nn: FCC 15 : 354244 Freq MHz 0.61 0.61	29707002 Level dBuV 30.49 42.89	- 54/35424 Over Limit dB -15.51 -13.11	719_L LI 49707002 Limit Line dBuV 46.00 56.00	NE 52 Read Level dBuV 20.40 32.80	LISN Factor dB 0.02 0.02	Loss dB 10.07 10.07	Average QP			
Conditio IMEI 1 2 3	<pre>sn: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67</pre>	29707002 Level dBuV 30.49 42.89 24.99	- 54/35424 Over Limit -15.51 -13.11 -21.01	719_L LI 497070022 Limit Line dBuV 46.00 56.00 46.00	NE Read Level dBuV 20.40 32.80 14.90	LISN Factor dB 0.02 0.02 0.02	Loss dB 10.07 10.07 10.07	Average QP Average			
Conditio IMEI 1 2 3 4	sm: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67	30.49 42.89 49.0002 49.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 41.49	- 54/35424 Over Limit - - 15.51 -13.11 -21.01 -14.51	719_L LI 49707002 Limit Line dBuV 46.00 56.00 46.00 56.00	NE 52 Read Level dBuV 20.40 32.80 14.90 31.40	LISN Factor dB 0.02 0.02 0.02 0.02 0.02	Loss dB 10.07 10.07 10.07 10.07	Average QP Average QP			
Conditio IMEI 	sm: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22	30.49 42.89 41.49 25.73	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27	719_L LI 497070022 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00	NE Read Level dBuV 20.40 32.80 14.90 31.40 15.60	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.08	Loss dB 10.07 10.07 10.07 10.07 10.05	Average QP Average QP Average	_		
Conditio IMEI 1 2 3 4	sm: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22	30.49 41.49 25.73 38.83	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17	719_L LI 49707002 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00	NE Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.70	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.08 0.08	Loss dB 10.07 10.07 10.07 10.07 10.05 10.05	Average QP Average QP Average QP	_		
Conditio IMEI 	<pre>sm: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22 1.22 1.41</pre>	C QP LI 9707002 Level dBuV 30.49 42.89 24.99 41.49 25.73 38.83 27.94	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17 -18.06	719_L LI 497070022 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00	NE Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.70 17.80	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.08 0.08	Loss dB 10.07 10.07 10.07 10.07 10.05 10.05 10.05	Average QP Average QP Average QP Average			
Conditio IMEI 	<pre>sm: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22 1.22 1.41 1.41 1.71</pre>	30.49 42.89 24.99 41.49 25.73 38.83 27.94 38.14 29.15	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17 -18.06 -17.86 -16.85	719_L LI 49707002 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	NE Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.70 17.80 28.00 19.00	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Loss dB 10.07 10.07 10.07 10.05 10.05 10.05 10.05 10.05	Average QP Average QP Average QP Average			
Conditio IMEI 1 2 3 4 5 6 7 8 9 10	m: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22 1.22 1.41 1.41 1.71 1.71	30.49 42.89 24.99 41.49 25.73 38.83 27.94 38.14 29.15 37.95	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17 -18.06 -17.86 -16.85 -18.05	719_L LI 49707002 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	NE Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.70 17.80 28.00 19.00 27.80	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Loss dB 10.07 10.07 10.07 10.05 10.05 10.05 10.05 10.05 10.05	Average QP Average QP Average QP Average QP Average QP			
Conditio IMEI 1 2 3 4 5 6 7 8 9 10 11 *	m: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22 1.22 1.41 1.41 1.71 1.71 1.71 1.3.56	30.49 42.89 41.49 25.73 38.83 27.94 38.14 29.15 37.95 67.15	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17 -18.06 -17.86 -16.85 -18.05 17.15	719_L LI 497070022 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 50.00 56.00 50.00 56.00 50.0	NE Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.70 17.80 28.00 19.00 27.80 56.40	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Loss dB 10.07 10.07 10.07 10.05 10.05 10.05 10.05 10.05 10.05 10.28	Average QP Average QP Average QP Average QP Average QP Average			
Condition IMEI 1 2 3 4 5 6 7 8 9 10 11 * 12 !	m: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22 1.41 1.41 1.71 1.71 1.71 1.56 13.56	C QP LI 9707002 Level dBuV 30.49 42.89 24.99 41.49 25.73 38.83 27.94 38.14 29.15 37.95 67.15 72.55	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17 -18.06 -17.86 -16.85 -18.05 17.15 12.55	719_L LI 497070022 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 56.00 46.00 50.00 50.0	NE 52 Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.00 17.80 28.00 19.00 27.80 56.40 61.80	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.08 0.08	Loss dB 10.07 10.07 10.07 10.05 10.05 10.05 10.05 10.05 10.05 10.28 10.28	Average QP Average QP Average QP Average QP Average QP Average QP			
Conditio IMEI 1 2 3 4 5 6 7 8 9 10 11 *	m: FCC 15 : 354244 Freq MHz 0.61 0.61 0.67 0.67 1.22 1.41 1.41 1.71 1.71 1.71 1.56 13.56	C QP LI 9707002 Level dBuV 30.49 42.89 24.99 41.49 25.73 38.83 27.94 38.14 29.15 37.95 67.15 72.55 27.25	- 54/35424 Over Limit -15.51 -13.11 -21.01 -14.51 -20.27 -17.17 -18.06 -17.86 -16.85 -18.05 17.15 12.55	719_L LI 497070022 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 50.00 56.00 50.00 56.00 50.0	NE 52 Read Level dBuV 20.40 32.80 14.90 31.40 15.60 28.70 17.80 28.00 19.00 27.80 56.40 61.80 15.49	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Loss dB 10.07 10.07 10.07 10.05 10.05 10.05 10.05 10.05 10.05 10.28 10.28	Average QP Average QP Average QP Average QP Average QP Average QP Average			

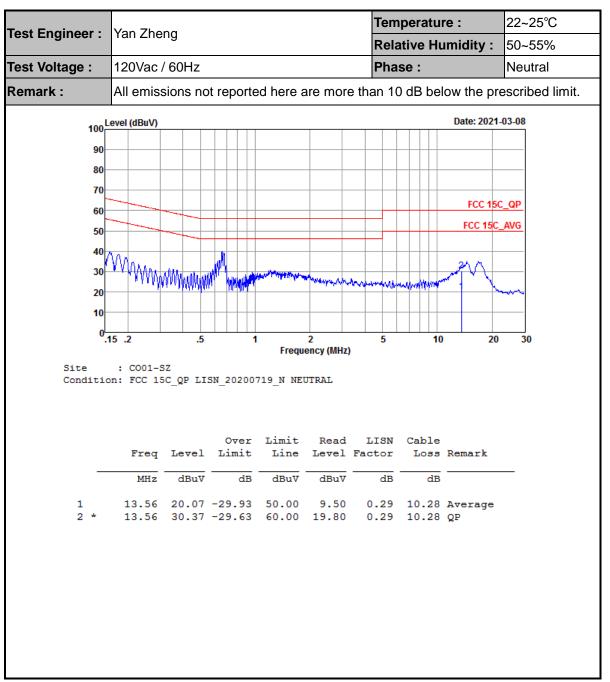
(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.



(1) with antenna

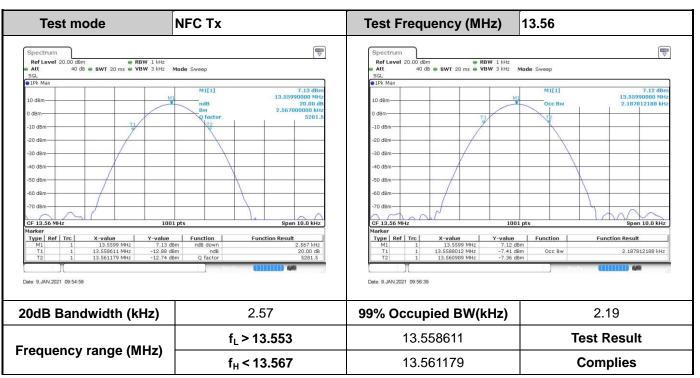
Remark: 13.560MHz is the NFC RF fundamental signal.



(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

(2) With dummy load


Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

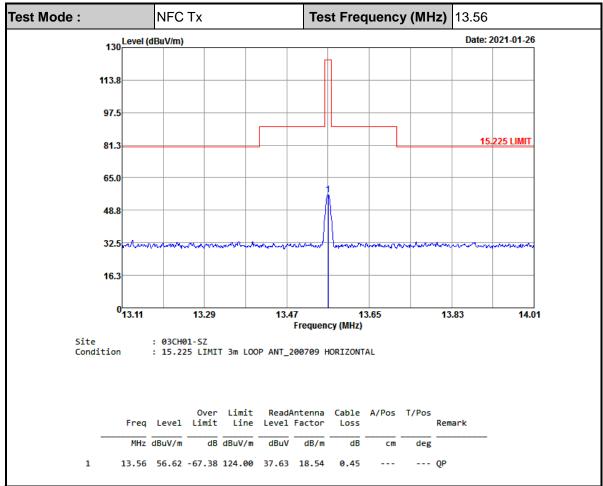
Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix B. Test Results of Conducted Test Items

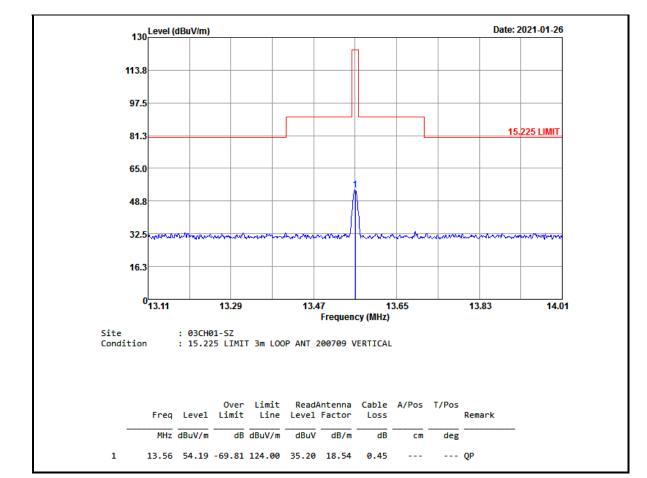
B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.



B2. Test Result of Frequency Stability

Voltage vs. Frequ	ency Stability	Temperature vs. Fr	equency Stability	
Voltage (Vdc)	Measurement Frequency (MHz)	Temperature (℃)	Measurement Frequency (MHz)	
4.4	13.559865	-20	13.560025	
3.8	13.559895	-10	13.560015	
3.6	13.559865	0	13.559990	
		10	13.559955	
		20	13.559910	
		30	13.559945	
		40	13.559905	
		50	13.559865	
Max.Deviation (MHz)	-0.000135	Max.Deviation (MHz)	-0.000135	
Max.Deviation (ppm)	-9.9558	Max.Deviation (ppm)	-9.9558	
Limit	FS < ±100 ppm	Limit	FS < ±100 ppm	
Test Result	PASS	Test Result	PASS	



Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

Note:

- 1. Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB)
- 2. Over $Limit(dB) = Level(dB\mu V/m) Limit Line(dB\mu V/m)$

Test Mode :	Test Mode : NFC Tx		Polariz	ation :	Ho	Horizontal			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)	
0.00951	55.42	-72.62	128.04	36.3	19.07	0.05			Average
0.06627	50.35	-60.83	111.18	31.42	18.87	0.06			Average
0.09033	47.66	-60.83	108.49	28.76	18.83	0.07			QP
0.13704	35.55	-69.32	104.87	16.66	18.81	0.08			Average
0.16295	47.64	-55.72	103.36	28.74	18.8	0.1			Average
2.198	35.38	-34.62	70	16.29	18.9	0.19			QP
12.408	33.9	-36.1	70	14.84	18.63	0.43			QP
23.677	34.76	-35.24	70	15.06	19.13	0.57			QP
29.255	35.95	-34.05	70	16.44	18.84	0.67			QP

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode : NFC Tx			Polariz	ation :	Ve	Vertical			
Frequency	Level	Over	Limit	Read	Antenna	Cable		Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)		Pos (deg)	
0.00941	53.25	-74.88	128.13	34.13	19.07	0.05			Average
0.06102	44.81	-67.08	111.89	25.88	18.87	0.06			Average
0.11532	44.41	-61.96	106.37	25.52	18.81	0.08			Average
0.12633	33.4	-72.17	105.57	14.51	18.81	0.08			Average
0.16295	46.37	-56.99	103.36	27.47	18.8	0.1			Average
2.318	35.3	-34.7	70	16.2	18.91	0.19			QP
9.104	34.09	-35.91	70	14.99	18.73	0.37			QP
20.59	34.67	-35.33	70	14.97	19.16	0.54			QP
29.1	35.2	-34.8	70	15.68	18.86	0.66			QP

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Test Mode : NFC Tx				Ро	olarization	Horizontal				
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)		
30	24.05	-15.95	40	29.99	24.4	0.96	31.3			Peak
106.63	25.66	-17.84	43.5	38.27	17.13	1.84	31.58			Peak
192.96	30.05	-13.45	43.5	43.43	15.46	2.47	31.31			Peak
261.83	34.52	-11.48	46	43.56	19.71	2.88	31.63	100	244	Peak
566.41	27.17	-18.83	46	30.21	24.13	4.24	31.41			Peak
917.55	31.12	-14.88	46	30.49	26.66	5.4	31.43			Peak

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode : NFC Tx			P	olarization	Vertical					
Frequency		Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m	, , ,	(dBµV/m)	· · ·	`` <i></i> _	(dB)	(dB)	(cm)	(deg)	Deals
40.67	26.96	-13.04	40	39.08	18.19	1.14	31.45			Peak
71.71	32.77	-7.23	40	49.97	12.9	1.5	31.6	100	214	Peak
144.46	27.25	-16.25	43.5	39.44	17.07	2.15	31.41			Peak
264.74	27.46	-18.54	46	36.58	19.59	2.9	31.61			Peak
402.48	25.18	-20.82	46	31.36	21.65	3.57	31.4			Peak
630.43	29.08	-16.92	46	31.47	24.62	4.47	31.48			Peak

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.