

FCC WiFi 6E RF Exposure

Applicant	: Motorola Mobility LLC
Equipment	: Mobile Cellular Phone
Brand Name	: Motorola
Model Name	: XT2141-2
FCC ID	: IHDT56ZP2
Standard	: FCC 47 CFR Part 2 (2.1093)

We, Sporton International (ShenZhen) Inc, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc, the test report shall not be reproduced except in full.

Hank Huong

Reviewed by: Hank Huang / Supervisor

Johnny Chen

Approved by: Johnny Chen / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

Table of Contents

1. Statement of Compliance	4
2. Administration Data	
3. Guidance Applied	6
4. Equipment Under Test (EUT) Information	7
4.1 General Information	7
4.2 Maximum Tune-up Limit	9
5. RF Exposure Limits	
5.1 Uncontrolled Environment	11
5.2 Controlled Environment	11
5.3 RF Exposure limit for below 6GHz	
5.4 RF Exposure limit for above 6GHz	
6. System Description and Setup	
7. Test Equipment List	
8. SAR System Verification	
8.1 SAR Tissue Verification	
8.2 SAR System Performance Check Results	
8.3 PD System Verification Results	
9. RF Exposure Positions	
9.1 Ear and handset reference point	
9.2 Definition of the cheek position	
9.3 Definition of the tilt position	
9.4 Body Worn Accessory	
9.5 Product Specific/Extremity Exposure	
9.6 Miscellaneous Testing Considerations	
10. WiFi 6E Output Power (Unit: dBm)	
11. Antenna Location	
12. RF Exposure Test Results	
12.1 Head SAR Test Result	
12.2 Body Worn SAR Test Result	
12.3 Product Specific SAR Test Result	
12.4 Repeated SAR Measurement	
12.5 PD Test Result	
13. Uncertainty Assessment	
14. References	31
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	

Appendix D. Test Setup Photos

History	of	this	test	report
---------	----	------	------	--------

Report No.	Version	Description	Issued Date
FA151701-01B	01	Initial issue of report	Jul. 13, 2021
FA151701-01B	02	Updated Scaled Normal psPD value in section 12.5	Jul. 28, 2021

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Motorola Mobility LLC**, **Mobile Cellular Phone**, **XT2141-2**, are as follows.

			Reported SAR			Reported F	۶D		
Band	Tx Frequency (MHz)	Head (1g SAR W/kg)	Body Worn (1g SAR W/kg)	Phablet (10g SAR W/kg)	Head (W/m^2)	Body Worn (W/m^2)	Phablet (W/m^2)	PsPD (mW/cm^2)
WIFI 6E	5925-7125	0.035	1.170	0.381	0.221	4.96	8.50	0.704	
Date	of Testing:	2021/6/28 ~ 2021/7/4							

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) and Power density exposure limits (1 mW/cm^2) specified in FCC 47 CFR part 2 (2.1093), ANSI/IEEE C95.1-1992 and FCC 47 CFR Part1.1310, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2. Administration Data

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Testing Laboratory							
Test Firm	Sporton International (Shenzhen) Inc.						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xin People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595	TEL: +86-755-86379589					
Tool Oite No	FCC Designation No.	FCC Test Firm Registration No.					
Test Site No.	CN1256	421272					

Applicant				
Company Name	Motorola Mobility LLC			
Address	222 W,Merchandise Mart Plaza, Chicago IL 60654 USA			

Manufacturer					
Company Name	Motorola Mobility LLC				
Address	222 W,Merchandise Mart Plaza, Chicago IL 60654 USA				

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards.

- · FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- · IEC/IEEE 62209-1528:2020
- · SPEAG DASY6 System Handbook
- · SPEAG DASY6 Application Note (Interim Procedure for Device Operation at 6GHz-10GHz)
- · IEC TE63170:2018
- · IEC 62479:2010
- · FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- · FCC KDB 865664 D02 SAR Reporting v01r02
- · FCC KDB 447498 D01 General RF Exposure Guidance v06
- · FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- · FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT2141-2,
FCC ID	IHDT56ZP2
IMEI Code	354398490013174
	GSM850: 824 MHz ~ 849 MHz GSM1900: 1850 MHz ~ 1910 MHz WCDMA Band II: 1850 MHz ~ 1755 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1755 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 15: 850 MHz ~ 1915 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 26: 8150 MHz ~ 1915 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 38: 2570 MHz ~ 2690 MHz LTE Band 71: 663 MHz ~ 2690 MHz LTE Band 71: 663 MHz ~ 698 MHz SG NR n2 : 1850 MHz ~ 1915 MHz GS NR n2 : 1850 MHz ~ 1915 MHz SG NR n5: 1824 MHz ~ 849 MHz SG NR n6: 1710 MHz ~ 1780 MHz SG NR n71: 663 MHz ~ 698 MHz SG NR n73 : 4500 MHz ~ 2690 MHz SG NR n74 : 663 MHz ~ 698 MHz SG NR n75 : 3450 MHz ~ 21915 MHz SG NR n75 : 1850 MHz ~ 1915 MHz SG NR n77 : 3450 MHz ~ 3550 MHz, 3700 MHz ~ 3800 MHz SG NR n78 : 3450 MHz ~ 3550 MHz, 3700 MHz ~ 3800 MHz SG NR n78 : 3450 MHz ~ 3550 MHz, 3700 MHz ~ 3800 MHz WLAN 5. GHZ Band: 5260 MHz ~ 5240 MHz WLAN 5. 2GHZ Band: 5260 MHz ~ 5240 MHz WLAN 5. 3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5. 3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5. 3GHz Band: 5260 MHz ~ 6325 MHz WLAN 5. 3GHz Band: 5260 MHz ~ 6320 MHz WLAN 6. U-NII-6: 6425 MHz ~ 6425 MHz WLAN 6. U-NII-8: 6250 MHz ~ 6320 MHz WLAN 6. U-NII-8: 6375 MHz ~ 6325 MHz WLAN 6. U-NII-8: 6375 MHz ~ 6325 MHz WLAN 6. U-NII-8: 6375 MHz ~ 6325 MHz WLAN 6. U-NII-8: 6375 MHz ~ 7125 MHz MLAN 6. U-NII-8: 6425 MHz ~ 71
Mode	RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+(16QAM uplink is not supported) LTE: QPSK, 16QAM, 64QAM 5G NR : CP-OFDM / DFT-s-OFDM, PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM WLAN 2.4GHz: 802.11b/g/n HT20 WLAN 2.4GHz: 802.11ac/ax VHT20/HE20 WLAN 5GHz: 802.11ac/ax VHT20/HE20 WLAN 5GHz: 802.11ac VHT20/VHT40/VHT80/VHT160 WLAN 5GHz: 802.11ac VHT20/VHT40/VHT80/VHT160 WLAN 5GHz: 802.11ax HE20/HE40/HE80/HE160

Sporton International (Shenzhen) Inc. TEL : +86-755-86379589 / FAX : +86-755-86379595 FCC ID : IHDT56ZP2

	WLAN 6E : 802.11a/n HT20/HT40
	WLAN 6E : 802.11ac VHT20/VHT40/VHT80/VHT160
	WLAN 6E : 802.11ax HE20/HE40/HE80/HE160
	Bluetooth BR/EDR/LE
	NFC:ASK
HW Version	DVT2
SW Version	RRM31.43
GSM / (E)GPRS Transfer	Class B – EUT cannot support Packet Switched and Circuit Switched Network
mode	simultaneously but can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Identical Prototype
Remark:	
1. WLAN operation in 560	0 MHz ~ 5650 MHz is notched.
· · · · · · · · · · · · ·	

802.11n-HT40 is not supported in 2.4GHz WLAN.
 The 2.4G/5G/6GHz WLAN can transmit in MIMO antenna mode only and it has no SISO antenna mode.

Report No. : FA151701-01B

4.2 Maximum Tune-up Limit

<WIFI6E Tune-up Limit>

WLAN 6E	E ANT 4+1:	2	Default Power Table, Standalone WLAN Free-Space / Tabletop Power Table, Standalone WLAN	• At-Head Power Table, Standalone WLAN	• At-Head Power Table, Simultaneous WLAN+WWAN	• Body-Worn Power Table, Standalone WLAN	• Body-Worn Power Table, Simultaneous WLAN+WWAN	• Handheld Reduced power table, Standalone WLAN	 Handheld Reduced power table, Simultaneous WLAN+WWAN Default Power Table, Simultaneous WLAN+WWAN
Mode	Channel	Frequency (MHz)	Tune-Up Limit	Tune-Up Limit	Tune-Up Limit	Tune-Up Limit	Tune-Up Limit	Tune-Up Limit	Tune-Up Limit
	1	5955	9.50	9.50	9.50	9.50	9.50	9.50	9.50
	57	6235	9.50	9.50	9.50	9.50	9.50	9.50	9.50
802.11a 6Mbps	113	6515	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	173	6815	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	233	7115	14.50	14.50	14.50	14.50	11.50	14.50	14.50
	1	5955	9.50	9.50	9.50	9.50	9.50	9.50	9.50
	57	6235	9.50	9.50	9.50	9.50	9.50	9.50	9.50
802.11n-HT20 MCS0	113	6515	10.00	10.00	10.00	10.00	10.00	10.00	10.00
WCG0	173	6815	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Ī	233	7115	14.50	14.50	14.50	14.50	11.50	14.50	14.50
	3	5965	12.50	12.50	12.50	12.50	11.50	12.50	12.50
Ī	59	6245	12.50	12.50	12.50	12.50	11.50	12.50	12.50
802.11n-HT40	107	6485	13.00	13.00	13.00	13.00	11.50	13.00	13.00
MCS0 -	171	6805	13.00	13.00	13.00	13.00	11.50	13.00	13.00
	227	7085	15.50	15.50	15.50	15.50	11.50	15.50	15.50
802.11ac-VHT20	1	5955	9.50	9.50	9.50	9.50	9.50	9.50	9.50
	57	6235	9.50	9.50	9.50	9.50	9.50	9.50	9.50
	113	6515	10.00	10.00	10.00	10.00	10.00	10.00	10.00
MCS0	173	6815	10.00	10.00	10.00	10.00	10.00	10.00	10.00
-	233	7115	14.50	14.50	14.50	14.50	11.50	14.50	14.50
	3	5965	12.50	12.50	12.50	12.50	11.50	12.50	12.50
	59	6245	12.50	12.50	12.50	12.50	11.50	12.50	12.50
802.11ac-VHT40	107	6485	13.00	13.00	13.00	13.00	11.50	13.00	13.00
MCS0	171	6805	13.00	13.00	13.00	13.00	11.50	13.00	13.00
-	227	7085	15.50	15.50	15.50	15.50	11.50	15.50	15.50
	7	5985	15.00	15.00	15.00	15.00	11.50	15.00	15.00
-	71	6305	14.50	14.50	14.50	14.50	11.50	14.50	14.50
802.11ac-VHT80	119	6545	15.00	15.00	15.00	15.00	11.50	15.00	15.00
MCS0	167	6785	14.50	14.50	14.50	14.50	11.50	14.50	14.50
-	215	7025	15.00	15.00	15.00	15.00	11.50	15.00	15.00
	15	6025	15.50	15.50	15.50	15.50	11.50	15.50	15.50
-	47	6185	15.00	15.00	15.00	15.00	11.50	15.00	15.00
802.11ac-VHT160	111	6505	14.30	14.30	14.30	14.30	11.50	14.30	14.30
MCS0	175	6825	15.50	15.50	15.50	15.50	11.50	15.50	15.50
-	207	6985	13.50	13.50	13.50	13.50	11.50	13.50	13.50
	1	5955	9.50	9.50	9.50	9.50	9.50	9.50	9.50
-	57	6235	9.50	9.50	9.50	9.50	9.50	9.50	9.50
802.11ax-HE20	113	6515	10.00	10.00	10.00	10.00	10.00	10.00	10.00
MCS0	173	6815	10.00	10.00	10.00	10.00	10.00	10.00	10.00
-	233	7115	14.50	14.50	14.50	14.50	11.50	14.50	14.50
	3	5965	14.50	12.50	14.50	14.50	11.50	12.50	14.50
000 44	59	6245	12.00	12.00	12.00	12.00	11.50	12.00	12.00
802.11ax-HE40 MCS0	107	6485	12.00	12.00	12.00	12.00	11.50	12.00	12.00
MC30	107	0400	12.00	12.00	12.00	12.00	11.50	12.50	12.50

Sporton International (Shenzhen) Inc.

TEL : +86-755-86379589 / FAX : +86-755-86379595 FCC ID : IHDT56ZP2 Page 9 of 31 Issued Date <u>-</u> Jul. 28, 2021 Report Template No. : 200414

Report No. : FA151701-01B

	227	7085	15.50	15.50	15.50	15.50	11.50	15.50	15.50
	7	5985	15.00	15.00	15.00	15.00	11.50	15.00	15.00
	71	6305	15.00	15.00	15.00	15.00	11.50	15.00	15.00
802.11ax-HE80 MCS0	119	6545	15.00	15.00	15.00	15.00	11.50	15.00	15.00
	167	6785	15.00	15.00	15.00	15.00	11.50	15.00	15.00
	215	7025	15.00	15.00	15.00	15.00	11.50	15.00	15.00
	15	6025	15.50	15.50	15.50	15.50	11.50	15.50	15.50
	47	6185	15.00	15.00	15.00	15.00	11.50	15.00	15.00
802.11ax-HE160 MCS0	111	6505	15.00	15.00	15.00	15.00	11.50	15.00	15.00
Mooo	175	6825	15.50	15.50	15.50	15.50	11.50	15.50	15.50
	207	6985	13.50	13.50	13.50	13.50	11.50	13.50	13.50

5. <u>RF Exposure Limits</u>

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 <u>RF Exposure limit for below 6GHz</u>

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for Occupational/Controlled Exposure (W/kg)

Limits for General Population/Uncontrolled Exposure (W/kg)

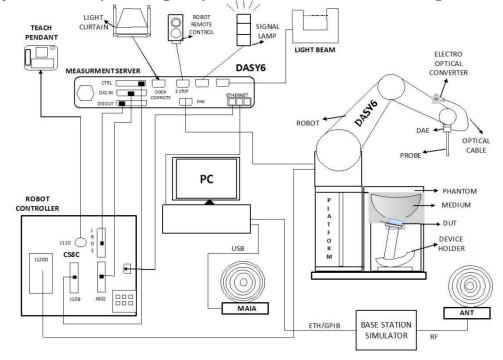
Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

5.4 <u>RF Exposure limit for above 6GHz</u>

According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310.

Peak Spatially Averaged Power Density was evaluated over a circular area of 4cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes


Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
905	(A) Limits for Oc	ccupational/Controlled Expo	sures	
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/	f *(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled I	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/	f *(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

Note: 1.0 mW/cm² is 10 W/m²

6. <u>System Description and Setup</u>

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Windows 10 and the DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7. Test Equipment List

Manufacturer		Turne (Mandal	Serial Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	6500MHz System Validation Kit	D6.5GHzV2	1026	Jan. 29, 2021	Jan. 28, 2022
SPEAG	5G Verification Source	10GHz	1020	Jan. 18, 2021	Jan. 17, 2022
SPEAG	Data Acquisition Electronics	DAE4	715	Jul. 27, 2020	Jul. 26, 2021
SPEAG	Dosimetric E-Field Probe	EX3DV4	7576	Apr. 26, 2021	Apr. 25, 2022
SPEAG	EUmmWV Probe Tip Protection	EUmmWV3	9432	Oct. 14, 2020	Oct. 13, 2021
SPEAG	SAM Twin Phantom	QD 000 P40 CD	1670	NCR	NCR
Agilent	Network Analyzer	E5071C	MY46523671	Oct. 15, 2020	Oct. 14, 2021
Speag	Dielectric Assessment KIT	DAK-3.5	1071	Dec. 23, 2020	Dec. 22, 2021
R&S	Spectrum Analyzer	FSV40	101078	Apr. 08, 2021	Apr. 07, 2022
Anymetre	Thermo-Hygrometer	JR593	2015030904	Jul. 21, 2020	Jul. 20, 2021
TES	Hygrometer	1310	200505600	Jul. 30, 2020	Jul. 29, 2021
R&S	Signal Generator	SMB100A	175779	Dec. 30, 2020	Dec. 29, 2021
Keysight	HF Amplifier	83017A	MY53270357	Aug. 27, 2020	Aug. 26, 2021
R&S	Power Sensor	NRP50S	101254	Apr. 29, 2021	Apr. 28, 2022
R&S	Power Sensor	NRP8S	109228	Apr. 09, 2021	Apr. 08, 2022
SPEAG	Device Holder	N/A	N/A	N/A	N/A
Weinschel	Attenuator 2	3M-20	N/A	Not	te 1
ET Industries	Dual Directional Coupler	C-058-10	N/A	Not	te 1
ATM	Dual Directional Coupler	C122H-10	P610410z-02	Not	te 1
Warison	Directional Coupler	WCOU-10-50S-10	WR889BMC4BMC1	Not	te 1

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

8. SAR System Verification

8.1 SAR Tissue Verification

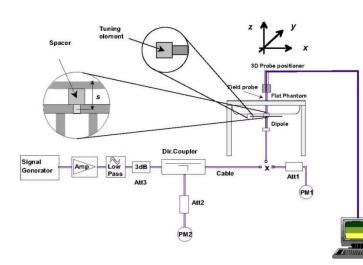
The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
6500	Head	22.5	6.040	34.150	6.07	34.50	-0.49	-1.01	±5	2021/6/28

8.2 SAR System Performance Check Results


Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

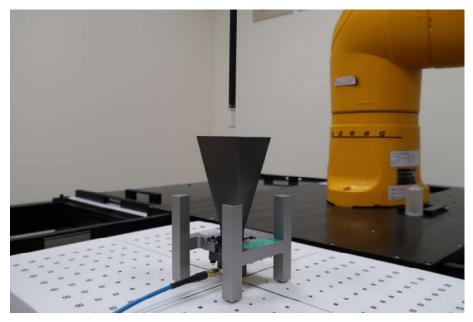
<1g SAR>

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	1g SAR	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2021/6/28	6500	Head	100	D6.5GHzV2-1026	EX3DV4 - SN7576	DAE4 Sn715	27.60	290.00	276	-4.83

<10g SAR>

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2021/6/28	6500	Head	100	D6.5GHzV2-1026	EX3DV4 - SN7576	DAE4 Sn715	4.98	53.40	49.8	-6.74

System Performance Check Setup


Setup Photo

8.3 PD System Verification Results

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check. The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

Frequency (GHz)	5G Verification Source	Probe S/N	DAE S/N	Distance (mm)	Input Power (mW)	Measured 4 cm^2 (W/m^2)	Normalized 4 cm^2 (W/m^2)	Targeted 4 cm^2 (W/m^2)	Deviation (dB)	Test date
10	10GHz_1020	9432	715	10	50	24.8	40.7	42.2	-0.16	2021/7/4

System Verification Setup Photo

9. <u>RF Exposure Positions</u>

9.1 <u>Ear and handset reference point</u>

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

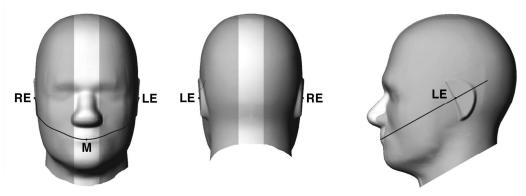


Fig 9.1.1 Front, back, and side views of SAM twin phantom

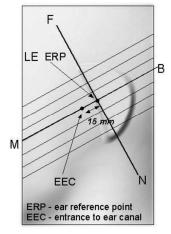


Fig 9.1.2 Close-up side view of phantom showing the ear region.

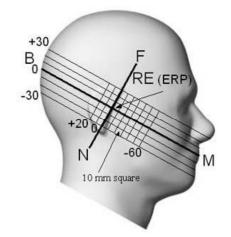
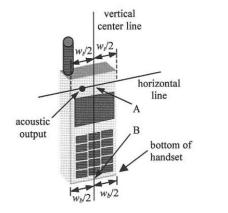



Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

9.2 Definition of the cheek position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

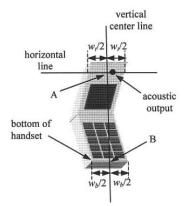
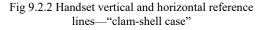



Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

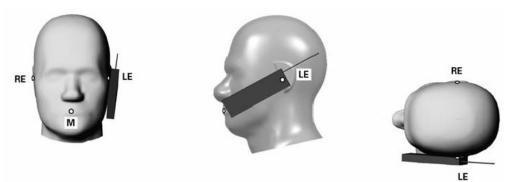


Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

9.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

9.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.

Fig 9.4 Body Worn Position

9.5 Product Specific/Extremity Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless mode and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.

2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

9.6 Miscellaneous Testing Considerations

- Evaluate SAR using 6-7 GHz parameters per IEC/IEEE 62209-1528:2020.
- Per procedures of KDB Pubs. 447498 and 248227, and applicable product-specific procedures among KDB Pubs. 648474 (handsets/phablets).
- Where supported by the test system, also report estimated absorbed (epithelial) power density (for reference purposes only, not specifically for compliance) and estimated incident PD, derived from measured SAR.
- In addition, for the highest SAR test configurations evaluate incident PD using the mmw near-field probe and total-field/power-density reconstruction method (2 mm closest meas. plane)
 - Adjust measured results per amount that measurement uncertainty exceeds 30 % (see e.g. IEC 62479:2010)

10. WiFi 6E Output Power (Unit: dBm)

General Note:

- 1. WIFI 6GHz operations are limited to MIMO operations only (does not supported standalone mode), SAR and PD for MIMO was evaluated by making a measurement with both antennas transmitting simultaneously.
- 2. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- Per 201904 TCBC workshops, General principles of FCC KDB Publication 248227 D01 can be applied to determine the SAR Initial Test Configurations and test reduction for 802.11ax SAR testing. For the table below the 802.11ax maximum power is SU (non-OFDMA), and the SU maximum power also higher than RU (OFDMA)
- 4. In applying the test guidance, the IEEE 802.11 mode with the maximum output power (out of all modes) should be considered for testing
- 5. For modes with the same maximum output power, the guidance from section 5.3.2 a) of FCC KDB Publication 248227 D01 should be applied, with 802.11ax being considered as the highest 802.11 mode for the appropriate frequency bands

WLAN 6E	ANT 4+1	2	Stand WL • Free- Tableto Tab Stand	ble, lalone AN Space / p Power	Tal Stand	id Power ble, lalone AN	Tal Simulta	id Power ble, aneous ·WWAN	Power Stand	y-Worn ⁻ Table, dalone _AN	• Body-Worr Table, Simul WLAN+W	taneous	Reduce tal Stand	ndheld ed power ble, dalone _AN	Reduce tal Simult WLAN+ • Defau Ta Simult	ndheld ed power ble, aneous WWAN It Power ble, aneous WWAN	Duty Cycle %
Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Average power (dBm)	Tune-Up Limit	Average power (dBm)	Tune-Up Limit	Average power (dBm)	Tune-Up Limit	Average power (dBm)	Tune-Up Limit	Average power (dBm)	Tune-Up Limit	Average power (dBm)	Tune-Up Limit	
	1	5955	8.30	9.50	8.30	9.50	8.30	9.50	8.30	9.50		9.50	8.30	9.50	8.30	9.50	
	57	6235	8.19	9.50	8.19	9.50	8.19	9.50	8.19	9.50		9.50	8.19	9.50	8.19	9.50	
802.11a 6Mbps	113	6515	8.73	10.00	8.73	10.00	8.73	10.00	8.73	10.00		10.00	8.73	10.00	8.73	10.00	99.32
	173	6815	8.43	10.00	8.43	10.00	8.43	10.00	8.43	10.00		10.00	8.43	10.00	8.43	10.00	
	233	7115	13.35	14.50	13.35	14.50	13.35	14.50	13.35	14.50		11.50	13.35	14.50	13.35	14.50	
	1	5955	8.42	9.50	8.42	9.50	8.42	9.50	8.42	9.50		9.50	8.42	9.50	8.42	9.50	
	57	6235	8.18	9.50	8.18	9.50	8.18	9.50	8.18	9.50		9.50	8.18	9.50	8.18	9.50	
802.11n-HT20 MCS0	113	6515	8.97	10.00	8.97	10.00	8.97	10.00	8.97	10.00		10.00	8.97	10.00	8.97	10.00	100.00
MOOD	173	6815	8.73	10.00	8.73	10.00	8.73	10.00	8.73	10.00		10.00	8.73	10.00	8.73	10.00	
	233	7115	13.41	14.50	13.41	14.50	13.41	14.50	13.41	14.50		11.50	13.41	14.50	13.41	14.50	1
	3	5965	11.54	12.50	11.54	12.50	11.54	12.50	11.54	12.50		11.50	11.54	12.50	11.54	12.50	
	59	6245	11.46	12.50	11.46	12.50	11.46	12.50	11.46	12.50		11.50	11.46	12.50	11.46	12.50	1
802.11n-HT40 MCS0	107	6485	11.93	13.00	11.93	13.00	11.93	13.00	11.93	13.00		11.50	11.93	13.00	11.93	13.00	100.00
MOOD	171	6805	12.32	13.00	12.32	13.00	12.32	13.00	12.32	13.00		11.50	12.32	13.00	12.32	13.00	
	227	7085	14.35	15.50	14.35	15.50	14.35	15.50	14.35	15.50		11.50	14.35	15.50	14.35	15.50	
	1	5955	8.41	9.50	8.41	9.50	8.41	9.50	8.41	9.50	Not Required	9.50	8.41	9.50	8.41	9.50	
	57	6235	8.16	9.50	8.16	9.50	8.16	9.50	8.16	9.50		9.50	8.16	9.50	8.16	9.50	
802.11ac-VHT20 MCS0	113	6515	8.94	10.00	8.94	10.00	8.94	10.00	8.94	10.00		10.00	8.94	10.00	8.94	10.00	100.00
WC30	173	6815	8.71	10.00	8.71	10.00	8.71	10.00	8.71	10.00		10.00	8.71	10.00	8.71	10.00	
	233	7115	13.39	14.50	13.39	14.50	13.39	14.50	13.39	14.50		11.50	13.39	14.50	13.39	14.50	
	3	5965	11.51	12.50	11.51	12.50	11.51	12.50	11.51	12.50		11.50	11.51	12.50	11.51	12.50	
	59	6245	11.44	12.50	11.44	12.50	11.44	12.50	11.44	12.50		11.50	11.44	12.50	11.44	12.50	
802.11ac-VHT40 MCS0	107	6485	11.92	13.00	11.92	13.00	11.92	13.00	11.92	13.00		11.50	11.92	13.00	11.92	13.00	100.00
WC30	171	6805	12.29	13.00	12.29	13.00	12.29	13.00	12.29	13.00		11.50	12.29	13.00	12.29	13.00	
	227	7085	14.33	15.50	14.33	15.50	14.33	15.50	14.33	15.50		11.50	14.33	15.50	14.33	15.50	
	7	5985	13.84	15.00	13.84	15.00	13.84	15.00	13.84	15.00		11.50	13.84	15.00	13.84	15.00	
	71	6305	13.40	14.50	13.40	14.50	13.40	14.50	13.40	14.50		11.50	13.40	14.50	13.40	14.50	
802.11ac-VHT80 MCS0	119	6545	13.81	15.00	13.81	15.00	13.81	15.00	13.81	15.00		11.50	13.81	15.00	13.81	15.00	100.00
WC30	167	6785	13.68	14.50	13.68	14.50	13.68	14.50	13.68	14.50		11.50	13.68	14.50	13.68	14.50	
	215	7025	13.91	15.00	13.91	15.00	13.91	15.00	13.91	15.00		11.50	13.91	15.00	13.91	15.00	
	15	6025	14.22	15.50	14.22	15.50	14.22	15.50	14.22	15.50	10.36	11.50	14.22	15.50	14.22	15.50	
802.11ac-VHT160 MCS0	47	6185	14.06	15.00	14.06	15.00	14.06	15.00	14.06	15.00	10.11	11.50	14.06	15.00	14.06	15.00	100.00
10030	111	6505	13.81	14.30	13.81	14.30	13.81	14.30	13.81	14.30	10.26	11.50	13.81	14.30	13.81	14.30	

Sporton International (Shenzhen) Inc.

TEL:+86-755-86379589 / FAX:+86-755-86379595 FCC ID:IHDT56ZP2 Page 21 of 31 Issued Date _: Jul. 28, 2021 Report Template No. : 200414

SPORTON LAB. FCC WIFI 6E RF Exposure

Report No. : FA151701-01B

	175	6825	14.39	15.50	14.39	15.50	14.39	15.50	14.39	15.50	10.42	11.50	14.39	15.50	14.39	15.50	
	207	6985	12.58	13.50	12.58	13.50	12.58	13.50	12.58	13.50	9.96	11.50	12.58	13.50	12.58	13.50	
	1	5955	8.70	9.50	8.70	9.50	8.70	9.50	8.70	9.50		9.50	8.70	9.50	8.70	9.50	
	57	6235	8.68	9.50	8.68	9.50	8.68	9.50	8.68	9.50		9.50	8.68	9.50	8.68	9.50	
802.11ax-HE20 MCS0	113	6515	8.97	10.00	8.97	10.00	8.97	10.00	8.97	10.00		10.00	8.97	10.00	8.97	10.00	100.00
	173	6815	9.05	10.00	9.05	10.00	9.05	10.00	9.05	10.00		10.00	9.05	10.00	9.05	10.00	
	233	7115	13.66	14.50	13.66	14.50	13.66	14.50	13.66	14.50		11.50	13.66	14.50	13.66	14.50	
	3	5965	11.73	12.50	11.73	12.50	11.73	12.50	11.73	12.50		11.50	11.73	12.50	11.73	12.50	
	59	6245	11.08	12.00	11.08	12.00	11.08	12.00	11.08	12.00		11.50	11.08	12.00	11.08	12.00	
802.11ax-HE40 MCS0	107	6485	11.61	12.50	11.61	12.50	11.61	12.50	11.61	12.50		11.50	11.61	12.50	11.61	12.50	100.00
	171	6805	12.13	13.00	12.13	13.00	12.13	13.00	12.13	13.00		11.50	12.13	13.00	12.13	13.00	
	227	7085	14.21	15.50	14.21	15.50	14.21	15.50	14.21	15.50	Not Reauired	11.50	14.21	15.50	14.21	15.50	
	7	5985	14.00	15.00	14.00	15.00	14.00	15.00	14.00	15.00	Not Required	11.50	14.00	15.00	14.00	15.00	
	71	6305	13.78	15.00	13.78	15.00	13.78	15.00	13.78	15.00		11.50	13.78	15.00	13.78	15.00	
802.11ax-HE80 MCS0	119	6545	14.14	15.00	14.14	15.00	14.14	15.00	14.14	15.00		11.50	14.14	15.00	14.14	15.00	100.00
	167	6785	14.28	15.00	14.28	15.00	14.28	15.00	14.28	15.00		11.50	14.28	15.00	14.28	15.00	
	215	7025	13.80	15.00	13.80	15.00	13.80	15.00	13.80	15.00		11.50	13.80	15.00	13.80	15.00	
802 112x-HE160	15	6025	14.24	15.50	14.24	15.50	14.24	15.50	14.24	15.50		11.50	14.24	15.50	14.24	15.50	
	47	6185	14.11	15.00	14.11	15.00	14.11	15.00	14.11	15.00		11.50	14.11	15.00	14.11	15.00	
	111	6505	13.77	15.00	13.77	15.00	13.77	15.00	13.77	15.00		11.50	13.77	15.00	13.77	15.00	100.00
	175	6825	14.46	15.50	14.46	15.50	14.46	15.50	14.46	15.50		11.50	14.46	15.50	14.46	15.50	
	207	6985	12.60	13.50	12.60	13.50	12.60	13.50	12.60	13.50		11.50	12.60	13.50	12.60	13.50	

Note: The 6GHz WLAN can transmit in MIMO antenna mode only and it has no SISO antenna mode.

11. Antenna Location

The detailed antenna location information can refer to SAR Test Setup Photos.

12. <u>RF Exposure Test Results</u>

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \sim ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 4. Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.
- Per KDB648474 D04v01r03, this device is considered a phablet since the display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm. Therefore, phablet SAR tests are required when wireless mode does not apply or if wireless router 1g SAR >1.2W/kg
- 6. For WIFI6E doesn't support wireless router capability.
- 7. Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors.
- 8. Per October 2020 TCB Workshop Interim procedures, start instead with a minimum of 5 test channels across the full band, then adapt and apply conducted power and SAR test reduction procedures of KDB Pub. 248227 v02r02
- 9. Absorbed power density (APD) using a 4cm2 averaging area is reported based on SAR measurements.
- 10. Per FCC guidance, the WiFi 6E Sim-Tx analysis are using the SAR results with the conventional SPLSR etc procedures from KDB 447498 D01. And the Sim-Tx analysis result refer to Sporton SAR report no.: FA151701-01.

WLAN SAR Note:

- When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 3. WIFI 6GHz operations are limited to MIMO operations only (does not supported standalone mode) Per KDB 248227, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB 447498 by making a SAR measurement with both antennas transmitting simultaneously.
- 4. During SAR testing the WIFI6E transmission was verified using a spectrum analyzer.
- 5. When SAR testing for 802.11ax is required
 - a. If the maximum output power is highest for OFDMA scenarios, choose the tone size with the maximum number of tones and the highest maximum output power
 - b. Otherwise, consider the fully allocated channel for SAR testing
 - c. When SAR testing is required on RU sizes less than the fully allocated channel, use the RU number closest to the middle of the channel, choosing the higher RU number when two RUs are equidistant to the middle of the channel.

12.1 Head SAR Test Result

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Antenna	Power Reduction	Ch.	Freq. (MHz)	Power		Tune-up Scaling Factor		Duty Cycle Scaling Factor		Measured 1g SAR (W/kg)		Measured APD (W/m^2)
	WLAN6GHz	802.11ac-VHT160 MCS0	Right Cheek	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.12	0.019	0.025	0.181
01	WLAN6GHz	802.11ac-VHT160 MCS0	Right Tilted	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	0.13	0.027	0.035	0.221
	WLAN6GHz	802.11ac-VHT160 MCS0	Left Cheek	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.12	0.017	0.022	0.152
	WLAN6GHz	802.11ac-VHT160 MCS0	Left Tilted	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	0.11	0.020	0.026	0.186
	WLAN6GHz	802.11ac-VHT160 MCS0	Right Tilted	Ant 4+12	Full	15	6025	14.22	15.50	1.343	100	1.000	0.18	0.023	0.031	0.175
	WLAN6GHz	802.11ac-VHT160 MCS0	Right Tilted	Ant 4+12	Full	47	6185	14.06	15.00	1.242	100	1.000	0.05	0.015	0.019	0.192
	WLAN6GHz	802.11ac-VHT160 MCS0	Right Tilted	Ant 4+12	Full	111	6505	13.81	14.30	1.119	100	1.000	-0.12	0.020	0.022	0.198
	WLAN6GHz	802.11ac-VHT160 MCS0	Right Tilted	Ant 4+12	Full	207	6985	12.58	13.50	1.236	100	1.000	0.05	0.021	0.026	0.216

12.2 Body Worn SAR Test Result

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Measured APD (W/m^2)
	WLAN6GHz	802.11ac-VHT160 MCS0	Front	5mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	0.06	0.010	0.013	0.087
02	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.02	0.906	1.170	4.96
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Full	15	6025	14.22	15.50	1.343	100	1.000	0.12	0.101	0.136	0.892
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Full	47	6185	14.06	15.00	1.242	100	1.000	0.14	0.078	0.097	0.662
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Full	111	6505	13.81	14.30	1.119	100	1.000	0.04	0.577	0.646	3.34
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Full	207	6985	12.58	13.50	1.236	100	1.000	-0.05	0.661	0.817	3.55
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	27mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	0.03	0.054	0.070	0.892
	WLAN6GHz	802.11ac-VHT160 MCS0	Front	5mm	Ant 4+12	Simultaneous	175	6825	10.42	11.50	1.282	100	1.000	0.17	0.004	0.005	0.024
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Simultaneous	175	6825	10.42	11.50	1.282	100	1.000	0.05	0.268	0.344	1.36
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Simultaneous	15	6025	10.36	11.50	1.300	100	1.000	0.03	0.034	0.044	0.296
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Simultaneous	47	6185	10.11	11.50	1.377	100	1.000	-0.08	0.026	0.036	0.237
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	5mm	Ant 4+12	Simultaneous	111	6505	10.26	11.50	1.330	100	1.000	0.18	0.181	0.241	1.3
		802.11ac-VHT160 MCS0		-		Simultaneous			9.96	11.50	1.426	100	1.000	0.13	0.209	0.298	0.912

Note: The Back 27mm is just for simultaneous transmit analysis.

12.3 Product Specific SAR Test Result

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Duty Cycle Scaling Factor	Power Drift (dB)	Measured 10g SAR (W/kg)	Reported 10g SAR (W/kg)	Measured APD (W/m^2)
	WLAN6GHz	802.11ac-VHT160 MCS0	Front	0mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.03	0.008	0.010	0.202
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	0mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	0.16	0.203	0.262	5.07
	WLAN6GHz	802.11ac-VHT160 MCS0	Left Side	0mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.01	0.010	0.013	0.262
	WLAN6GHz	802.11ac-VHT160 MCS0	Right Side	0mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-	n/a	n/a	0.01
	WLAN6GHz	802.11ac-VHT160 MCS0	Top Side	0mm	Ant 4+12	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.09	0.017	0.022	0.413
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	0mm	Ant 4+12	Full	15	6025	14.22	15.50	1.343	100	1.000	-0.12	0.143	0.192	3.57
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	0mm	Ant 4+12	Full	47	6185	14.06	15.00	1.242	100	1.000	-0.02	0.133	0.165	3.32
03	WLAN6GHz	802.11ac-VHT160 MCS0	Back	0mm	Ant 4+12	Full	111	6505	13.81	14.30	1.119	100	1.000	0.05	0.340	0.381	8.5
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	0mm	Ant 4+12	Full	207	6985	12.58	13.50	1.236	100	1.000	-0.1	0.188	0.232	4.69

12.4 Repeated SAR Measurement

Plo No	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Dannan	Tune-Up Limit (dBm)		Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)			Reported 1g SAR (W/kg)
1st	WLAN6GHz_Ant 4+12	802.11ac-VHT160 MCS0	Back	5mm	Full	175	6825	14.39	15.50	1.291	100	1.000	-0.02	0.906	1	1.170
2nc	WLAN6GHz _Ant 4+12	802.11ac-VHT160 MCS0	Back	5mm	Full	175	6825	14.39	15.50	1.291	100	1.000	0.02	0.891	1.017	1.150

General Note:

1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.

- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

12.5 <u>PD Test Result</u>

Power Density General Notes:

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements.
- 3. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements.
- 4. Power density was calculated by repeated E-field measurements on two measurement planes separated by λ/4.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 6. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 7. Since this device is considered a phablet and there is no different PD limit on different exposure conditions, therefore select highest phablet SAR at 0 mm test distance and configurations evaluate power density. Since there is no different PD limit on different exposure conditions, therefore the PD test was performed of a 2mm separation between sensor and EUT surface to cover all exposure conditions of phablet.
- 8. The measurement procedure consists of measuring the PDinc at two different distances: 2 mm (compliance distance) and λ/5. The grid extents should be large enough to fully capture the transmitted energy. The grid step should be fine enough to demonstrate that the integrated Power Density iPDn fulfill the criterion described below. Since iPD ratio between the two distances is≥ -1dB, the grid step (0.0625) was sufficient for determining compliance at d=2mm.

$$10 \cdot \log_{10} \frac{iPD_n(2mm)}{iPD_n(\lambda/5)} \ge -1$$

<WLAN PD>

Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Grip Step (λ)	IPD	IPD ratio (≥ -1)	Normal psPD (W/m^2)	Total psPD (W/m^2)
WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	15	6025	14.22	0.0625	1.43	0.154569511	1.34	1.69
WLAN6GHz	802.11ac-VHT160 MCS0	Back	10mm	Ant 4+12	15	6025	14.22	0.15	1.38		0.416	0.479
WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	207	6985	12.58	0.0625	2.16	0.557001502	1.5	1.74
WLAN6GHz	802.11ac-VHT160 MCS0	Back	8.59mm	Ant 4+12	207	6985	12.58	0.15	1.9	0.557001502	1	1.13

Plo No	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor	Cycle		Grip Step (λ)	Scaling Factor for measurement uncertainty	Power Drift (dB)	Normal psPD (W/m^2)	Scaled Normal psPD (W/m^2)	Total psPD (W/m^2)	Scaled Total psPD (W/m^2)
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	15	6025	14.22	15.50	1.343	100.00	1.000	0.0625	1.5535	-0.07	1.34	2.80	1.69	3.53
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	207	6985	12.58	13.50	1.236	100.00	1.000	0.0625	1.5535	0.09	1.5	2.88	1.74	3.34
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	47	6185	14.06	15.00	1.243	100.00	1.000	0.0625	1.5535	-0.06	1.21	2.34	1.53	2.95
01	WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	111	6505	13.81	14.30	1.119	100.00	1.000	0.0625	1.5535	-0.02	3.54	6.16	4.05	7.04
	WLAN6GHz	802.11ac-VHT160 MCS0	Back	2mm	Ant 4+12	175	6825	14.39	15.50	1.291	100.00	1.000	0.0625	1.5535	0.06	1.09	2.19	1.23	2.47

Test Engineer : Changlin Huang, Bin He, Mengming Dai

13. <u>Uncertainty Assessment</u>

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Report No. : FA151701-01B

DASY6 Uncertainty Budget (Frequency band: 4 MHz - 10 GHz range)								
Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)	
Measurement System								
Probe Calibration	18.60	Ν	2	1	1	9.3	9.3	
Probe Calibration Drift	1.00	Ν	1	1	1	1.0	1.0	
Probe Linearity	4.70	R	1.732	1	1	2.7	2.7	
Broadband Signal	3.00	Ν	1	1	1	3.0	3.0	
Probe Isotropy	7.60	R	2	1	1	3.8	3.8	
Data Acquisition	0.30	N	1.732	1	1	0.2	0.2	
RF Ambient	1.80	N	1	1	1	1.8	1.8	
Probe Positioning	0.20	N	1	0.33	0.33	0.1	0.1	
Data Processing	3.50	N	1	1	1	3.5	3.5	
Phantom and Device Errors								
Conductivity (meas.) DAK	2.50	N	1	0.78	0.71	2.0	1.8	
Conductivity (temp.) BB	5.40	R	1.732	0.78	0.71	2.4	2.2	
Phantom Permittivity	14.00	R	1.732	0.5	0.5	4.0	4.0	
Distance DUT - TSL	2.00	N	1	2	2	4.0	4.0	
Device Holder	3.60	N	1	1	1	3.6	3.6	
DUT Modulationm	2.40	R	1.732	1	1	1.4	1.4	
Time-average SAR	2.60	R	1.732	1	1	1.5	1.5	
DUT drift	5.00	Ν	1	1	1	5.0	5.0	
Correction to the SAR results								
Deviation to Target	1.90	Ν	1	1	0.84	1.9	1.6	
SAR scalingp	0.00	R	1.732	1	1	0.0	0.0	
Co	ombined Std. U	ncertainty				14.9%	14.8%	
C	overage Factor	for 95 %				K=2	K=2	
Ex	29.8%	29.6%						

SAR Uncertainty Budget for frequency range 4MHz to 10GHz

cDASY6 Module mmWave Uncertainty Budget Evaluation Distances to the Antennas > λ/2π In Compliance with IEC/IEEE 63170								
Error Description	Uncertainty Value (±dB)	Probability	Divisor	(Ci)	Standard Uncertainty (±dB)			
Uncertainty terms dep endent on the me	easurement system							
Probe Calibration	0.49	N	1	1	0.49			
Probe correction	0.00	R	1.732	1	0.00			
Frequency response (BW ≤ 1 GHz)	0.20	R	1.732	1	0.12			
Sensor cross coupling	0.00	R	1.732	1	0.00			
Isotropy	0.50	R	1.732	1	0.29			
Linearity	0.20	R	1.732	1	0.12			
Probe scattering	0.00	R	1.732	1	0.00			
Probe positioning offset	0.30	R	1.732	1	0.17			
Probe positioning repeatability	0.04	R	1.732	1	0.02			
Sensor mechanical offset	0.00	R	1.732	1	0.00			
Probe spatial resolution	0.00	R	1.732	1	0.00			
Field impedance dependance	0.00	R	1.732	1	0.00			
Amplitude and phase drift	0.00	R	1.732	1	0.00			
Amplitude and phase noise	0.04	R	1.732	1	0.02			
Measurement area truncation	0.00	R	1.732	1	0.00			
Data acquisition	0.03	N	1	1	0.03			
Sampling	0.00	R	1.732	1	0.00			
Field reconstruction	2.00	R	1.732	1	1.15			
Forward transformation	0.00	R	1.732	1	0.00			
Power density scaling	0.00	R	1.732	1	0.00			
Spatial averaging	0.10	R	1.732	1	0.06			
System detection limit	0.04	R	1.732	1	0.02			
Uncertainty terms dep endent on the DL	JT and environmental	factors						
Probe coupling with DUT	0.00	R	1.732	1	0.0			
Modulation response	0.40	R	1.732	1	0.2			
Integration time	0.00	R	1.732	1	0.0			
Response time	0.00	R	1.732	1	0.0			
Device holder influence	0.10	R	1.732	1	0.1			
DUT alignment	0.00	R	1.732	1	0.0			
RF ambient conditions	0.04	R	1.732	1	0.0			
Ambient reflections	0.04	R	1.732	1	0.0			
Immunity / secondary reception	0.00	R	1.732	1	0.0			
Drift of the DUT		R	1.732	1				
Comt	oined Std. Uncertainty				1.34			
Expande	ed STD Uncertainty (98	5%)			2.68			

PD Uncertainty Budget

14. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [9] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [10] IEC/IEEE 62209-1528:2020, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)", Oct. 2020
- [11] IEC 62479:2010 Assessment of the compliance of low power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz)
- [12] IEC TR 63170: 2018 Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz

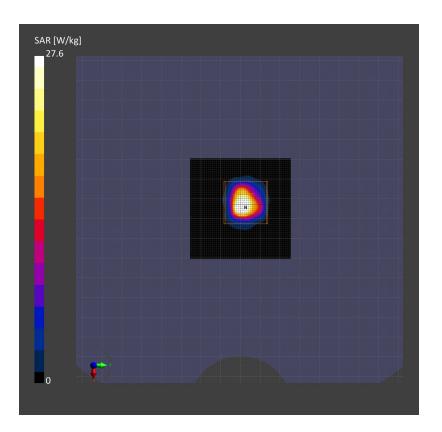
Report No. : FA151701-01B

Appendix A. Plots of System Performance Check

The plots are shown as follows.

System Check_Head_6500MHz

DUT: D6.5GHzV2-SN:1026


Communication System: Custom Band; Frequency: 6500.0;Duty Cycle: 1:1 Medium: HSL_6500_210628 Medium parameters used: f= 6500.0 MHz; σ = 6.04 S/m; ϵ r = 34.15 Ambient Temperature: 23.5°C; Liquid Temperature: 22.5°C

DASY6 Configuration:

- Probe: EX3DV4 SN7576; ConvF(5.7, 5.7, 5.7); Calibrated: 2021-04-26
- Sensor-Surface: 1.4 mm
- Electronics: DAE4 Sn715; Calibrated: 2020-07-27
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1670; Section: Flat
- Measurement Software: cDASY6 V6.6.0.13926
- UID: CW, 0--
- MAIA: Area Scan: N/A; Zoom Scan: N/A

Area Scan (51.0 mm x 51.0 mm): Measurement Grid: 8.5 mm x 8.5 mm SAR (1g) = 21.9 W/kg; SAR (10g) = 4.89 W/kg;

Zoom Scan (22.0 mm x 22.0 mm x 22.0 mm): Measurement Grid: 3.4 mm x 3.4 mm x 1.4 mm Power Drift = 0.05 dB SAR (1g) = 27.6 W/kg; SAR (10g) = 4.98 W/kg;

Test Laboratory: Sporton International Inc. **Device Under Test Properties**

Sensor Surface [mm]

Model, Manufacturer		Dimensions [mm]		IMEI	DUT Type
Device,		100.0 x 100.0 x 172.0			5G Verification Source
Exposure Condition	ns				
Phantom Section	Positi	on, Test Distance [mm]	Frequency [MHz]	(Conversion Factor
5G	FRON	T, 10.00	10000.0		1.0
Hardware Setup					
Phantom	Medium	Probe, Calibration Date		DAE, C	alibration Date
mmWave - xxxx	Air –	EUmmWV4 - SN9432_F1-78GHz,	2020-10-14	DAE4 S	5n715, 2020-07-27
Scans Setup			Measurement Results	;	
Scan Type		5G Scan	Date		2021-07-04, 17:22
Grid Extents [mm]		120.0 x 120.0	Avg. Area [cm ²]		4.00
Grid Steps [lambda]		0.25 x 0.25	psPDn+ [W/m ²]		24.7

10.0

 $psPDn+ [W/m^2]$

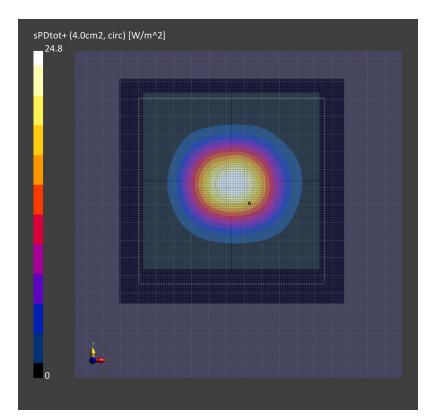
psPDtot+ [W/m²]

 $max_{(Stot)} [W/m^2]$

Power Drift [dB]

iPDn

 H_{max} [A/m] $E_{max} \left[V/m
ight]$


24.8

0.287

103 29.3

47.1

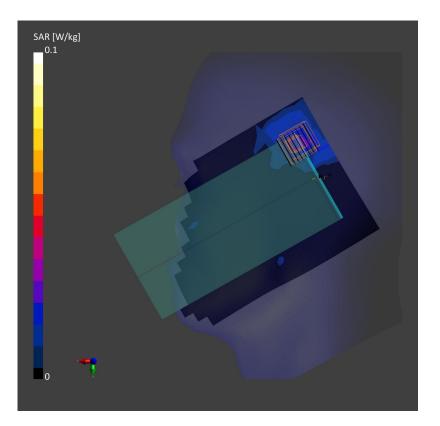
0.05

Report No. : FA151701-01B

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

01_WLAN6GHz_802.11ac-VHT160 MCS0_Right Tilted_Ch175


Communication System: U-NII-7; Frequency: 6825.0;Duty Cycle: 1:1 Medium: HSL_6500_210628 Medium parameters used: f= 6825.0 MHz; σ = 6.39 S/m; ϵ_r = 33.65 Ambient Temperature: 23.5°C; Liquid Temperature: 22.5°C

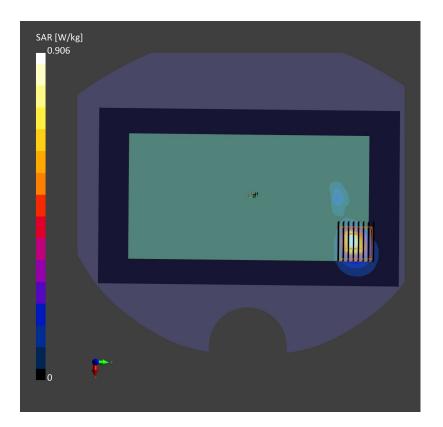
DASY6 Configuration:

- Probe: EX3DV4 SN7576; ConvF(5.7, 5.7, 5.7); Calibrated: 2021-04-26
- Sensor-Surface: 1.4 mm
- Electronics: DAE4 Sn715; Calibrated: 2020-07-27
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1670; Section: RightHead
- Measurement Software: cDASY6 V6.6.0.13926
- UID: WLAN, 10743-AAB
- MAIA: Area Scan: N/A; Zoom Scan: N/A

Area Scan (119.0 mm x 204.0 mm): Measurement Grid: 8.5 mm x 8.5 mm SAR (1g) = 0.027 W/kg; SAR (10g) = 0.01 W/kg;

Zoom Scan (22.0 mm x 22.0 mm x 22.0 mm): Measurement Grid: 3.4 mm x 3.4 mm x 1.4 mm Power Drift = 0.13 dB SAR (1g) = 0.027 W/kg; SAR (10g) = 0.009 W/kg;

02_WLAN6GHz_802.11ac-VHT160 MCS0_Back_5mm_Ch175


Communication System: U-NII-7; Frequency: 6825.0;Duty Cycle: 1:1 Medium: HSL_6500_210628 Medium parameters used: f= 6825.0 MHz; σ = 6.39 S/m; ϵ_r = 33.65 Ambient Temperature: 23.5°C; Liquid Temperature: 22.5°C

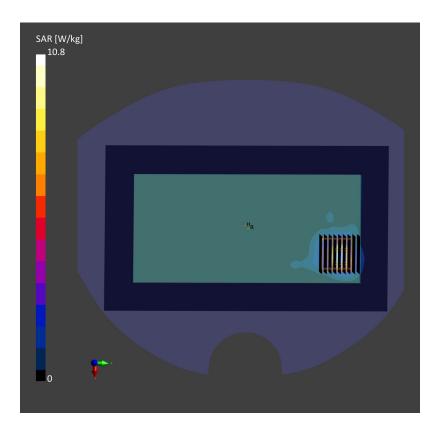
DASY6 Configuration:

- Probe: EX3DV4 SN7576; ConvF(5.7, 5.7, 5.7); Calibrated: 2021-04-26
- Sensor-Surface: 1.4 mm
- Electronics: DAE4 Sn715; Calibrated: 2020-07-27
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1670; Section: Flat
- Measurement Software: cDASY6 V6.6.0.13926
- UID: WLAN, 10743-AAB
- MAIA: Area Scan: N/A; Zoom Scan: N/A

Area Scan (119.0 mm x 204.0 mm): Measurement Grid: 8.5 mm x 8.5 mm SAR (1g) = 0.747 W/kg; SAR (10g) = 0.192 W/kg;

Zoom Scan (22.0 mm x 22.0 mm x 22.0 mm): Measurement Grid: 3.4 mm x 3.4 mm x 1.4 mm Power Drift = -0.02 dB SAR (1g) = 0.906 W/kg; SAR (10g) = 0.198 W/kg;

03_WLAN6GHz_802.11ac-VHT160 MCS0_Back_0mm_Ch111

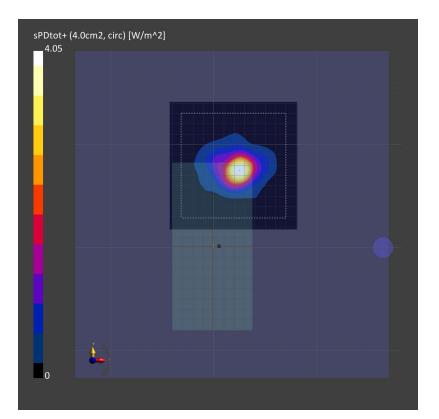

Communication System: U-NII-6; Frequency: 6505.0;Duty Cycle: 1:1 Medium: HSL_6500_210628 Medium parameters used: f= 6505.0 MHz; σ = 6.08 S/m; ϵ_r = 34.32 Ambient Temperature: 23.5°C; Liquid Temperature: 22.5°C

DASY6 Configuration:

- Probe: EX3DV4 SN7576; ConvF(5.7, 5.7, 5.7); Calibrated: 2021-04-26
- Sensor-Surface: 1.4 mm
- Electronics: DAE4 Sn715; Calibrated: 2020-07-27
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1670; Section: Flat
- Measurement Software: cDASY6 V6.6.0.13926
- UID: WLAN, 10743-AAB
- MAIA: Area Scan: N/A; Zoom Scan: N/A

Area Scan (119.0 mm x 204.0 mm): Measurement Grid: 8.5 mm x 8.5 mm SAR (1g) = 1.25 W/kg; SAR (10g) = 0.322 W/kg;

Zoom Scan (22.0 mm x 22.0 mm x 22.0 mm): Measurement Grid: 3.4 mm x 3.4 mm x 1.4 mm Power Drift = 0.05 dB SAR (1g) = 1.64 W/kg; SAR (10g) = 0.340 W/kg;


Test Laboratory: Sporton International Inc. Device Under Test Properties

Sensor Surface [mm]

Model, Manufacturer		Dimensions [mm]		IMEI	DUT Type
Device,		163.0 x 78.0 x 8.0			Phone
Exposure Conditior	IS				
Phantom Section	Positi	on, Test Distance [mm]	Frequency [MHz]		Conversion Factor
5G	ВАСК	, 2.00	6505.0		1.0
Hardware Setup					
Phantom	Medium	Probe, Calibration Date		DAE, C	Calibration Date
mmWave - xxxx	Air –	EUmmWV4 - SN9432_F1-78GHz,	2020-10-14	DAE4	Sn715, 2020-07-27
Scans Setup			Measurement Results		
Scan Type		5G Scan	Date		2021-07-04, 23:17
Grid Extents [mm]		120.0 x 120.0	Avg. Area [cm ²]		4.00
Grid Steps [lambda]		0.0625 x 0.0625	psPDn+ [W/m ²]		3.54

2.0

Date	2021-07-04, 23:17
Avg. Area [cm ²]	4.00
psPDn+ [W/m ²]	3.54
psPDtot+ [W/m ²]	4.05
H _{max} [A/m]	0.188
E _{max} [V/m]	74.5
max _(Stot) [W/m ²]	9.22
iPDn	2.46
Power Drift [dB]	-0.02

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

Accreditation No.: SCS 0108

S **Swiss Calibration Service**

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton Client

Certificate No: D6.5GHzV2-1026_Jan21

CALIBRATION CERTIFICATE

Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: January 29, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Power metrin NIP Power sensor NIP-Z91 SN: 103245 SN: 103245 01-Apr-20 (No. 217-03100/03101) Power sensor NIP-Z91 SN: 103245 SN: 103245 01-Apr-20 (No. 217-03100) Power sensor NIP-Z91 SN: 103245 SN: 103245 01-Apr-20 (No. 217-03100) Power sensor NIP-Z91 SN: 103245 SN: 103245 01-Apr-20 (No. 217-03104) Apr-21 SN: 104778 SN: 103245 01-Apr-20 (No. 217-03106) Apr-21 SN: 104778 SN: 103245 01-Apr-20 (No. 217-03104) Apr-21 SN: 104778 SN: 100427 SN: 200827	Object	D6.5GHzV2 - SN:	1026	
Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: January 29, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power sensor NRP-Z91 SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Reference 20 dB Attenuator SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Reference Probe EX3DV4 SN: 310827 06327 31-Mar-20 (No. 217-03101) Apr-21 Reference Probe EX3DV4 SN: 10057 11-Apr-20 (No. 217-03104) Apr-21 Secondary Standards ID # Check Date (In house) Scheduled Check Power sensor RRS NRP33T SN: 100967 17-Oct-16 (In house check Dec-18) In house check: Dec-21 RF generator Anapico APSINZOG SN: 101093 10-May-12 (In house check Dec-18) In house check: Dec-21 RF generator Anapico APSINZOG				
Calibration date: January 29, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)	QA CAL-22.v5		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.		Calibration Procee	dure for SAR Validation Sources	between 3-10 GHz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	January 29, 2021		
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	This calibration certificate documen	ts the traceability to natio	onal standards, which realize the physical uni	its of measurements (SI).
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	The measurements and the uncerta	ainties with confidence pr	obability are given on the following pages and	d are part of the certificate.
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03100) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 DAE4 SN: 908 14-Aug-20 (No. 217-03104) Apr-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Approved by: Katja Pokovic Technical Manager Jaugu Issued: February 1, 2021 <		•	• • • • • • • • • • • • • • • • • • •	
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03100) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 DAE4 SN: 908 14-Aug-20 (No. 217-03104) Apr-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Approved by: Katja Pokovic Technical Manager Jaugu Issued: February 1, 2021 <	All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: 310982 / 06327 31-Mar-20 (No. 217-03106) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Beference Probe EX3DV4 SN: 7405 30-Dec-20 (No. EX3-7405_Dec20) Dec-21 DAE4 SN: 908 14-Aug-20 (No. DAE4-908_Aug20) Aug-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Approved by: Katja Pokovic Technical Manager Mathetary Mathetary Mathetary Mathetary Mathetary Mathetary Mathetary Mathetary M	All calibrations have been conducte			¥.
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: 310982 / 06327 31-Mar-20 (No. 217-03106) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Beference Probe EX3DV4 SN: 7405 30-Dec-20 (No. EX3-7405_Dec20) Dec-21 DAE4 SN: 908 14-Aug-20 (No. DAE4-908_Aug20) Aug-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Approved by: Katja Pokovic Technical Manager Mathetary Mathetary Mathetary Mathetary Mathetary Mathetary Mathetary Mathetary M	Calibration Equipment used (M&TE	critical for calibration)		
Immaly outroducedID #ID-Apr-20 (No. 217-03100/03101)Apr-21Power meter NRP Power sensor NRP-Z91SN: 10324401-Apr-20 (No. 217-03100)Apr-21Power sensor NRP-Z91SN: 10324501-Apr-20 (No. 217-03100)Apr-21Power sensor NRP-Z91SN: 10324501-Apr-20 (No. 217-03100)Apr-21Reference 20 dB AttenuatorSN: BH9394 (20k)31-Mar-20 (No. 217-03106)Apr-21Type-N mismatch combinationSN: 310982 / 0632731-Mar-20 (No. 217-03106)Apr-21Reference Probe EX3DV4SN: 740530-Dec-20 (No. EX3-7405_Dec20)Dec-21DAE4SN: 90814-Aug-20 (No. DAE4-908_Aug20)Aug-21Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor R&S NRP33TSN: 10096717-Oct-16 (in house check Dec-18)In house check: Dec-21Network Analyzer R&S ZVL13SN: 10109310-May-12 (in house check Dec-18)In house check: Dec-21NameFunctionSignatureCalibrated by:Jeton KastratiLaboratory TechnicianApr-21Approved by:Katja PokovicTechnical ManagerMadu4Issued: February 1, 2021	Calibration Equipment used (Marie	online for calibrationy		
Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03100) Apr-21 Reference 20 dB Attenuator SN: B19394 (20k) 31-Mar-20 (No. 217-03104) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 DAE4 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Secondary Standards ID # Check Date (In house) Dec-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 SN: 10098 10-Mar-17 (in house check Dec-18) In house check: Dec-21 SN: 101093 10-Mar-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Approved by: Jeton Kastrati Laboratory Technician Marequare Approved by:	Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Forwer sensor NRP-Z91SN: 10324501-Apr-20 (No. 217-03101)Apr-21Reference 20 dB AttenuatorSN: 310982 / 0632731-Mar-20 (No. 217-03106)Apr-21Type-N mismatch combinationSN: 310982 / 0632731-Mar-20 (No. 217-03104)Apr-21Reference Probe EX3DV4SN: 740530-Dec-20 (No. EX3-7405_Dec20)Dec-21DAE4SN: 90814-Aug-20 (No. DAE4-908_Aug20)Aug-21Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor R&S NRP33TSN: 10096717-Oct-16 (in house check Dec-18)In house check: Dec-21RF generator Anapico APSIN20GSN: 66928-Mar-17 (in house check Dec-18)In house check: Dec-21Network Analyzer R&S ZVL13SN: 10109310-May-12 (in house check Dec-18)In house check: Dec-21Approved by:Katja PokovicTechnical ManagerMatualApproved by:Katja PokovicTechnical ManagerMatualJasued: February 1, 2021		SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
NormeFunctionSileReference 20 dB AttenuatorSN: BH9394 (20k)31-Mar-20 (No. 217-03106)Apr-21Type-N mismatch combinationSN: 310982 / 0632731-Mar-20 (No. 217-03104)Apr-21Reference Probe EX3DV4SN: 740530-Dec-20 (No. EX3-7405_Dec20)Dec-21DAE4SN: 90814-Aug-20 (No. DAE4-908_Aug20)Aug-21Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor R&S NRP33TSN: 10096717-Oct-16 (in house check Dec-18)In house check: Dec-21RF generator Anapico APSIN20GSN: 66928-Mar-17 (in house check Dec-18)In house check: Dec-21Network Analyzer R&S ZVL13SN: 10109310-May-12 (in house check Dec-18)In house check: Dec-21Approved by:Katja PokovicTechnical ManagerMather August Augus	Power sensor NRP-Z91		01-Apr-20 (No. 217-03100)	Apr-21
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4SN: BH9394 (20k) SN: 310982 / 06327 SN: 310982 / 06327 SN: 310982 / 06327 		SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Type-N mismatch combination Reference Probe EX3DV4 DAE4SN: 310982 / 06327 SN: 7405 SN: 7405 SN: 90831-Mar-20 (No. 217-03104) SO-Dec-20 (No. EX3-7405_Dec20) Dec-21 Aug-21Apr-21 Dec-21 Aug-21Secondary StandardsID # Check Date (in house)Check Date (on house)Scheduled Check Scheduled CheckPower sensor R&S NRP33T RF generator Anapico APSIN20G Network Analyzer R&S ZVL13SN: 100967 SN: 10109317-Oct-16 (in house check Dec-18) SN: 101093In house check: Dec-21 In house check Dec-18)NameFunctionSignature Laboratory TechnicianSignature Approved by:Approved by:Katja PokovicTechnical ManagerApproved by:Katja PokovicTechnical ManagerJasued: February 1, 2021			31-Mar-20 (No. 217-03106)	Apr-21
Reference Probe EX3DV4 SN: 7405 30-Dec-20 (No. EX3-7405_Dec20) Dec-21 DAE4 SN: 908 14-Aug-20 (No. DAE4-908_Aug20) Aug-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 669 28-Mar-17 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Approved by: Katja Pokovic Technical Manager Mature Issued: February 1, 2021 Issued: February 1, 2021				Apr-21
DAE4 SN: 908 14-Aug-20 (No. DAE4-908_Aug20) Aug-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 669 28-Mar-17 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Approved by: Katja Pokovic Technical Manager Mature Issued: February 1, 2021 Issued: February 1, 2021		SN: 7405		Dec-21
Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 669 28-Mar-17 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Mathematical Manager Issued: February 1, 2021 Issued: February 1, 2021	1 1 1 1 1 1 1 1 1 1	SN: 908	-	Aug-21
Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 669 28-Mar-17 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 1, 2021				
Power sensor R&S NRP33T SN: 100967 17-Oct-16 (in house check Dec-18) In house check: Dec-21 RF generator Anapico APSIN20G SN: 669 28-Mar-17 (in house check Dec-18) In house check: Dec-21 Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Laboratory Technician Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 1, 2021 Jetor 1, 2021	Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Mage Mage Mage Mage Mage Mage Mage Mage		SN: 100967	17-Oct-16 (in house check Dec-18)	In house check: Dec-21
Network Analyzer R&S ZVL13 SN: 101093 10-May-12 (in house check Dec-18) In house check: Dec-21 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Manager Approved by: Katja Pokovic Technical Manager Mathematical Manager Issued: February 1, 2021 Issued: February 1, 2021	RF generator Anapico APSIN20G	SN: 669	28-Mar-17 (in house check Dec-18)	In house check: Dec-21
Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Marcological Approved by: Katja Pokovic Technical Manager Marcological Issued: February 1, 2021 Signature Signature		SN: 101093	10-May-12 (in house check Dec-18)	In house check: Dec-21
Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager May Issued: February 1, 2021				
Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 1, 2021				
Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 1, 2021				
Approved by: Katja Pokovic Technical Manager		Name		Signature
Issued: February 1, 2021	Calibrated by:	Jeton Kastrati	Laboratory Technician	_ //
Issued: February 1, 2021				- KF
Issued: February 1, 2021			V	
	Approved by:	Katja Pokovic	Technical Manager	le al
				arrit
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	This calibration certificate shall no	t be reproduced except in	n full without written approval of the laborator	у.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

eneces. y.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528 ED1, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Part 1528: Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)", draft 2019

Additional Documentation:

b) DASY6 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V6.14
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	6.20 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	290 W/kg ± 24.7 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 24.4 % (k=2)