

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT2131-1,XT2131-4,XT2131-3,XT2131DL
FCC ID	: IHDT56ZL1
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter

The product was received on Jan. 29, 2021 and testing was completed on Feb. 26, 2021. We, Sporton International (ShenZhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc., the test report shall not be reproduced except in full.

Doque Cher

Reviewed by: Derreck Chen / Supervisor

File Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SUI	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.6
	1.5	Modification of EUT	.6
	1.6	Testing Location	6
	1.7	Test Software	.7
	1.8	Applicable Standards	.7
	1.9	Specification of Accessory	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	20
	3.4	20dB Bandwidth Measurement	
	3.5	Output Power Measurement	28
	3.6	Conducted Band Edges Measurement	29
	3.7	Conducted Spurious Emission Measurement	36
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	50
		Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	53
		ERTAINTY OF EVALUATION	54
		X A. CONDUCTED TEST RESULTS	
		X B. AC CONDUCTED EMISSION TEST RESULT	
API	PEND	X C. RADIATED SPURIOUS EMISSION	
		X D. DUTY CYCLE PLOTS	
API	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Mar. 25, 2021

3.1 3.2 3.3 3.4	15.247(a)(1) 15.247(a)(1) 15.247(a)(1) 15.247(a)(1)	Number of Channels Hopping Channel Separation Dwell Time of Each Channel	≥ 15Chs ≥ 2/3 of 20dB BW ≤ 0.4sec in 31.6sec period	Pass Pass	-
3.3	15.247(a)(1)	Separation Dwell Time of Each	≤ 0.4sec in 31.6sec		-
				5	
3.4	15.247(a)(1)		•	Pass	-
		20dB Bandwidth	N/A	N/A	Report only
-	-	99% Bandwidth	-	Not Required	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.82 dB at 41.640 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 11.01 dB at 0.630 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement s after assessing, test	N/A	N/A	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: IHDT56ZL1

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W,Merchandise Mart Plaza,Chicago,IL60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W,Merchandise Mart Plaza,Chicago,IL60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular Phone			
Brand Name	Motorola			
Model Name XT2131-1,XT2131-4,XT2131-3,XT2131DL				
FCC ID	IHDT56ZL1			
	CDMA/GSM/WCDMA/LTE/5G NR			
	WLAN 2.4GHz 802.11b/g/n HT20			
FUT our north Radian application	WLAN 5GHz 802.11a/n HT20/HT40			
EUT supports Radios application	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
	FM Receiver / GNSS			
	Conducted: 356611280011978			
IMEI Code	Condcuction: 356611280013503			
	Radaition: 356611280016803			
HW Version DVT				
SW Version	RRE31.37			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel 2402+n*1 MHz; n=0~78				
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 12.30 dBm (0.0170 W) Bluetooth EDR (2Mbps) : 9.50 dBm (0.0089 W) Bluetooth EDR (3Mbps) : 9.90 dBm (0.0098 W)			
Antenna Type / Gain Loop Antenna with gain -4.00 dBi				
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International (Shenzhen) Inc.					
Test Site Location	 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595 					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	CO01-SZ TH01-SZ	CN1256	421272			
Test Firm	Sporton International (Shenzhen) Inc.					
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuar Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Provinc China 518103 TEL: +86-755-33202398					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.			Registration No.			
	03CH04-SZ	CN1256	421272			

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

1.9 Specification of Accessory

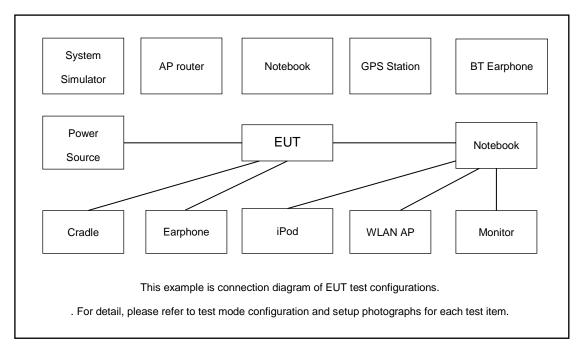
	Specification of Accessory					
AC Adapter 1	Brand Name	Motorola (Chenyang)	Model Name	MC-101		
AC Adapter 2	Brand Name	Motorola(Salcomp)	Model Name	MC-101		
Battery	Brand Name	Motorola (ATL)	Model Name	MD50		
USB Cable 1	Brand Name	Motorola (Saibao)	Model Name	SC18C24367		
USB Cable 2	Brand Name	Motorola (Luxshare)	Model Name	SC18C24368		

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
		Data Rate / Modulation					
т	est Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
		GFSK	π /4-DQPSK	8-DPSK			
		Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	onducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
IE	est Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
			Bluetooth BR 1Mbps GFSK				
F	Radiated	Mode 1: CH00_2402 MHz					
Те	est Cases	Mode 2: CH39_2441 MHz					
		Mode 3: CH78_2480 MHz					
	AC						
С	onducted		uetooth Link + WLAN Link (2.4	IG) + USB Cable 2(Charging			
Е	mission	from Adapter 1) + E	arphone + Battery				
Re	mark:						
1.	For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate						
	has the hig	ghest RF output power at preliminary tests, and no other significantly frequencies found in					
	conducted	ed spurious emission.					
2.	For Radiat	ed Test Cases, The tests were	e performed with Adapter1, Ear	phone, Battery and USB			
	Cable1.						

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station(LTE)	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
3.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
4.	Earphone	Moto	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.2 dB and 20 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor (dB)

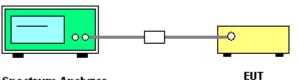
= 1.2 +20 = 21.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

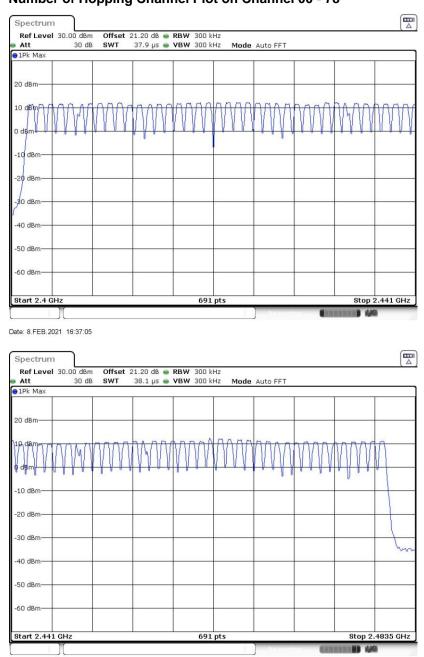

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

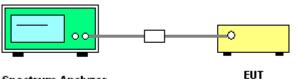
Number of Hopping Channel Plot on Channel 00 - 78

Date: 8.FEB.2021 16:38:29

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

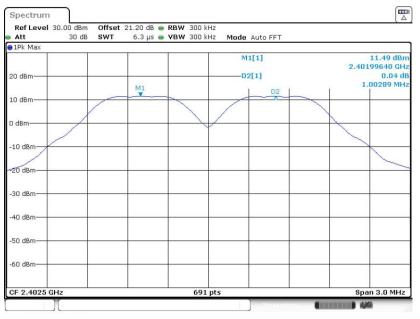
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

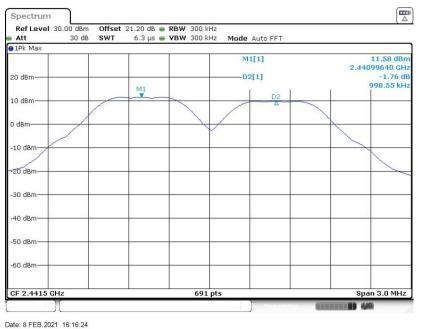
3.2.4 Test Setup

Spectrum Analyzer

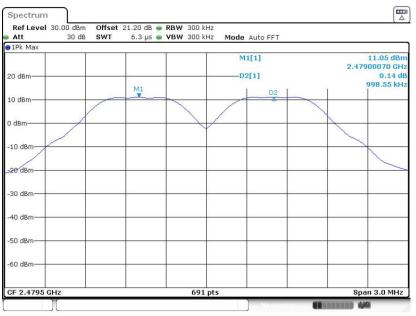


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

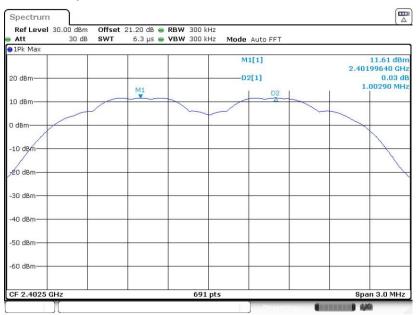

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 8.FEB.2021 16:13:25

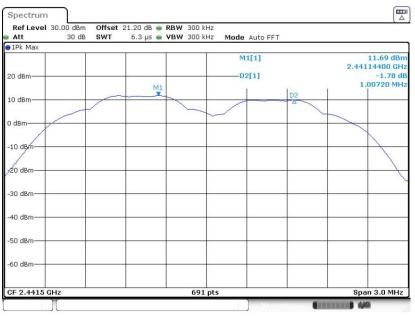
Channel Separation Plot on Channel 39 - 40

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: IHDT56ZL1



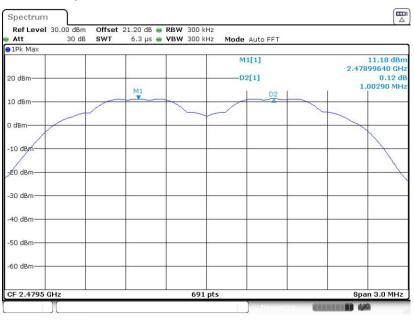
Channel Separation Plot on Channel 77 - 78

Date: 8.FEB.2021 16:17:48


<2Mbps>

Channel Separation Plot on Channel 00 - 01

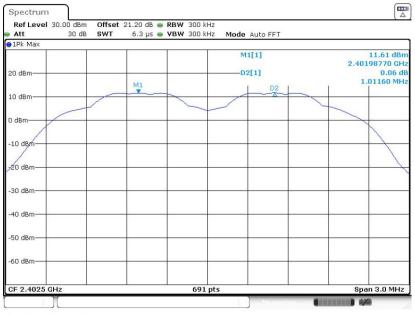
Date: 8.FEB.2021 17:13:02



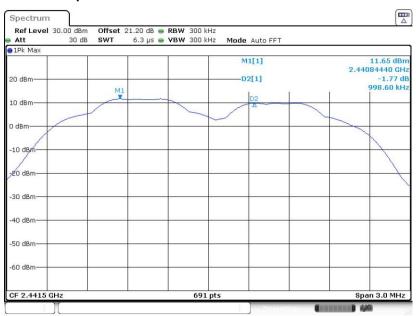
Channel Separation Plot on Channel 39 - 40

Date: 8.FEB.2021 17:12:03

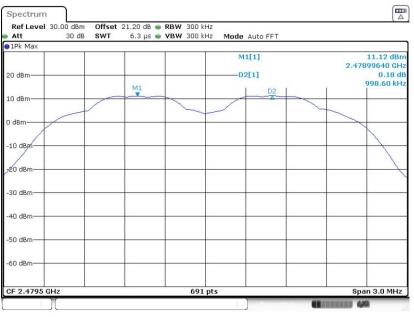
Channel Separation Plot on Channel 77 - 78



Date: 8.FEB.2021 17:10:43


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 8.FEB.2021 17:17:44

Channel Separation Plot on Channel 39 - 40

Date: 8.FEB.2021 17:25:35

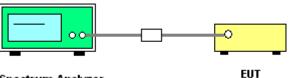
Channel Separation Plot on Channel 77 - 78

Date: 8.FEB.2021 17:29:40

3.3 **Dwell Time Measurement**

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

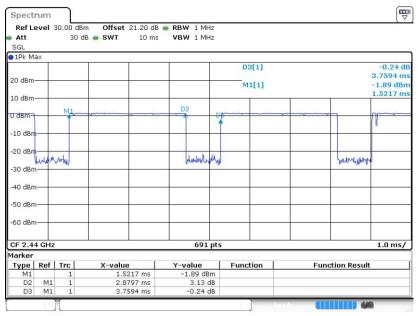

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 2.FEB.2021 18:46:02

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

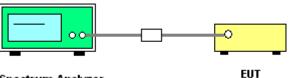
3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak;

Trace = max hold.

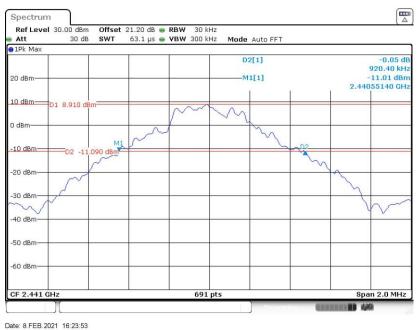
5. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.


<1Mbps>

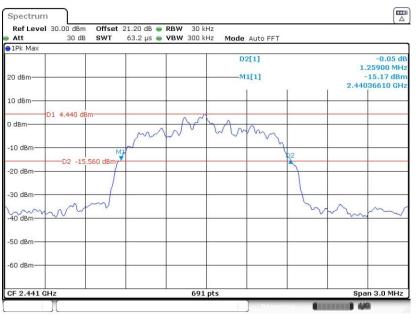
20 dB Bandwidth Plot on Channel 00

Date: 8.FEB.2021 16:31:10

20 dB Bandwidth Plot on Channel 39

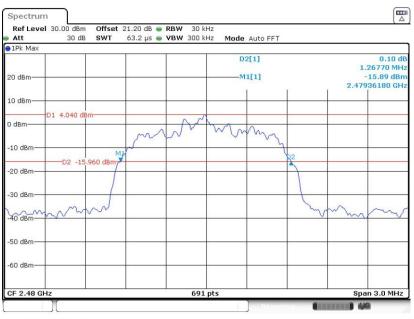
20 dB Bandwidth Plot on Channel 78

Date: 8.FEB.2021 16:19:31


<2Mbps>

20 dB Bandwidth Plot on Channel 00

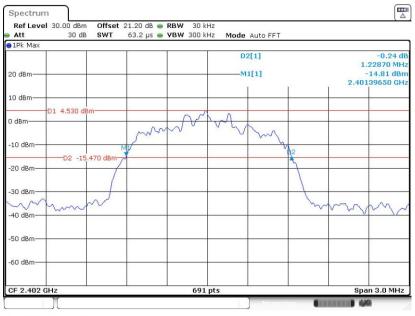
Date: 8.FEB.2021 16:56:41



20 dB Bandwidth Plot on Channel 39

Date: 8.FEB.2021 16:59:54

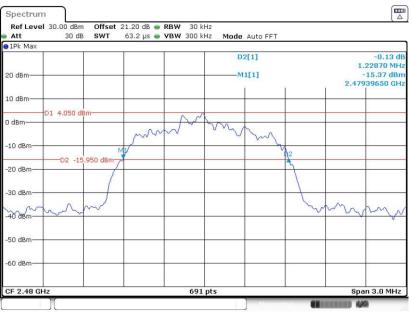
20 dB Bandwidth Plot on Channel 78



Date: 8.FEB.2021 17:03:38


<3Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 8.FEB.2021 17:19:34

20 dB Bandwidth Plot on Channel 39

Date: 8.FEB.2021 17:22:43

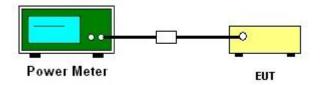
20 dB Bandwidth Plot on Channel 78

Date: 8.FEB.2021 17:26:46

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

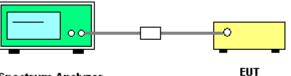
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

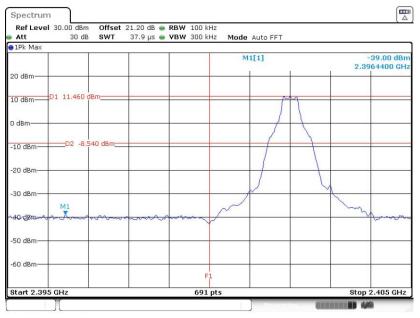

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

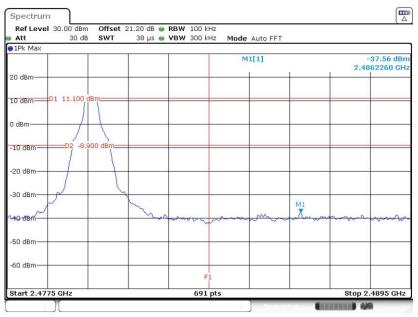
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

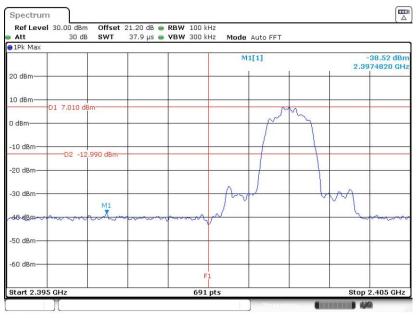
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

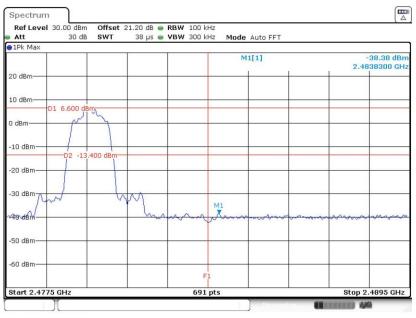
Low Band Edge Plot on Channel 00

Date: 8.FEB.2021 16:31:48

High Band Edge Plot on Channel 78



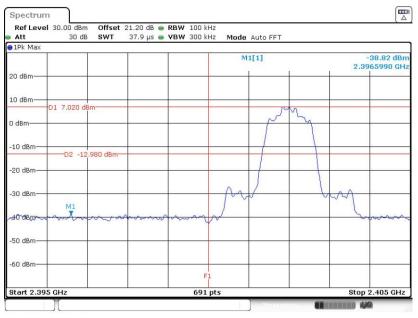
Date: 8.FEB.2021 16:20:17


<2Mbps>

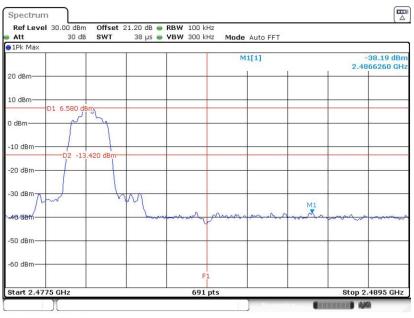
Low Band Edge Plot on Channel 00

Date: 8.FEB.2021 16:57:01

High Band Edge Plot on Channel 78



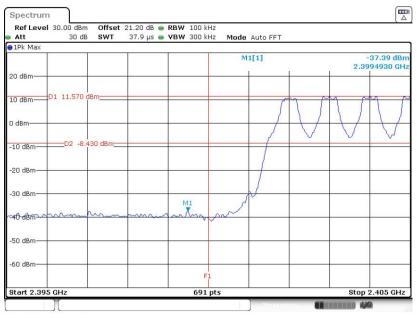
Date: 8.FEB.2021 17:03:59


<3Mbps>

Low Band Edge Plot on Channel 00

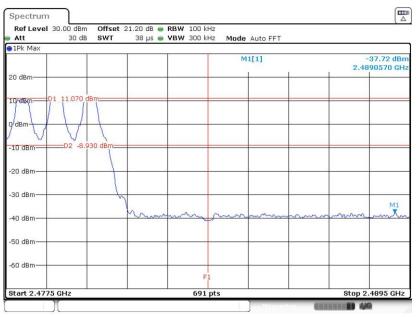
Date: 8.FEB.2021 17:19:54

High Band Edge Plot on Channel 78



Date: 8.FEB.2021 17:27:07

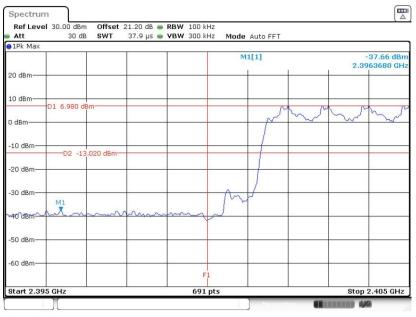
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

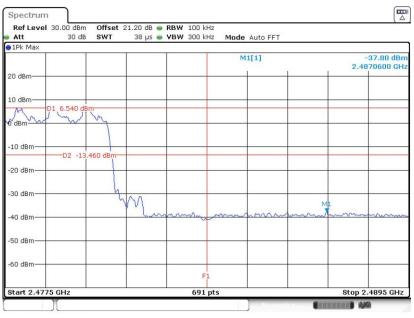
Hopping Mode Low Band Edge Plot

Date: 8.FEB.2021 16:40:45

Hopping Mode High Band Edge Plot



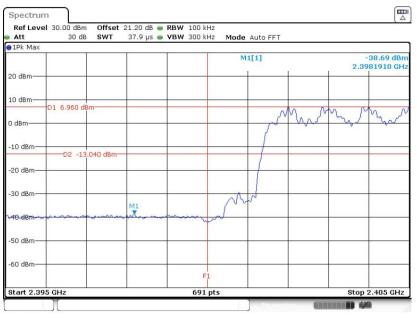
Date: 8.FEB.2021 16:42:47


<2Mbps>

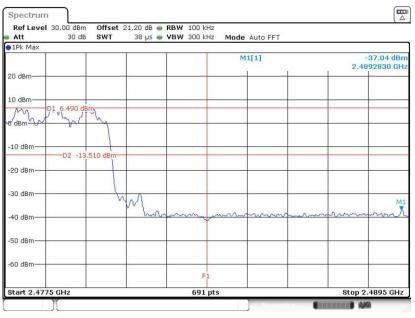
Hopping Mode Low Band Edge Plot

Date: 8.FEB.2021 16:53:06

Hopping Mode High Band Edge Plot



Date: 8.FEB.2021 16:54:54


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 8.FEB.2021 17:33:11

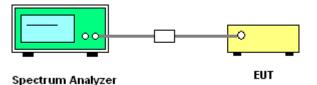
Hopping Mode High Band Edge Plot

Date: 8.FEB.2021 17:31:51

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

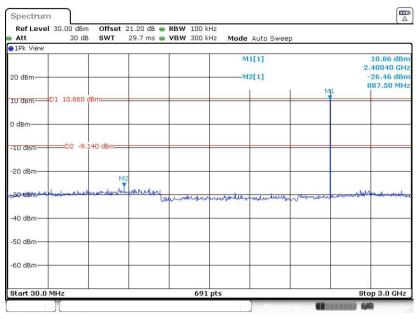

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

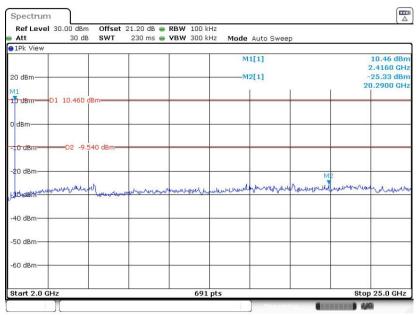
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: IHDT56ZL1

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 16:33:17

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.FEB.2021 16:33:46

Ref Level 30.0 Att	00 dBm Offs 30 dB SWT	et 21.20 dB 👄	RBW 100 kH VBW 300 kH				
1Pk View	30 UB 3W1	29.7 115	YDW SUUKH	2 MOUE AULUS	oweep		
20 dBm				M1[1] M2[1]		2.	10.64 dBn 43910 GH: 27.04 dBn 99.20 MH:
10 dBm D1 1	0.640 dBm===					M1	55.20 0.00
0 dBm							
-10 dBm	D2 -9.360 dBm	-					
-20 dBm		M2					
30 Belton MA Wa	unan man hulloud	umuland	numerollimitente	madelerable	un martine	ward and a series of the serie	an allenations
-40 dBm							2
-50 dBm							
-60 dBm							
Start 30.0 MHz			691 p	+c		Sto	p 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 16:28:13

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level	30.00 dBm 30 dB	Offset SWT	21.20 dB 👄	RBW 100		Auto Swee	n		
1Pk View							-		
20 dBm						1[1] 2[1]			10.70 dBr 2.4490 GH -24.92 dBr
41	01 10.700 d	Bm							2.8530 GH
dBm									-
10 dBm	D2 -9.3	00 dBm===							
20 dBm			<u>r</u>						M2
3GudBtn why	Month	1 Louisense	hor water between	husherman	unsidemant	alloneway	Auchalynor	-ulth make	hunner
40 dBm									
50 dBm									
60 dBm									
Start 2.0 GF					Lpts				25.0 GHz

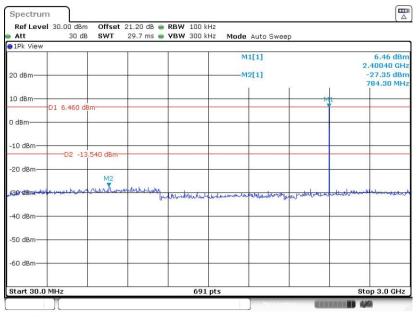
Date: 8.FEB.2021 16:28:46

Ref Level Att	30.00 dBm 30 dB	SWT	21.20 dB 👄 29.7 ms 👄	VBW 300 k		Auto Swee			
1Pk View							-		
20 dBm						1[1] 2[1]			10.70 dBn 2.48210 GH -27.22 dBn
								M1	685.50 MH:
10 dBm 0	1 10.700 de	3m=							
0 dBm									-
-10 dBm	D2 -9.30	00 dBm=							
-20 dBm		M2		5			2		-
-BA/dBhi		W	whitemenes	Manuerduer	- antice had a start when the	wouterender	Lindoneund	handstrucht	-
-40 dBm									
-50 dBm			-						
-60 dBm									
Start 30.0 M					. pts				op 3.0 GHz

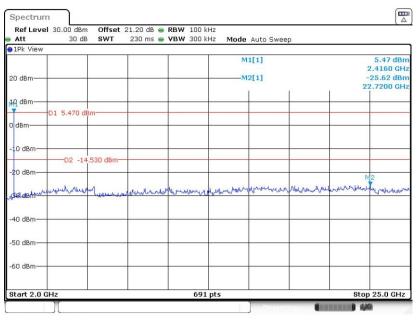
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 16:21:26

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	30.00 dBm 30 dB	SWT	21.20 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	p		
1Pk View 20 dBm						1[1]			9.09 dBr 2.4830 GH 25.27 dBr 2.6530 GH
10.11	D1 9.090 dBr	n							
0 dBm		910 dBm		-					
20 dBm	himalangh	A	الاروبار وسالا مدار	murmin	المريد المسارية م	entransite	munau	ad detter war	2 Mility uneur
40 dBm		10 all 1 an							
50 dBm									
60 dBm									
Start 2.0 GI	Hz		10	691	pts			Stop	25.0 GHz

Date: 8.FEB.2021 16:21:55


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 16:58:10

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.FEB.2021 16:58:41

Spectrum	· · · · · · · · · · · · · · · · · · ·								
Ref Level Att	30.00 dBm 30 dB	Offset SWT	21.20 dB 👄	RBW 100 k		Auto Swee			
1Pk View		5			ine induc	Auto owee	-		
20 dBm						1[1] 2[1]			6.24 dBm .43910 GHz -26.50 dBm .01640 GHz
10 dBm	D1 6.240 dB							M1	
D dBm									
-10 dBm	D2 -13	.760 dBm					-		
-20 dBm			M2		d g		10.		<i></i>
raonala Hr Ann	هير يعي ليوة عيسايا	- ADAMAN -	montheman	Milwishhar	- water	handermander	withourse	- Marthoward	M. All Walt with
-40 dBm							2		
-50 dBm									
-60 dBm									
Start 30.0	MHz			691	pts			Ste	op 3.0 GHz
	Y					Newsurf			0

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 17:01:23

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level Att	30.00 dBm 30 dB	Offset SWT	21.20 dB 👄 230 ms 👄	RBW 100 k VBW 300 k		Auto Swee	p		
1Pk View									
					M	1[1]			6.29 dBn 2.4490 GH
20 dBm			-		M	2[1]			-24.78 dBn
						I	r -	2	4.2840 GH
🗛 dBm —					,				
D	1 6.290 dB	Im							
D dBm			-						-
-10 dBm		.710 dBm-	0						
-20 dBm	02 10	., 10 dbiii							
							38		M2
30-dent-hur	whenter	Thomasha	mounder	heavything	a tel have been been been been been been been be	manne	Manalu	knowwalk	munh
-40 dBm									
-50 dBm									-
-60 dBm					-				
Start 2.0 GH	z			691	pts			Sto	p 25.0 GHz

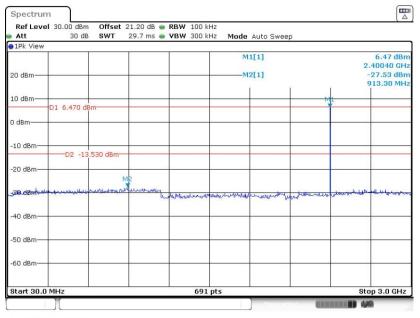
Date: 8.FEB.2021 17:02:10

Att 30	dB SWT 29.	7 ms 👄 VBW 300	kHz Mode Auto Sweep	o l	
1Pk View					
			M1[1]		5.93 dBm 2.48210 GHz
20 dBm			M2[1]		-27.53 dBn
			1	r t	814.40 MH:
10 dBm				1M1	
D1 5.93	D dBm				
D dBm					
-10 dBm	-14.070 dBm				
-20 dBm	-14.070 0811	4			
-20 UBIII-	M2				
BOICTOM - which which a	leve menteries	unany	languran matrider agrowment segu	the west have a well rate	m. Manantulla
		har man or	and the second of the second o	all of the second	
-40 dBm	-				
-50 dBm	-				
2012 10 000 000					
-60 dBm					
	1 1				

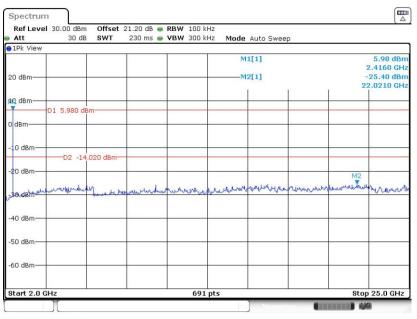
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 17:08:01

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level Att	30.00 dBm 30 dB		21.20 dB 👄 230 ms 👄	RBW 100 k VBW 300 k		Auto Swee	p		
1Pk View									
20 dBm						1[1] 2[1]		2.	5.09 dBn 4830 GH 4.74 dBn 5870 GH
	1 5.090 de	3m							
0 dBm									
-20 dBm		.910 dBm—						M2	(
gordeminium	annan	w law works	ununhame	Understyr	Murradia		Kudenermeda	where we have been	wheeler
40 dBm									
60 dBm									
Start 2.0 GH					pts				5.0 GHz

Date: 8.FEB.2021 17:08:30


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 17:21:04

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.FEB.2021 17:21:33

Spectrum Ref Level	30.00 dBm	Offset	21.20 dB 🖷	RBW 100	(Hz			
Att	30 dB	SWT	and the second	VBW 300		Auto Sweep		
∋1Pk View								
					M	1[1]		6.23 dBm
20 dBm					M	2[1]		2.43910 GHz -27.48 dBm
20 ubiii						2[1]		1.06370 GHz
10 dBm							l.,	
	D1 6.230 dB	m					VI1	
0 dBm								
U UBIII								
-10 dBm				-				
-10 ubiii	D2 -13.	770 dBm-	-					
-20 dBm								
-20 ubiii			M2					
Bardentel	- In the second second	munu	a abut a					and we all a series of
106VUDW	000 0 0 0 O		br	nonalthin	algerementation	rhubble	which the rest of the second s	word whether there
-40 dBm								
-40 ubili								
-50 dBm								
-30 ubiii								
-60 dBm								
-oo ubm								
Start 30.0 M	MHz			691	pts			Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 17:24:00

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level Att	30.00 dBm 30 dB	Offset SWT	21.20 dB 👄 230 ms 👄	RBW 100 k VBW 300 k		Auto Swee	ap		
1Pk View									
20 dBm						1[1] 2[1]			6.30 dBn 2.4490 GH -25.33 dBn 8.2600 GH
)1 6.300 dB	m							
dBm									
10 dBm		700 dBm							
20 dBm							M2		
30-dem-untu	rollowerships	al war report	mportueture	hursherdingh	paration	managera	when devented	Configure to service	mahulun
40 dBm									
50 dBm									
-60 dBm									
Start 2.0 GF	17			601	pts		I	Sto	p 25.0 GHz

Date: 8.FEB.2021 17:24:30

Ref Level Att	30.00 dBm 30 dB	Offset SWT		RBW 100		Auto Sweep		
1Pk View					inter intolate	Auto oncop		
20 dBm						1[1] 2[1]		5.80 dBm 2.48210 GH -27.69 dBm 1.06370 GH
10 dBm	D1 5.800 dBn						LIVI	
) dBm	51 5.000 dbn							
10 dBm	D2 -14.2	00 d8m-						
20 dBm	02 -11.2	00 0011	M2	5				
aaidetaluu	an fred the state of the state	uppelina	and a service of	franciante	adoutiontrate	which have and	the have a strate we want	hand we also all and and
40 dBm					-			
50 dBm								
60 dBm								
Start 30.0 f					L pts			top 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.FEB.2021 17:28:16

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level 3 Att	0.00 dBm 30 dB	Offset SWT	21.20 dB 👄 230 ms 👄	RBW 100 k VBW 300 k		Auto Swee	0		
1Pk View									
20 dBm						1[1] 2[1]			5.10 dBr 2.4830 GH -24.26 dBr 1.9540 GH
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.100 dB	m							
) dBm									
20 dBm		900 dBm—						M2	
40 dBm	manut	Lunder	Audenterter	and the here of	1 par with marine	h war war h	Muhand	and a call all	themped
50 dBm									
60 dBm									
tart 2.0 GHz				601	pts			Pto	25.0 GHz

Date: 8.FEB.2021 17:28:45

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

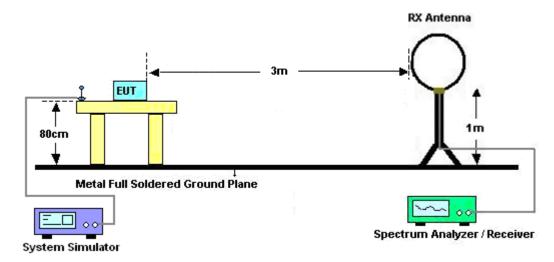
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

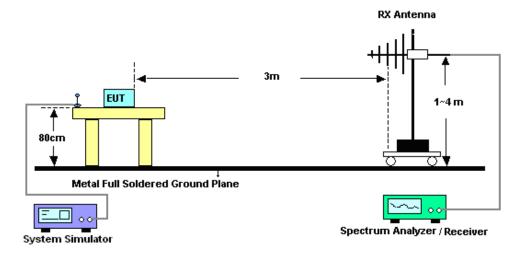
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

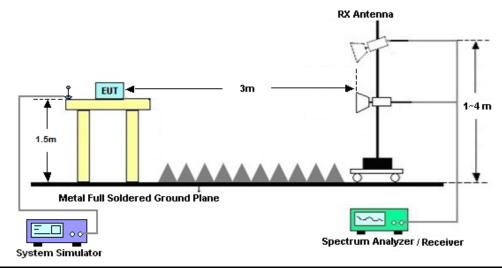
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: IHDT56ZL1 Page Number: 48 of 54Report Issued Date: Mar. 25, 2021Report Version: Rev. 01Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

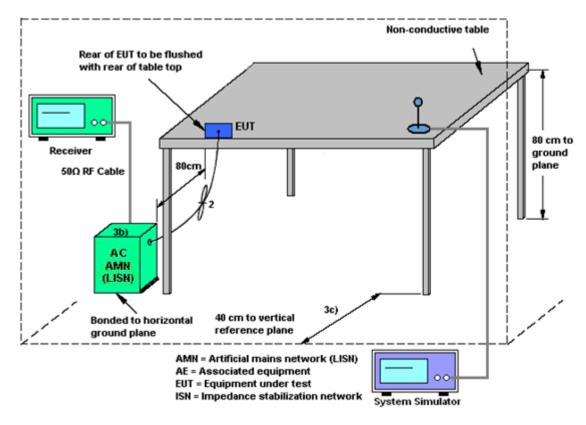
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer			Feb. 02, 2021~ Feb. 08, 2021	Apr. 16, 2021	Conducted (TH01-SZ)			
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 25, 2020	Feb. 02, 2021~ Feb. 08, 2021	Dec. 24, 2021	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 25, 2020	Feb. 02, 2021~ Feb. 08, 2021	Dec. 24, 2021	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 16, 2020	Feb. 26, 2021	Oct. 15, 2021	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 21, 2020	Feb. 26, 2021	Jul. 20, 2021	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 22, 2020	Feb. 26, 2021	Jun. 21, 2022	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	Nov. 07, 2020	Feb. 26, 2021	Nov. 06, 2021	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-147 4	1GHz~18GHz	Mar. 23, 2020	Feb. 26, 2021	Mar. 22, 2021	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 26, 2020	Feb. 26, 2021	Jul. 25, 2021	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 16, 2020	Feb. 26, 2021	Oct. 15, 2021	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 17, 2020	Feb. 26, 2021	Oct. 16, 2021	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 21, 2020	Feb. 26, 2021	Jul. 20, 2021	Radiation (03CH04-SZ)
Amplifier	Agilent Technologies	83017A	MY532701 56	500MHz~26.5G Hz	Oct. 17, 2020	Feb. 26, 2021	Oct. 16, 2021	Radiation (03CH04-SZ)
AC Power Source	Chroma	61601	N/A	N/A	NCR	Feb. 26, 2021	NCR	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Feb. 26, 2021	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Feb. 26, 2021	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 25, 2020	Feb. 07, 2021	Dec. 24, 2021	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2 LISN	00103912	9kHz~30MHz	Dec. 25, 2020	Feb. 07, 2021	Dec. 24, 2021	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 15, 2020	Feb. 07, 2021	Oct. 14, 2021	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 21, 2020	Feb. 07, 2021	Jul. 20, 2021	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7dB
of 95% (U = 2Uc(y))	2.708

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.8dB
of 95% (U = 2Uc(y))	4.00D

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	5. IOB

Appendix A. Conducted Test Results

Report Number : FR112907A

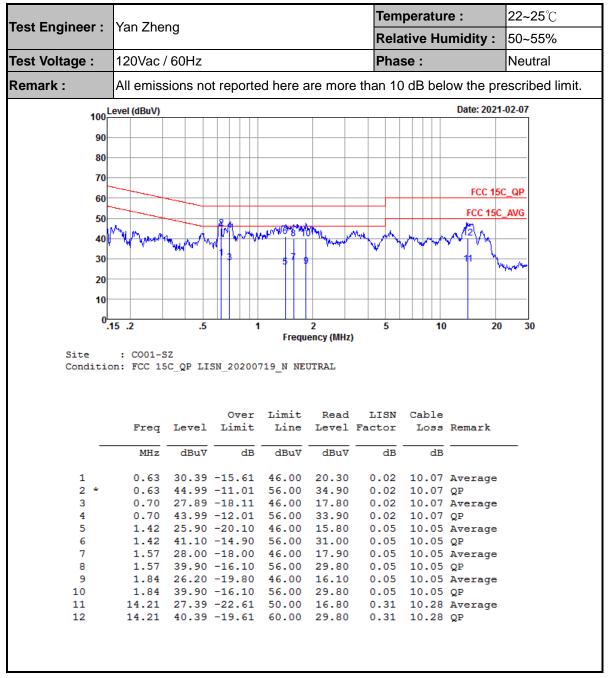
Test Engineer:	Zhang Xue Yi	Temperature:	21~25	°C
Test Date:	2021/2/2~2021/2/8	Relative Humidity:	51~54	%

	TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.918	0.848	1.003	0.6117	Pass	
DH	1Mbps	1	39	2441	0.920	0.845	0.999	0.6136	Pass	
DH	1Mbps	1	78	2480	0.920	0.848	0.999	0.6136	Pass	
2DH	2Mbps	1	0	2402	1.268	1.164	1.003	0.8451	Pass	
2DH	2Mbps	1	39	2441	1.259	1.164	1.007	0.8393	Pass	
2DH	2Mbps	1	78	2480	1.268	1.164	1.003	0.8451	Pass	
3DH	3Mbps	1	0	2402	1.229	1.149	1.012	0.8191	Pass	
3DH	3Mbps	1	39	2441	1.229	1.149	0.999	0.8191	Pass	
3DH	3Mbps	1	78	2480	1.229	1.152	0.999	0.8191	Pass	

	<u>TEST RESULTS DATA</u> Dwell Time								
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail			
Nomal	79	106.67	2.88	0.31	0.4	Pass			
AFH	20	53.33	2.88	0.15	0.4	Pass			

					<u>ST RESUL</u> Peak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit	Test Result
	0	1	(dBill) 12.30	(dBm) 20.97	Pass
DH1	39	1	12.30	20.97	Pass
0	78	1	11.80	20.97	Pass
	0	1	9.50	20.97	Pass
2DH1	39	1	9.40	20.97	Pass
l i	78	1	9.00	20.97	Pass
	0	1	9.90	20.97	Pass
3DH1	39	1	9.90	20.97	Pass
	78	1	9.50	20.97	Pass

				Av	<u>ST RESULTS DATA</u> <u>erage Power Table</u> (Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	11.60	5.18	
DH1	39	1	11.60	5.18	
	78	1	11.10	5.18	
	0	1	7.20	5.15	
2DH1	39	1	7.10	5.15	
	78	1	6.60	5.15	
	0	1	7.20	5.18	
3DH1	39	1	7.10	5.18	
	78	1	6.60	5.18	


<u>TEST RESULTS DATA</u> Number of Hopping Frequency										
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail							
79	20	> 15	Pass							

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Yan Zhe	0.0			Tem	peratu	re :	22~25 ℃	
rest Engineer.		ig				Rela	ative Hu	umidity :	50~55%
Test Voltage :	120Vac /	′ 60Hz				Pha	se :		Line
Remark :	All emiss	sions no	e than 10) dB be	low the pro	escribed limit.			
100	-02-07								
90-									
80-									
70-									
-								FCC 150	C QP
60								FCC 15C	
50	Ph4		4.6					ruu ibu	_AVG
40	Werk with		Marry	WW 876/2		my my		MAR	
30	1.1.1	mar you a	/3 s ~ ~	91 1	W.,41		VVV	V ··· Y	
									www
20									
10									
0		.5	1		2	5		20	30
.1	5.2	с.	1		z ency (MHz)		10	20	30
Site Conditio	: CO01-S m: FCC 15		SN_202007	719_L LII	NE				
			Over	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark	
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.17	26.34	-28.74	55.08	16.30	0.03	10.01	Average	
2			-23.14				10.01		
3	0.63			46.00				Average	
4 *			-13.11		32.80		10.07		
5	0.72			46.00	17.40			Average	
6	0.72		-14.61				10.07		
7			-19.06 -17.36	46.00 56.00			10.05	Average	
9			-16.75					QF Average	
10			-18.35				10.05	-	
11	1.77		-16.95	46.00				Average	
12	1.77		-19.15				10.05	-	

Note:

1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)

2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		. ,		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2326.8	43.27	-30.73	74	43.38	27.91	5.31	33.33	239	46	Р	Н
		2326.8	18.48	-35.52	54	-	-	-	-	-	-	А	Н
DT	*	2402	101.15	-	-	101.3	27.8	5.37	33.32	239	46	Р	н
BT CH00	*	2402	76.36	-	-	-	-	-	-	-	-	А	Н
2402MHz		2389.48	45.71	-28.29	74	45.85	27.82	5.37	33.33	166	79	Р	V
240210112		2389.48	20.92	-33.08	54	-	-	-	-			А	V
	*	2402	104.79	-	-	104.94	27.8	5.37	33.32	166	79	Р	V
	*	2402	80	-	-	-	-	-	-	-	-	А	V
		2389.52	44.08	-29.92	74	44.22	27.82	5.37	33.33	144	310	Р	Н
		2389.52	19.29	-34.71	54	-	-	-	-	-	-	А	Н
	*	2441	98.97	-	-	99.09	27.78	5.41	33.31	144	310	Р	Н
	*	2441	74.18	-	-	-	-	-	-	-	-	А	н
57		2489.85	42.36	-31.64	74	42.45	27.76	5.46	33.31	144	310	Ρ	Н
BT		2489.85	17.57	-36.43	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2387.98	42.96	-31.04	74	43.1	27.82	5.37	33.33	165	311	Ρ	V
244110162		2387.98	18.17	-35.83	54	-	-	-	-	-	-	А	V
	*	2441	104.59	-	-	104.71	27.78	5.41	33.31	165	311	Р	V
	*	2441	79.8	-	-	-	-	-	-	-	-	А	V
		2485.44	42.11	-31.89	74	42.2	27.76	5.46	33.31	165	311	Р	V
		2485.44	17.32	-36.68	54	-	-	-	-	-	-	А	V

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
	*	2480	98.43	-	-	98.52	27.76	5.46	33.31	128	61	P	H
	*	2480	73.64	-	-	-	-	-	-	-	-	А	Н
		2483.64	50.34	-23.66	74	50.43	27.76	5.46	33.31	128	61	Р	Н
BT		2483.64	25.55	-28.45	54	-	-	-	-	-	-	А	Н
CH 78	*	2480	103.59	-	-	103.68	27.76	5.46	33.31	310	0	Р	V
2480MHz	*	2480	78.8	-	-	-	-	-	-	-	-	А	V
		2483.52	56.02	-17.98	74	56.11	27.76	5.46	33.31	310	0	Р	V
		2483.52	31.23	-22.77	54	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.						

BT (Harmonic	@ 3m)
---------------------	-------

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	40.31	-33.69	74	49.48	31.3	8.88	49.35	178	97	Р	Н
BT		4804	15.52	-38.48	54	-	-	-	-	-	-	А	Н
CH 00 2402MHz		4804	40.36	-33.64	74	49.53	31.3	8.88	49.35	126	169	Ρ	V
240210172		4804	15.57	-38.43	54	-	-	-	-	-	-	А	V
		4882	41.33	-32.67	74	50.3	31.38	8.65	49	100	211	Ρ	Н
		4882	16.54	-37.46	54	-	-	-	-	-	-	А	Н
		7323	43.97	-30.03	74	49.4	36.22	10.18	51.83	169	338	Ρ	Н
BT		7323	19.18	-34.82	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	42.14	-31.86	74	51.11	31.38	8.65	49	145	185	Ρ	V
244110172		4882	17.35	-36.65	54	-	-	-	-	-	-	А	V
		7323	43.86	-30.14	74	49.29	36.22	10.18	51.83	122	162	Ρ	V
		7323	19.07	-34.93	54	-	-	-	-	-	-	А	V
		4960	41.47	-32.53	74	50.17	31.46	8.41	48.57	120	269	Ρ	Н
		4960	16.68	-37.32	54	-	-	-	-	-	-	А	Н
57		7440	44.21	-29.79	74	49.65	36.34	10.17	51.95	184	278	Ρ	Н
ВТ СН 78		7440	19.42	-34.58	54	-	-	-	-	-	-	А	Н
Сп 76 2480MHz		4960	42.35	-31.65	74	51.05	31.46	8.41	48.57	146	215	Ρ	V
240010172		4960	17.56	-36.44	54	-	-	-	-	-	-	А	V
		7440	44.27	-29.73	74	49.71	36.34	10.17	51.95	124	238	Ρ	V
		7440	19.48	-34.52	54	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	е.						

Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	23.88	-16.12	40	30.55	25.2	0.53	32.4	-	-	Р	Н
		105.66	22.88	-20.62	43.5	37.33	16.7	1.05	32.2	-	-	Р	Н
		182.29	21.85	-21.65	43.5	37.71	14.9	1.38	32.14	-	-	Р	Н
		279.29	31.76	-14.24	46	43.08	18.68	1.74	31.74	163	291	Р	Н
		731.31	31.28	-14.72	46	31.69	27.76	2.82	30.99	-	-	Р	Н
2.4GHz		975.75	33.51	-20.49	54	30.34	31.16	3.27	31.26	-	-	Р	Н
BT LF		41.64	29.18	-10.82	40	42.15	18.8	0.63	32.4	150	105	Р	V
		187.14	23.99	-19.51	43.5	39.92	14.8	1.39	32.12	-	-	Р	V
		274.44	30.17	-15.83	46	41.62	18.58	1.72	31.75	-	-	Р	V
		623.64	28.12	-17.88	46	30.41	25.86	2.6	30.75	-	-	Р	V
		874.87	30.98	-15.02	46	30.12	29.2	3.11	31.45	-	-	Р	V
		962.17	32.61	-21.39	54	29.5	31.24	3.25	31.38	-	-	Р	V
Bomork	1. No	o other spurio	us found.										
Remark	2. Al	l results are P	ASS agains	st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

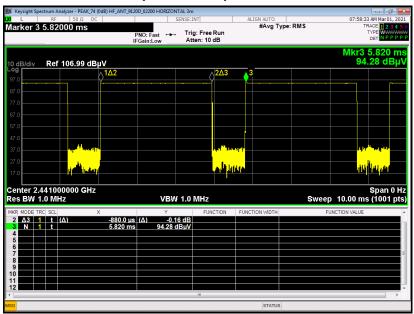
2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

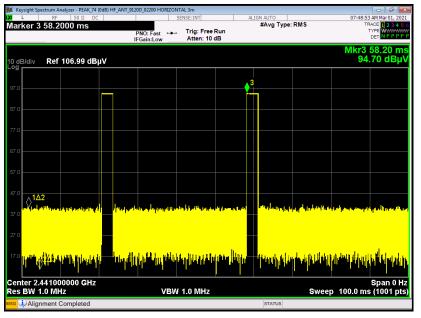
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)


For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.