
<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Att 🛛	20 de	SWT	29.7 ms 👄 🕈	VBW 300 kH	z Mode	Auto Sweep			
1Pk View									
10 dBm					M	1[1]	M	1 0	7.89 dBn
10 aBm-	D1 7.890 d	Bm			M	2[1]			-61.29 dBn
-						~[~]	e		97640 GH
0 dBm									
-10 dBm	D2 -12	2.110 dBm-	-						
-20 dBm									
-30 dBm—									
-40 dBm									
-50 dBm	-								
-60 dBm			Lanks						M
www.wellah	manshoulder	Normalin	rationary	untertainen	nelistuditeirens	moundation	Montractual	Millionner	wellenthe
70 dBm—	-					-			
-80 dBm									
Start 30.0	MUS			691	nte			Sto	p 3.0 GHz

Date: 26.JUN.2020 15:49:38

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 26.JUN.2020 15:50:05

Ref Level 15.80 dBm Att 20 dB		 RBW 100 kHz VBW 300 kHz 	Mode Auto Swee	р	
1Pk View					
10 dBm D1 8.540 dB			M1[1]		8.54 dBm 2.43910 GHz
D1 8.540 UB			M2[1]		-61.69 dBm
) dBm				1 1	1.03360 GH
-10 dBm	460 dBm				
-20 dBm					
30 dBm					
40 dBm					
50 dBm					
60 dBm	M2	_			
intrological preserves and	rightin the wordships	whendermedure	wandumulandumulan	and manufactures of the	when we have a stand of the sta
70 dBm					
80 dBm					
-ou ubiii					

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 26.JUN.2020 15:53:17

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB SWT	230 ms 🥌	VBW 300 kH	z Mode A	uto Sweep			
1Pk View								
				M	1[1]			8.58 dBr 2.4490 GH
D1	8.580 dBm			M	2[1]			-42.10 dBr
dBm							1	7.3090 GH
10 dBm	-D2 -11.420 dBr	n	-					
20 dBm								
30 dBm								
40 dBm	M2							
50 dBm								
60 dBm	an and the	wannedu	mutur	Mary Concerts	And the second	Anewyper	and the state of t	the contraction
70 dBm								
80 dBm								
Start 2.0 GHz			691	nts			Sto	p 25.0 GHz

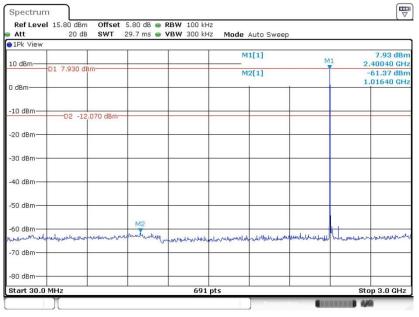
Date: 26.JUN.2020 15:53:44

Ref Level 15.80 dBm Of Att 20 dB SV	fset 5.80 dB		to Sween			
1Pk View		indud ha				
10 dBm-01 8.440 dBm		M1[1		M1 8.44 dBn 2.47780 GH		
) dBm		M2[1		-59.71 dBm 1.74710 GHz		
-10 dBmD2 -11,560 d	IBm-					
-20 dBm						
30 dBm						
-40 dBm						
50 dBm						
-60 dBm 	ulun alminikan un das	M2 which manufactures	halden and hard Manuary and	we wanter and		
-80 dBm						

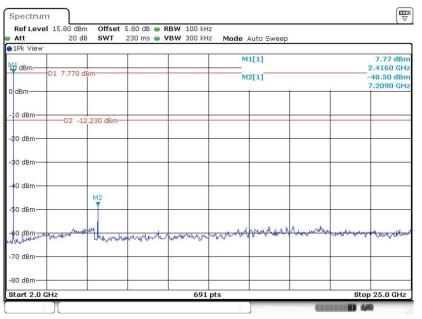
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 26.JUN.2020 16:02:40

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 dB SW	T 230 ms	VBW 300	kHz Mode	Auto Sweep	6		
1Pk View				N	41[1]			7.68 dBr 2.4830 GH
Di	1 7.680 dBm			N	42[1]	8.1		-48.40 dBr 7.4420 GH
dBm								
10 dBm		Bm						
20 dBm								
30 dBm								
40 dBm								
50 dBm	M2			_				
60 dBm	unapourser Loulu	www.walu	where	utter weeker	the stand was	Amora	-	optilant
70 dBm								

Date: 26.JUN.2020 16:03:20


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 26.JUN.2020 16:12:49

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 26.JUN.2020 16:13:22

Ref Level 15.80 dBm Offset Att 20 dB SWT	5.80 dB RBW 100 kHz 29.7 ms VBW 300 kHz Mo	de Auto Sweep	
1Pk View			
10 dBm		M1[1]	M1 2.43910 GHz
D1 8.490 dBm		M2[1]	-61.69 dBm
0 dBm		1 1	2.86460 GHz
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
			M2
-60 dBm	normally the receiver a grander	under when when a prophetical and	Murowoulduproventured
-70 dBm			3 16
-80 dBm			
Start 30.0 MHz	691 pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 26.JUN.2020 16:16:34

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 15.8 Att		0 dB 👄 RBW 100 k 0 ms 👄 VBW 300 k		2P	
1Pk View					
	.510 dBm		M1[1]		8.51 dBr 2.4490 GH
DI 8	.510 dBm		M2[1]		-42.44 dBr
D dBm				1 1	7.3090 GH
-10 dBm	D2 -11.490 dBm				
-20 dBm					
-30 dBm					
-40 dBm	M2				
o ubiii	T				
-50 dBm					
				A more where we	
60 dBm	walking hand hand	www.www.	work marked and the stand	Mush war war	an march through
70 dBm					
-80 dBm					
Start 2.0 GHz		69	1 pts		Stop 25.0 GHz

Date: 26.JUN.2020 16:17:02

Att	20 dB	SWT	29.7 ms 👄	VBW 300 kl	Hz Mode	Auto Sweep)		
1Pk View	, 		-						
10 dBm—					M	1[1]		M1	8.14 dBn 2.48210 GH;
	D1 8.140 dE	sm-			M	2[1]			-61.28 dBn
0 dBm							1	-	926.20 MH
-10 dBm—	D2 -11	.860 dBm-							
-20 dBm—									
-30 dBm—									
40 dBm—									
-50 dBm				-					
-60 dBm—			M2						
abarraha	normania	whennaut	reference	unununulun	arounder	werementallishe	and the states and th	10 m	mahrumahrum
70 dBm—									
80 dBm—									
Start 30.	0 MU -			601	pts				Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 26.JUN.2020 16:23:46

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB SWT	230 ms 🥃 🛚	/BW 300 kH	z Mode	Auto Sweep			
1Pk View								
da ¹ dBm				M	1[1]			7.70 dBr 2.4830 GH
D1	7.700 dBm			M	2[1]			-44.31 dBr
dBm								7.4420 GH
10 dBm-								
	-D2 -12.300 dBr	n						
20 dBm								
30 dBm								
40 dBm	M2							
SO dBm								
do dem	monthly			, Beats	MARKER NA	And hother	and a standard	
O dBm	enter Velante	whitewarther	habertern	with house	0 8 - 0 WAA 4		100-m-0-10-0	Mar and the
70 dBm								
North Control of Contr								
80 dBm								
Start 2.0 GHz	6		691	nts			Stor	0 25.0 GHz

Date: 26.JUN.2020 16:24:14

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

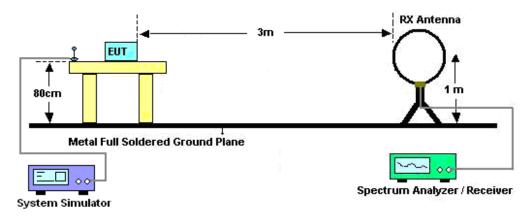
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

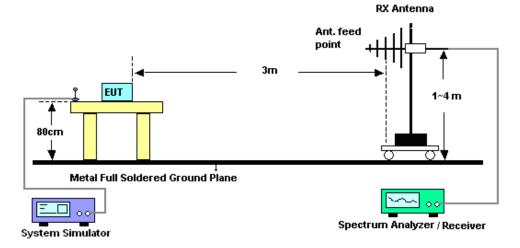
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

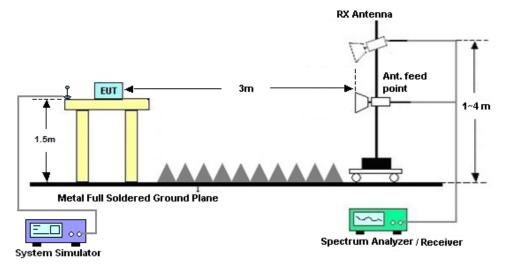
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZE1

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

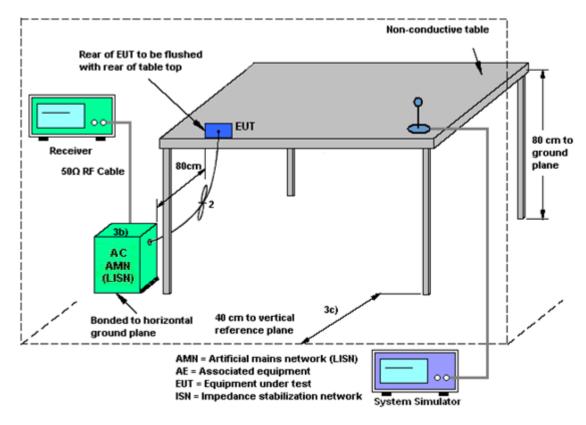
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	Jun. 10, 2020~ Jun. 26, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 15, 2020	Jun. 10, 2020~ Jun. 26, 2020	Jan. 14, 2021	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 08, 2020	Jun. 10, 2020~ Jun. 26, 2020	Jan. 07, 2021	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul. 17, 2020	Jul. 21, 2020	Jul. 16, 2021	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 15, 2020	Jul. 21, 2020	Apr. 14, 2021	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Jul. 21, 2020	Nov. 09, 2020	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 08, 2020	Jul. 21, 2020	Jun. 07, 2021	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 26, 2020	Jul. 21, 2020	Apr. 25, 2021	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	Jul. 21, 2020	Nov. 09, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06, 2019	Jul. 21, 2020	Aug. 05, 2020	Radiation (03CH05-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 08, 2020	Jul. 21, 2020	Jan. 07, 2021	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 17, 2019	Jul. 21, 2020	Aug. 16, 2020	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Oct. 18, 2019	Jul. 21, 2020	Oct. 17, 2020	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jul. 21, 2020	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jul. 21, 2020	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jul. 21, 2020	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	Jun. 20, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	Jun. 20, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Jun. 20, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	Jun. 20, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VAB

Appendix A. Conducted Test Results

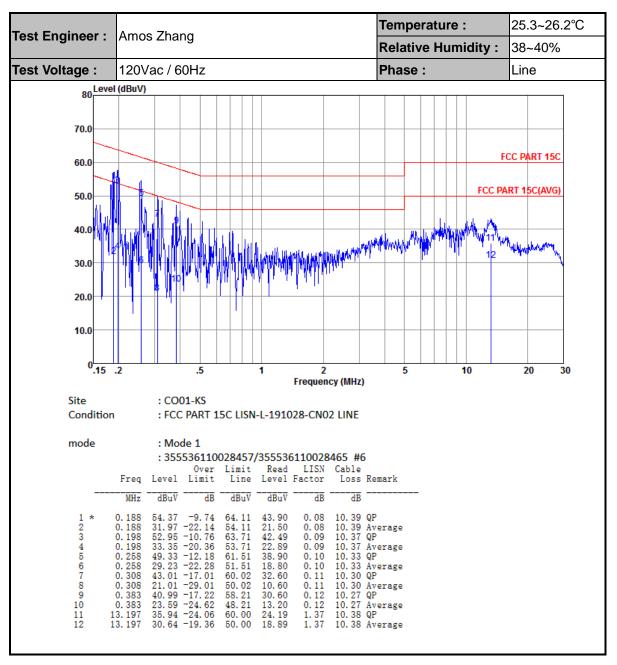
<u>Bluetooth</u>

Test Engineer:	Aaron shen	Temperature:	20~26	°C
Test Date:	2020/6/10~2020/6/26	Relative Humidity:	40~51	%

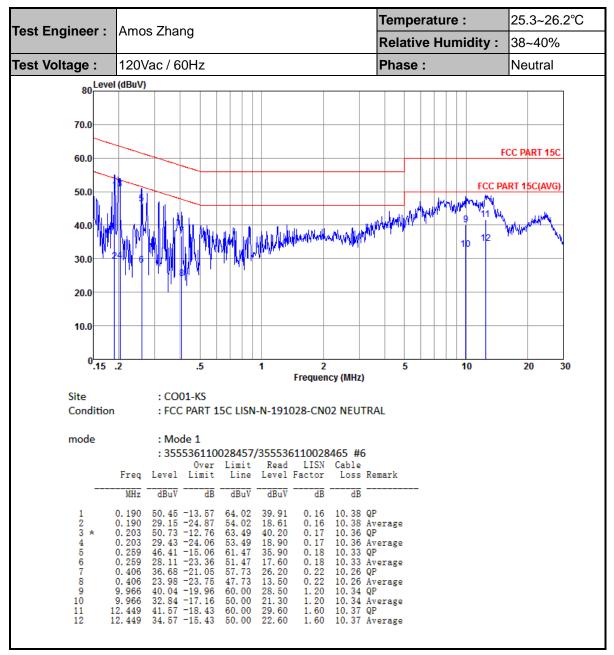
TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (KHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.932	0.848	1002.900	0.6213	Pass
DH	1Mbps	1	39	2441	0.929	0.845	998.600	0.6194	Pass
DH	1Mbps	1	78	2480	0.932	0.848	998.600	0.6213	Pass
2DH	2Mbps	1	0	2402	1.246	1.172	1146.200	0.8307	Pass
2DH	2Mbps	1	39	2441	1.250	1.164	1002.900	0.8336	Pass
2DH	2Mbps	1	78	2480	1.281	1.172	998.600	0.8539	Pass
3DH	3Mbps	1	0	2402	1.220	1.155	1002.900	0.8133	Pass
3DH	3Mbps	1	39	2441	1.216	1.152	1002.900	0.8104	Pass
3DH	3Mbps	1	78	2480	1.220	1.155	1002.900	0.8133	Pass

<u>TEST RESULTS DATA</u> Dwell Time										
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail				
Nomal	79	106.67	2.90	0.31	0.4	Pass				
AFH	20	53.33	2.90	0.15	0.4	Pass				


	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result					
	0	1	9.63	20.97	Pass					
DH1	39	1	10.51	20.97	Pass					
	78	1	9.89	20.97	Pass					
2DH	CH.	NTX	Peak Power	Power Limit	Test					
2011			(dBm)	(dBm)	Result					
	0	1	9.13	20.97	Pass					
2DH1	39	1	9.82	20.97	Pass					
	78	1	9.35	20.97	Pass					
3DH	CH.	NTX	Peak Power	Power Limit	Test					
3011	CH.		(dBm)	(dBm)	Result					
	0	1	9.41	20.97	Pass					
3DH1	39	1	10.39	20.97	Pass					
	78	1	9.66	20.97	Pass					

<u>TEST RESULTS DATA</u> Number of Hopping Frequency


(Channel) (Channel)	(Channel)	
79 79	> 15	Pass

Appendix B. AC Conducted Emission Test Results

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

2.4GHz 2	2400~2483.	5MHz
----------	------------	------

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT CH00 2402MHz		2334.31	53.13	-20.87	74	49.47	31.16	6.92	34.42	302	0	Р	Н
	*	2334.31	28.34	-25.66	54	-	-	-	-	-	-	А	Н
	*	2402	101.93	-	-	98.04	31.2	7.04	34.35	302	0	Р	Н
		2402	77.14	-	-	-	-	-	-	-	-	А	Н
		2337.56	53.26	-20.74	74	49.56	31.17	6.95	34.42	266	89	Ρ	V
	*	2337.56	28.47	-25.53	54	-	-	-	-	-	-	А	V
	*	2402	104.31	-	-	100.42	31.2	7.04	34.35	266	89	Р	V
		2402	79.52	-	-	-	-	-	-	-	-	А	V
	*	2480	103.16	-	-	98.52	31.77	7.16	34.29	137	120	Р	Н
		2480	78.37	-	-	-	-	-	-	-	-	А	Н
DT		2483.5	56.8	-17.2	74	52.16	31.77	7.16	34.29	137	120	Ρ	Н
ВТ СН 78		2483.5	32.01	-21.99	54	-	-	-	-	-	-	А	Н
СП 78 2480MHz	*	2480	106.03	-	-	101.39	31.77	7.16	34.29	275	91	Р	V
24000012		2480	81.24	-	-	-	-	-	-	-	-	А	V
		2483.62	57.89	-16.11	74	53.25	31.77	7.16	34.29	275	91	Ρ	V
		2483.62	33.10	-20.90	54	-	-	I	-	-	-	А	V
Remark		o other spurio results are F		st Peak	and Averag	je limit lin	е.						

	BT (Harmonic @ 3m)												
ВТ	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	
BT CH 00 2402MHz		4801.5	38.93	-35.07	(α Βμν/ Π) 74	55.46	33.7	9.81	60.04	150	360	P	H
		4801.5	39.56	-34.44	74	56.09	33.7	9.81	60.04	150	360	Ρ	V
ВТ		4884	39.78	-34.22	74	56.09	33.77	9.95	60.03	100	360	Р	Н
		7320	41.76	-32.24	74	53.75	35.89	12.64	60.52	100	360	Ρ	Н
CH 39 2441MHz		4884	40.61	-33.39	74	56.92	33.77	9.95	60.03	100	360	Ρ	V
244 111172		7320	41.68	-32.32	74	53.67	35.89	12.64	60.52	100	360	Р	V
		4962	38.06	-35.94	74	54.09	33.85	10.13	60.01	150	360	Р	Н
BT		7440	42.88	-31.12	74	54.47	36.11	12.84	60.54	150	360	Р	Н
CH 78		4962	39.79	-34.21	74	55.82	33.85	10.13	60.01	150	360	Р	V
2480MHz		7440	43.38	-30.62	74	54.97	36.11	12.84	60.54	150	360	Ρ	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	е.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		33.88	21.6	-18.4	40	29.58	22.98	1	31.96	-	-	Ρ	Н
		41.64	17.95	-22.05	40	29.96	18.82	1.12	31.95	-	-	Ρ	Н
		108.57	16.3	-27.2	43.5	29.25	16.91	2.07	31.93	-	-	Р	Н
		154.16	20.67	-22.83	43.5	33.29	16.86	2.46	31.94	-	-	Р	Н
2.4011-		206.54	16.62	-26.88	43.5	30.5	15.17	2.86	31.91	-	-	Р	Н
2.4GHz BT		957.32	28.77	-17.23	46	22.62	30.94	6.13	30.92	100	0	Р	Н
LF		32.91	33.27	-6.73	40	40.75	23.51	0.98	31.97	100	0	Ρ	V
		41.64	31.62	-8.38	40	43.63	18.82	1.12	31.95	-	-	Ρ	V
		90.14	13.43	-30.07	43.5	28.7	14.8	1.85	31.92	-	-	Р	V
		170.65	15.16	-28.34	43.5	28.84	15.65	2.59	31.92	-	-	Р	V
		868.08	27.27	-18.73	46	23.86	29.23	5.85	31.67	-	-	Р	V
		968.96	28.56	-25.44	54	22.35	30.85	6.17	30.81	-	-	Р	V
Remark	1. No other spurious found.												
	2. All results are PASS against limit line.												

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any						
	unwanted emissions shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

```
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

DH5 on time (On	e Pulse) Plot on Channel 00
-----------------	-----------------------------

Spectrum Analyz Swept SA KEYSIGHT L +>+	` _	H Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 10 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power Trig: Free Run	r (RMS <mark>1</mark> 23456 W WW WW W P P P P P P	Marker Select Marker Marker 3	• 🎇
1 Spectrum Scale/Div 10 di Log 070 0 <t< td=""><td>странов (Странов (Странов</td><td>,1</td><td>ef Level 106.99</td><td>3∆1 ∞</td><td></td><td>kr3 3.750 ms 0.00 dB</td><td>Marker Δ Imme 3.75000 ms Marker Mode Normal Detta (Δ) Fixed Off Detta Marker (Reset Detta) Marker Table</td><td>Settings Peak Search Pk Search Config Properties Marker Function Marker→ Counter</td></t<>	странов (Странов	,1	ef Level 106.99	3∆1 ∞		kr3 3.750 ms 0.00 dB	Marker Δ Imme 3.75000 ms Marker Mode Normal Detta (Δ) Fixed Off Detta Marker (Reset Detta) Marker Table	Settings Peak Search Pk Search Config Properties Marker Function Marker→ Counter
5 Marker Table Mode 1 1 N 2 Δ1 3 Δ1 4 5 6 1 1 N 2 Δ1 3 Δ1 4 5 6 1 1 N 1 N 2 Δ1 5 6 1 1 N 1 N 1 N 1 N 1 N 1 N 1 N	Trace Scale 1 t 1 t 1 t	X (Δ) 2.850 ms (Δ) 3.750 ms (Δ) 3.750 ms (Δ) 9:50:43 PM	Υ 81.36 dBµV (Δ) 0.03528 dB (Δ) 0007343 dB	Function Fi		Function Value	All Markers Off On Diagram All Markers Off On Off	

DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.