

FCC RF Test Report

APPLICANT :	Motorola Mobility LLC
EQUIPMENT :	Mobile Cellular Phone
BRAND NAME :	Motorola
MODEL NAME :	XT2075-3
FCC ID :	IHDT56ZC3
STANDARD :	FCC Part 15 Subpart C §15.247
CLASSIFICATION :	(DSS) Spread Spectrum Transmitter

The product was received on May 11, 2020 and testing was completed on May 26, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISION	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Specification of Accessory	6
	1.7	Testing Location	7
	1.8	Test Software	7
	1.9	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	20
	3.4	20dB Bandwidth Measurement	
	3.5	Output Power Measurement	28
	3.6	Conducted Band Edges Measurement	29
	3.7	Conducted Spurious Emission Measurement	36
	3.8	Radiated Band Edges and Spurious Emission Measurement	46
	3.9	AC Conducted Emission Measurement	50
	3.10	Antenna Requirements	52
4	LIST	OF MEASURING EQUIPMENT	53
5	UNCE	ERTAINTY OF EVALUATION	54
		X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR051103A	Rev. 01	Initial issue of report	Jun. 09, 2020
FR051103A	Rev. 02	Update the Antenna type	Jun. 12, 2020

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 13.26 dB at 30.000 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 11.45 dB at 0.197 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular Phone			
Brand Name Motorola				
Model Name	XT2075-3			
FCC ID	IHDT56ZC3			
EUT supports Radios application	CDMA/GSM/WCDMA/LTE/5G NR/NFC WLAN 2.4GHz 802.11b/g/n HT20 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE FM Receiver/GNSS			
IMEI Code	Conducted : N/A Conduction : 353617110020330/353617110020348 Radiation : 353617110019936/353617110019944			
HW Version	DVT2			
SW Version	QPN30.33-9			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 10.99 dBm (0.0126 W) Bluetooth EDR (2Mbps) : 10.28 dBm (0.0107 W) Bluetooth EDR (3Mbps) : 10.57 dBm (0.0114 W)				
Antenna Type / Gain	IFA Antenna with gain -8.00 dBi				
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Specification of Accessory

Specification of Accessory						
AC Adapter 1(US)	Brand Name	Motorola (Chenyang)	Model Name	MC-201		
AC Adapter 1(EU)	Brand Name	Motorola (Chenyang)	Model Name	MC-202		
AC Adapter 1(UK)	Brand Name	Motorola (Chenyang)	Model Name	MC-203		
AC Adapter 1(AU)	Brand Name	Motorola (Chenyang)	Model Name	MC-205		
AC Adapter 2(US)	Brand Name	Motorola (Acbel)	Model Name	MC-201		
AC Adapter 2(EU)	Brand Name	Motorola (Acbel)	Model Name	MC-202		
AC Adapter 2(UK)	Brand Name	Motorola (Acbel)	Model Name	MC-203		
AC Adapter 2(AU)	Brand Name	Motorola (Acbel)	Model Name	MC-205		
Battery	Brand Name	Motorola(Amperex)	Model Name	LZ50		
Earphone	Brand Name	Motorola(Lyand)	Model Name	MH191(SH38C81577)		
USB Cable 1	Brand Name	Motorola (Luxshare)	Model Name	SC18C24368		
USB Cable 2	Brand Name	Motorola (Saibao)	Model Name	SC18C24367		

1.7 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North	n Road, Kunshan Econom	ic Development Zone		
Test Site Location	Jiangsu Province 215300 People's Republic of China				
Test Sile Location	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Site No. FCC Designation No. FCC Test Firm Registration				
Test Site No.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309		

1.8 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH06-KS	AUDIX	E3	6.2009-8-24al
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

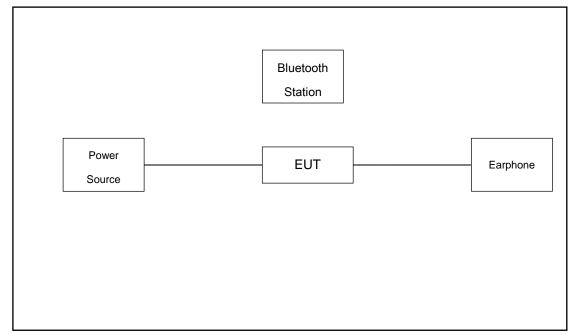
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

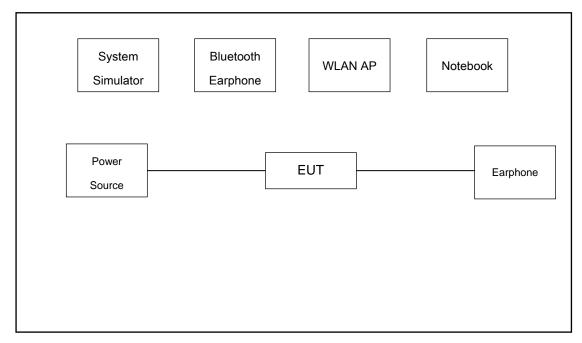
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


	Summary table of Test Cases					
		Data Rate / Modulation				
Test Item		Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps		
		GFSK	π /4-DQPSK	8-DPSK		
Cond	lucted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
		Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
Test	Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
			Bluetooth BR 1Mbps GFSK			
Rad	iated	Mode 1: CH00_2402 MHz				
Test	Cases	Mode 2: CH39_2441 MHz				
			Mode 3: CH78_2480 MHz			
A	AC					
Cond	lucted		uetooth Link + WLAN Link (2.4	G) + USB Cable 1(Charging		
Emis	ssion	from Adapter 1) + E	arpnone			
Rema	rk:					
1. Fo	. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate					
ha	has the highest RF output power at preliminary tests, and no other significantly frequencies found ir					
со	conducted spurious emission.					
2. Fo	2. For Radiated Test Cases, The tests were performed with Adapter 1, Earphone and USB Cable1.					

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

For Radiation

For Conducted Emission

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
5.	Bluetooth Station	R&S	СВТ	N/A	N/A	Unshielded,1.8m

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

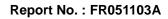
For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:


The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss

Following shows an offset computation example with cable loss 5.1 dB.

Offset(dB) = RF cable loss(dB).

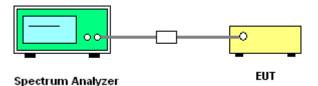
= 5.1 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

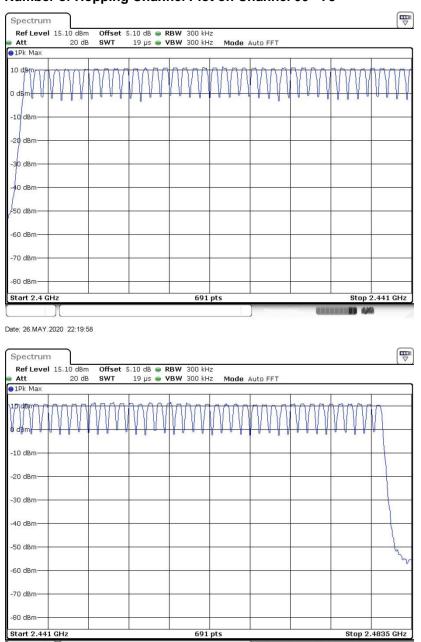
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.


3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

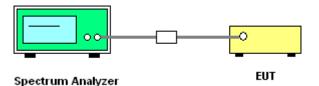
Number of Hopping Channel Plot on Channel 00 - 78

Date: 26.MAY.2020 22:20:30

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

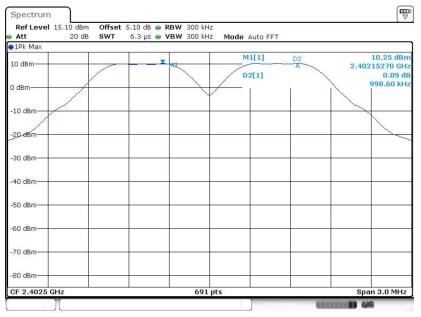

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

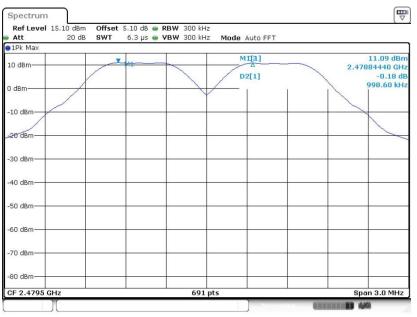


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

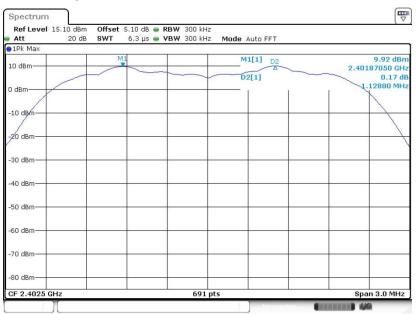
<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 26.MAY.2020 22:09:03

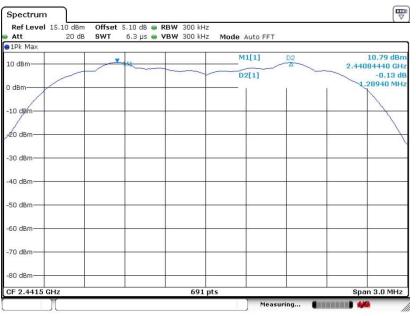
Channel Separation Plot on Channel 39 - 40

Date: 26.MAY.2020 22:12:30



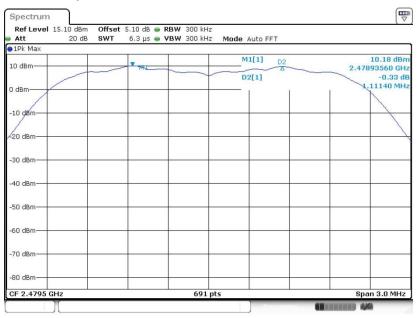
Channel Separation Plot on Channel 77 - 78

Date: 26.MAY.2020 22:17:14


<2Mbps>

Channel Separation Plot on Channel 00 - 01

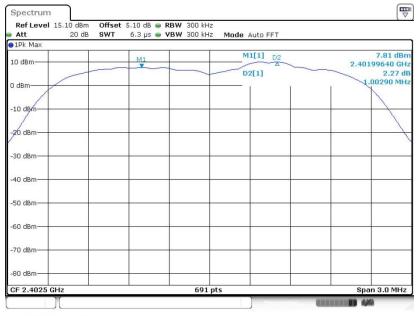
Date: 26.MAY.2020 22:26:01



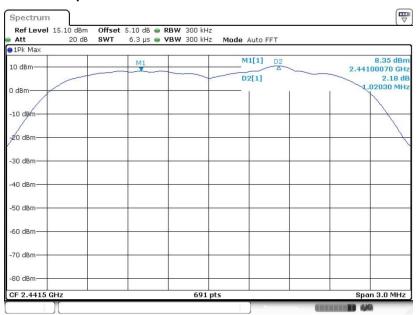
Channel Separation Plot on Channel 39 - 40

Date: 26.MAY.2020 22:39:07

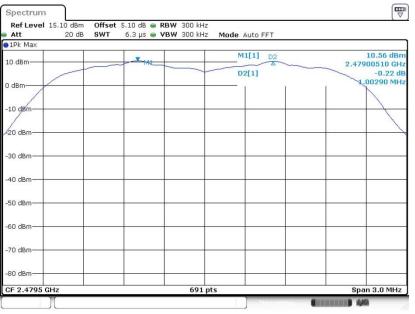
Channel Separation Plot on Channel 77 - 78



Date: 26.MAY.2020 22:33:49


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 26.MAY.2020 22:48:09

Channel Separation Plot on Channel 39 - 40

Date: 26.MAY.2020 22:52:26

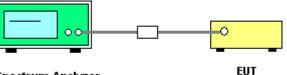
Channel Separation Plot on Channel 77 - 78

Date: 26.MAY.2020 22:57:30

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

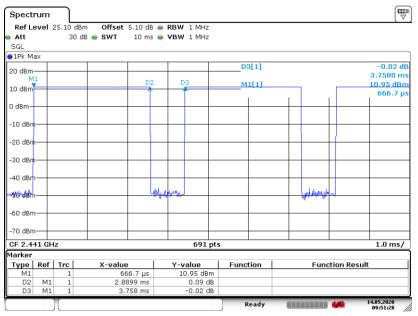

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 14.MAY.2020 09:51:29

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

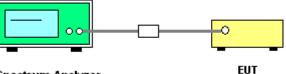
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only


3.4.2 Measuring Instruments

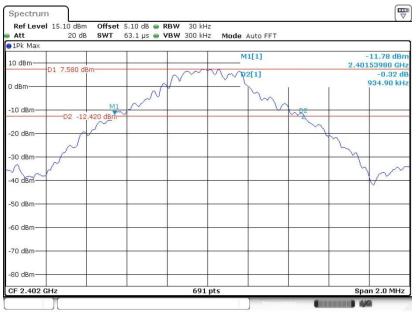
The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Measure and record the results in the test report.

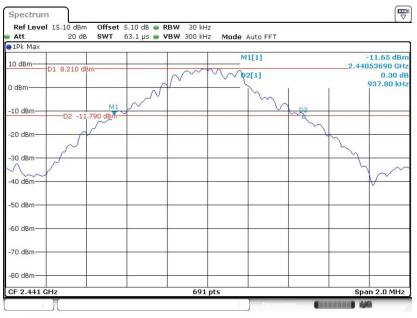
3.4.4 Test Setup

Spectrum Analyzer

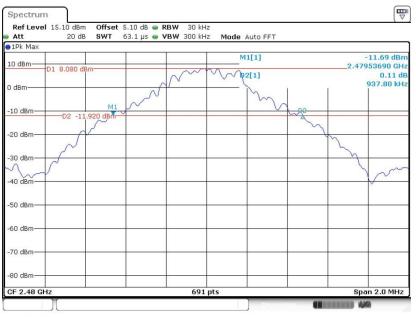


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

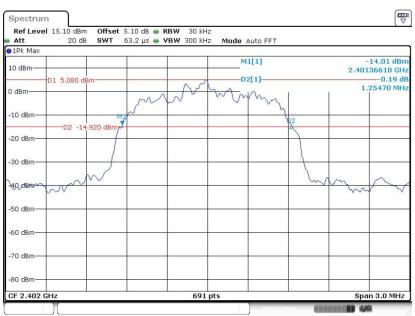

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 26.MAY.2020 22:02:57

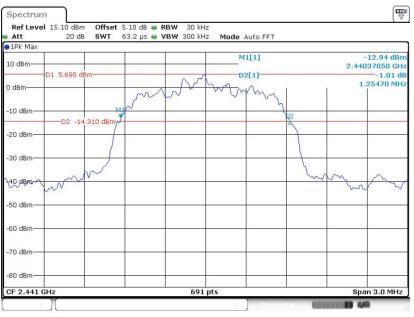
20 dB Bandwidth Plot on Channel 39

Date: 26.MAY.2020 22:11:43



20 dB Bandwidth Plot on Channel 78

Date: 26.MAY.2020 22:15:25


<2Mbps>

20 dB Bandwidth Plot on Channel 00

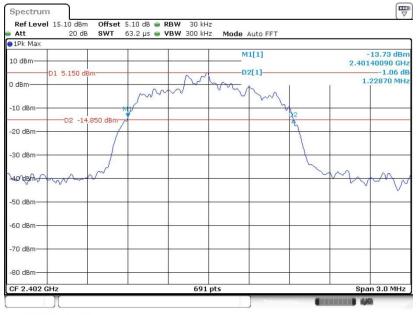
Date: 26.MAY.2020 22:21:40



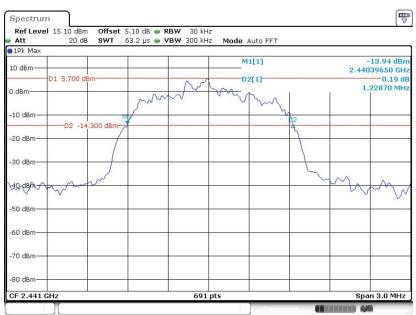
20 dB Bandwidth Plot on Channel 39

Date: 26.MAY.2020 22:27:00

20 dB Bandwidth Plot on Channel 78



Date: 26.MAY.2020 22:29:58


<3Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 26.MAY.2020 22:35:25

20 dB Bandwidth Plot on Channel 39

Date: 26.MAY.2020 22:49:20

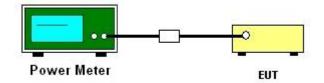
20 dB Bandwidth Plot on Channel 78

Date: 26.MAY.2020 22:53:16

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

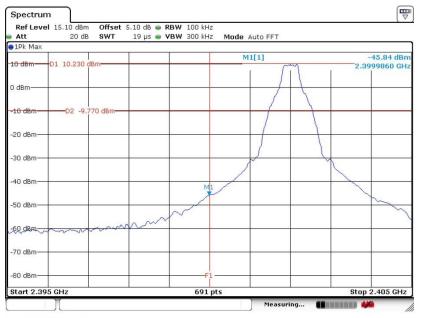
The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

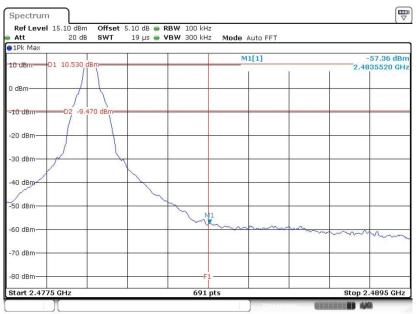
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

EUT


Spectrum Analyzer

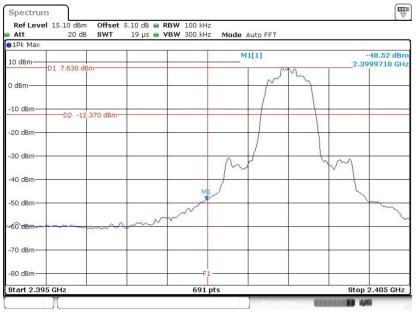
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

Low Band Edge Plot on Channel 00

Date: 26.MAY.2020 22:04:38

High Band Edge Plot on Channel 78



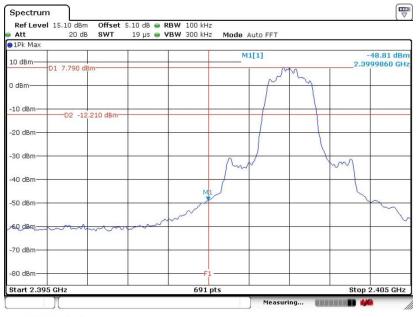
Date: 26.MAY.2020 22:15:47


<2Mbps>

Low Band Edge Plot on Channel 00

Date: 26.MAY.2020 22:22:10

High Band Edge Plot on Channel 78



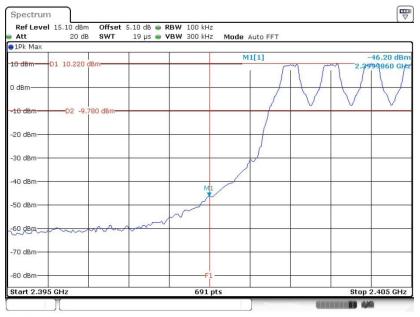
Date: 26.MAY.2020 22:30:42

<3Mbps>

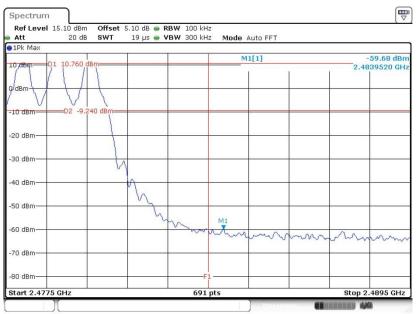
Low Band Edge Plot on Channel 00

Date: 26.MAY.2020 22:43:18

High Band Edge Plot on Channel 78


Date: 26.MAY.2020 22:53:37

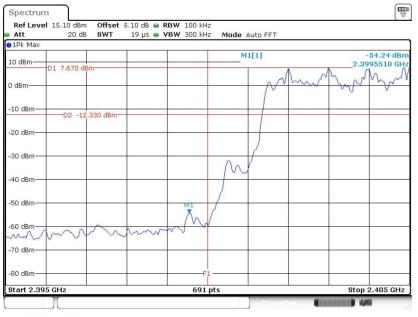
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 26.MAY.2020 22:07:13

Hopping Mode High Band Edge Plot



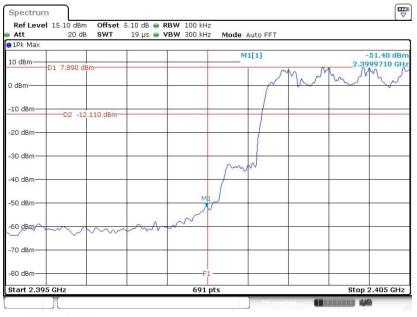
Date: 26.MAY.2020 22:16:19

<2Mbps>

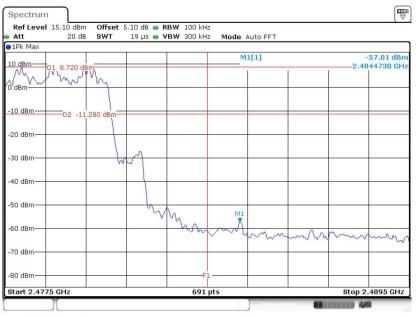
Hopping Mode Low Band Edge Plot

Date: 26.MAY.2020 22:22:45

Hopping Mode High Band Edge Plot



Date: 26.MAY.2020 22:30:59


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 26.MAY.2020 22:43:57

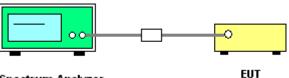
Hopping Mode High Band Edge Plot

Date: 26.MAY.2020 22:53:54

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

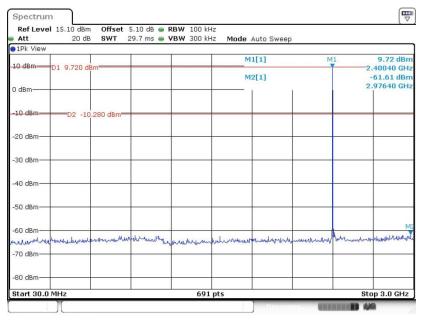

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

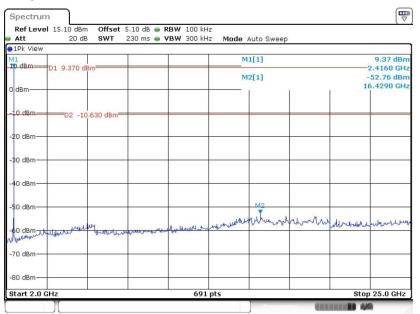
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Spectrum Analyzer

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 22:09:53

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 26.MAY.2020 22:10:23

Ref Leve	15.10 dBm 20 dB	Offset SWT	5.10 dB e				Auto Swee	n			
1Pk View						noue	Hato Shoo	P			
10 18	D1 10.500 d	Bm				M	11[1]		T MI	10.50 0	
10 0011	D1 10.000 0	Dirit .				N	2[1]		IVIT	2.43910	
D dBm				_				Υ.		2.97640	
-10 dBm	D2 -9.5	00 dBm-		-							_
-20 dBm				_							
30 dBm—				_							
40 dBm—				_							
-50 dBm				_				-			
60 dBm				-							M
hangenthere	withouthe	menner	www.uuuuu	Uhrengede	unibury	number	whethermore	ullunudally	and haven	aladrewalking	mber
70 dBm—								+	+		
80 dBm				_							
Start 30.0	MHz				691	nte				Stop 3.0 G	Hz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 22:14:04

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 15.10 d Att 20		.10 dB 👄 R 230 ms 👄 V			Auto Sweep			
1Pk View								
10 d8m D1 10.24	0 dBm			M	1[1]			10.24 dBn 2.4490 GH
				M	2[1]			53.48 dBn
dBm						l	15	5.8970 GH
-10 dBm	9.760 dBm							
20 dBm							1	
30 dBm								
40 dBm								
50 dBm			1.	٨	12			
60 dBm mul lune	Lebor handfridere	Marrie and as	also under	whenter	Windhand	name	American	maluma
70 dBm								
80 dBm								

Date: 26.MAY.2020 22:14:34

Ref Level 15.10 dBm Offs Att 20 dB SW	et 5.10 dB 👄 RBW 100 kH: 29.7 ms 👄 VBW 300 kH:		
1Pk View			
10 dBm D1 10.090 dBm		M1[1]	10.09 dBn
10 dbin D1 10.050 dbin		M2[1]	-60.48 dBm
0 dBm			1.90180 GH
-10 dBm D2 -9.910 dBn			
-10 dbm -02 -9.910 dBh	1		
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
		M2	
-60 dBm		*	a the second design
and a second sec	ware and a second and the second seco	www.www.www.www.	wither monther and many
-70 dBm			
-80 dBm			
Start 30.0 MHz	691	ats	Stop 3.0 GHz

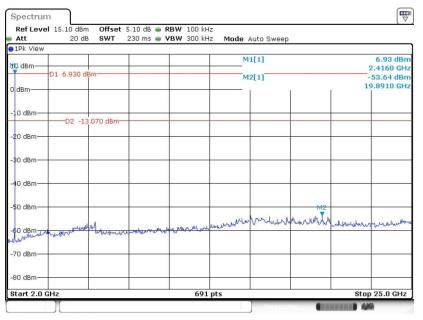
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 22:18:48

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 👄 '	VBW 300 kH	z Mode	Auto Sweep			
1Pk View									
/11 18 dBm	D1 9.540 d	200			M	1[1]			9.54 dBr 2.4830 GH
	DI 9.340 U	5111			M	2[1]			-51.99 dBi
dBm						1	ĩ	1	6.4960 GH
10 dBm	D2 -10	.460 dBm=							
20 dBm									
0 dBm									
10 dBm—									
0 dBm						M2			
				Mudanterro	under	manuel	much	and the fact of the	a helanus
0 dBm	unplant Julera. ~	m harring	- Andrew Whender	Mundametra	man			0-03	
✓ 70 dBm—									
30 dBm			+	-					
start 2.0 G	Hz			691	nts			Stor	25.0 GHz

Date: 26.MAY.2020 22:19:17


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Att	20 di	B SWT	29.7 ms 🕳 '	VBW 300 kH	z Mode	Auto Sweep			
1Pk View									
10 dBm			_		M	1[1]	M	1 2	7.47 dBn 40040 GH
	D1 7.470 d	IBm	-		M	2[1]			-61.57 dBn
) dBm								2	92050 GH
10 dBm-									
	D2 -1	2.530 dBm-							
20 dBm—			-						
-30 dBm			-			-			
-40 dBm									
-50 dBm—				1.					
									M2
60 dBm-		L KIA JI MA	menamonolis		1 Industry	an adam de	a second second and	Juddiese entrative	
	and the second of the second of the second s	Contra contra	and more that	in the state of the second	Arthorne - mar	10 Crange and	- Annahorano A	Man and a state	
70 dBm—									
80 dBm-									
-80 UBIII-									
Start 30.0) MHz			691	pts			Sto	op 3.0 GHz

Date: 26.MAY.2020 22:24:13

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 26.MAY.2020 22:24:41

Ref Lev	el 15.10 dBm 20 dB	Offset SWT	5.10 dB 👄 29.7 ms 👄			ode Auto Swee	en		
1Pk View							- P-		
10 dBm	D1 7.690 dB					M1[1]		M1	7.69 dBn 2.43910 GH
D dBm						M2[1]	ĩ	r	-59.46 dBn 2.98500 GH
-10 dBm—	D2 -12.	310 dBm-							
-20 dBm—									
-30 dBm—									
-40 dBm—									
-50 dBm—									N
-60 dBm-	hormuniterest	minihouter	hourhadely	unterto	mount	unoquerelated	how we down	Annie	wywww.
-70 dBm—									
-80 dBm—				-					_

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 22:28:17

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	15.10 dBm 20 dB	SWT	_	RBW 100		Auto Sweep			
1Pk View									
dBm					N	41[1]			8.02 dBr 2.4490 GH
	D1 8.020 dB	m			D	42[1]			-53.17 dBr
dBm						Ī	Ĩ	1	9.5250 GH
10 dBm	D2 -11.	980 dBm		_					
20 dBm—				_					
30 dBm—									
40 dBm—				_					
50 dBm—				-			M2		
60 dBm	when the week	4 months	Con of Connerse	word Auroran	in which the second	Maria	H. willing	mound	hombreve
70 dBm									
80 dBm									

Date: 26.MAY.2020 22:28:52

Ref Level 15.1 Att	10 dBm Offset 20 dB SWT	5.10 dB RB 29.7 ms VB		ode Auto Sweep		
1Pk View						
10 dBm-				M1[1]	M1	8.25 dBn 2.47780 GH;
D1 8	.250 dBm			M2[1]		-59.01 dBn 1.89320 GH
-10 dBm	D2 -11.750 dBm-					
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm				M2		
-60 dBm	un interested in	a la salada to salaa			ullin and a factor	J.L. MALLU JAMACHAN
-70 dBm		no and on the stand	andropolistation	howwww.	name and the part	Dind a low-post of the
-80 dBm						
Start 30.0 MHz			691 pts			Stop 3.0 GHz

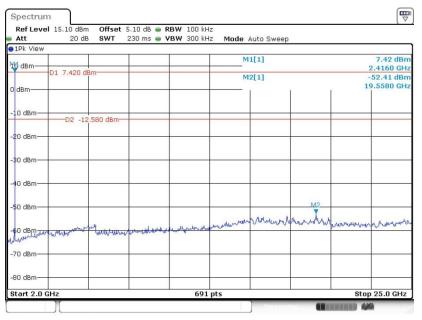
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 22:32:26

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 👄	VBW 300 kH	z Mode	Auto Sweep			
1Pk View									
dBm-					M	1[1]			7.07 dBr 2.4830 GH
T	D1 7.070 d	Bm-			M	2[1]			-53.75 dBr
0 dBm				-		I	Ĩ	1	6.4620 GH
-10 dBm—		2.930 dBm-				-			
20 dBm—		2.930 aBm-							
30 dBm—									
40 dBm—									
50 dBm—						M2			
EO dBm	- when dreed	mon	www.www.	an walling	whenter	Winds	andownedgetter	whendure	warmeld
70 dBm—									
80 dBm—									

Date: 26.MAY.2020 22:32:56


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Att 🛛	20 dB	SWT	29.7 ms 🖷 '	VBW 300 kH	z Mode	Auto Sweep			
●1Pk View									
10 dBm					M	1[1]	M	1 2	7.53 dBn .40040 GH:
	D1 7.530 d	Bm			M	2[1]			-61.39 dBn
0 dBm	-		-					2	.97210 GH
-10 dBm								-	
	D2 -12	.470 dBm-		10					
-20 dBm			-						
-30 dBm				-					
-40 dBm									<u> </u>
-50 dBm				10					
-60 dBm			-						M
Hundrahan	annen wer would	Untranton	hadronthappy	. when on working	there all hander	molenterburger	mound	human	antrabana
-70 dBm									
-80 dBm									<u> </u>
Start 30.0				691					op 3.0 GHz

Date: 26.MAY.2020 22:46:47

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 26.MAY.2020 22:47:15

20 dB SW 8.060 dBm -D2 -11.940 dB		• VBW :		M1[1] M2[1] 	M	2.4	3910 GH: 1.56 dBn
	3m			_		2.4	8.06 dBm 3910 GHz 1.56 dBm 7640 GHz
	3m			M2[1]			
-D2 -11.940 dE	Bm						
warbord	mathematical	when	U. How Hand Land	ubstitutestanteration	munoment	Underware	And warden
	z						

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 22:50:40

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	15.10 dBm 20 dB	Offset SWT	5.10 dB 👄	RBW 100 VBW 300		e Auto Swee	an		
1Pk View									
dBm-						M1[1]			8.12 dBr 2.4490 GH
C	01 8.120 dB	m				M2[1]			53.57 dBr
dBm						1	Ĩ	1	9.4910 GH
10 dBm	D2 -11.	.880 dBm-							
20 dBm							_		
30 dBm							_		
40 dBm									
50 dBm							M2		
o dBm	witherman	bastration	the star	and the second	downholm M	putrimention	upunstry	non-monorman dar	lentertaint
70 dBm									
30 dBm									

Date: 26.MAY.2020 22:51:09

Ref Level 15.10 dBm Att 20 dB	Offset 5.10 dB . I SWT 29.7 ms .		Auto Sweep	
1Pk View		in the mode	Auto Sheep	
10 dBm D1 8,440 dBm			41[1]	M1 8.44 dBn 2.47780 GH
0 dBm		N	42[1]	-57.24 dBm 1.90180 GHa
-10 dBm D2 -11.56	50 dBm			
-20 dBm		т		
-30 dBm				
-40 dBm				
-50 dBm			M2	
-60 dBm	menour furthered .	. I	Ma man dender weinen	ungent on more marked and her
-70 dBm		Preside no construction of the procession of the		
-80 dBm				
Start 30.0 MHz		691 pts		Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 26.MAY.2020 23:26:55

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	el 15.10 dBm 20 dB	SWT	5.10 dB 👄 230 ms 👄	VBW 300 ki		Auto Sweep			
1Pk View	4								
dBm-					M	1[1]			7.67 dBn 2.4830 GH
	D1 7.670 dB	m			M	2[1]			53.46 dBr
dBm—				-		L	Í	17	7.9270 GH
-10 dBm—									
	D2 -12.	330 dBm-							
20 dBm—								2	
30 dBm—									
40 dBm—									
50 dBm—				-		M			
60 dBm	mangedelike	ul Luthaline	n martine	Allentoniathipat	newsbarrallingho	mound	humann	mountain	wyman
70 dBm—				1					
80 dBm—								-	
Start 2.0	GHz		_	691	L pts			Stop	25.0 GHz

Date: 26.MAY.2020 23:27:39

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

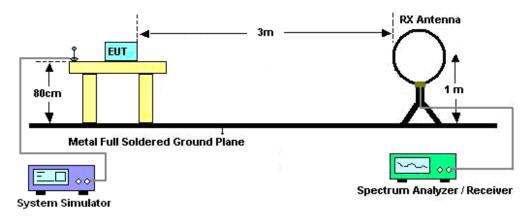
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

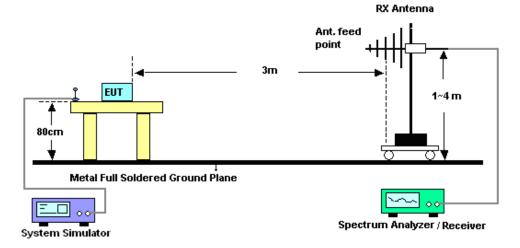
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

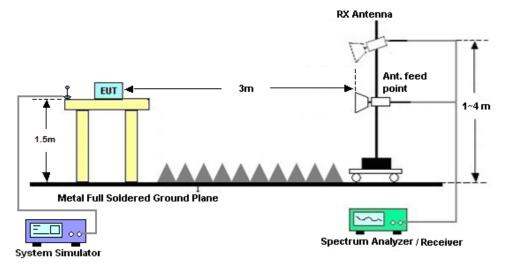
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: IHDT56ZC3

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

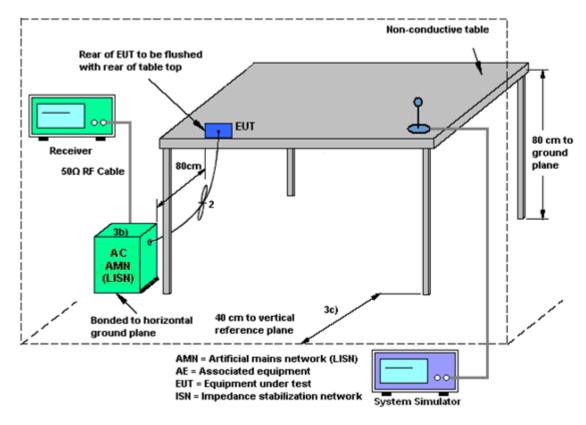
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	May 14, 2020~ May 26, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 15, 2020	May 14, 2020~ May 26, 2020	Jan. 14, 2021	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 08, 2020	May 14, 2020~ May 26, 2020	Jan. 07, 2021	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 57	3Hz~8.5GHz;M ax 30dBm	Jul. 18, 2019	May 17, 2020~ May 21, 2020	Jul. 17, 2020	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 08	10Hz-44GHz	Apr. 15, 2020	May 17, 2020~ May 21, 2020	Apr. 14, 2021	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	May 17, 2020~ May 21, 2020	Nov. 09, 2020	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	May 30, 2019	May 17, 2020~ May 21, 2020	May 29, 2020	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 27, 2020	May 17, 2020~ May 21, 2020	Apr. 26, 2021	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	May 17, 2020~ May 21, 2020	Nov. 09, 2020	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2019	May 17, 2020~ May 21, 2020	Aug. 05, 2020	Radiation (03CH06-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 08, 2020	May 17, 2020~ May 21, 2020	Jan. 07, 2021	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 16, 2019	May 17, 2020~ May 21, 2020	Aug. 15, 2020	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5G Hz	Apr. 15, 2020	May 17, 2020~ May 21, 2020	Apr. 14, 2021	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	May 17, 2020~ May 21, 2020	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	May 17, 2020~ May 21, 2020	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	May 17, 2020~ May 21, 2020	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	May 16, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	May 16, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	May 16, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	May 16, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.300

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.008

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VAB

Appendix A. Conducted Test Results

Report Number : FR051103A

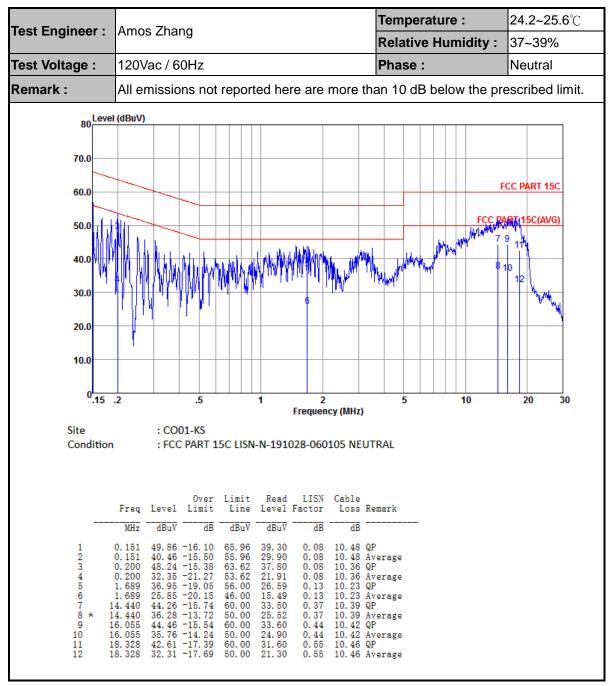
Bluetooth

Test Engineer:	Aly Cao	Temperature:	20~26	°C
Test Date:	2020/5/14~2020/5/26	Relative Humidity:	40~51	%

			<u>20d</u>	B and §	99% Occu		ULTS DATA th and Hopping	Channel Separat	ion
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (kHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.935	0.831	998.600	0.6233	Pass
DH	1Mbps	1	39	2441	0.938	0.828	1306.800	0.6252	Pass
DH	1Mbps	1	78	2480	0.938	0.828	998.600	0.6252	Pass
2DH	2Mbps	1	0	2402	1.255	1.164	1128.800	0.8365	Pass
2DH	2Mbps	1	39	2441	1.255	1.164	1289.400	0.8365	Pass
2DH	2Mbps	1	78	2480	1.250	1.164	1111.400	0.8336	Pass
3DH	3Mbps	1	0	2402	1.229	1.149	1002.900	0.8191	Pass
3DH	3Mbps	1	39	2441	1.229	1.149	1020.300	0.8191	Pass
3DH	3Mbps	1	78	2480	1.224	1.152	1002.900	0.8162	Pass

<u>TEST RESULTS DATA</u> Dwell Time						
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.8899	0.31	0.4	Pass
AFH	20	53.33	2.8899	0.15	0.4	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result					
	0	1	10.22	20.97	Pass					
DH1	39	1	10.99	20.97	Pass					
	78	1	10.83	20.97	Pass					
2DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result					
	0	1	9.45	20.97	Pass					
2DH1	39	1	10.21	20.97	Pass					
	78	1	10.28	20.97	Pass					
3DH	CH.	NTX	Peak Power	Power Limit	Test					
301	СП.		(dBm)	(dBm)	Result					
	0	1	9.82	20.97	Pass					
3DH1	39	1	10.57	20.97	Pass					
	78	1	10.53	20.97	Pass					


<u>TEST RESULTS DATA</u> Number of Hopping Frequency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	79	> 15	Pass						

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Amon Zhong	Temperature :	24.2~25.6 ℃
Test Engineer :	Amos Zhang	Relative Humidity :	37~39%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Remark :	All emissions not reported here are more th	an 10 dB below the pre	escribed limit.
80	(dBuV)		
70.0			
60.0		F	CC PART 15C
50.0		FCC PA	RT 15C(AVG)
40.02	s the second state of the	1- 1-	4 16
30.0			- WAR
20.0			¥1
10.0			
0.15	2 .5 1 2	5 10	20 30
	Frequency (MHz)		
Site Condition	: CO01-KS : FCC PART 15C LISN-L-191028-060105 LINE		
	Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Re	mark	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 1\\ 14\\ 15\\ 1\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	verage verage verage verage verage verage verage	

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission

2.4GHz	2400~2483.5MHz	
--------	----------------	--

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2384.1	54.33	-19.67	74	48.51	32.1	7.71	33.99	142	65	Ρ	Н
		2384.1	29.54	-24.46	54	-	-	-	-	-	-	А	Н
DT	*	2402	94.61	-	-	88.65	32.2	7.74	33.98	142	65	Ρ	Н
BT CH00	*	2402	69.82	-	-	-	-	-	-	-	-	А	Н
2402MHz		2371.62	54.11	-19.89	74	48.3	32.1	7.71	34	282	0	Ρ	V
240210112		2371.62	29.32	-24.68	54	-	-	-	-	-	-	А	V
	*	2402	99.09	-	-	93.13	32.2	7.74	33.98	282	0	Р	V
	*	2402	74.30	-	-	-	-	-	-	-	-	А	V
		2484.1	54.2	-19.8	74	48.26	31.99	7.89	33.94	180	69	Ρ	Н
		2484.1	29.41	-24.59	54	-	-	-	-	-	-	А	Н
57	*	2480	90.81	-	-	84.87	31.99	7.89	33.94	180	69	Р	н
BT CH 78	*	2480	66.02	-	-	-	-	-	-	-	-	А	Н
Сп 76 2480MHz		2496.16	54.3	-19.7	74	48.36	31.94	7.93	33.93	325	360	Ρ	V
240010112		2496.16	29.51	-24.49	54	-	-	-	-	-	-	А	V
	*	2480	95.88	-	-	89.94	31.99	7.89	33.94	325	360	Ρ	V
	*	2480	71.09	-	-	-	-	-	-	-	-	А	V
Remark		o other spurio results are F		st Peak	and Averag	je limit lin	е.		·				

BT (Harmonic @ 3m)													
ВТ	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	
вт		4806	41.56	-32.44	74	58.05	35.16	10.93	62.58	100	360	P	H
CH 00 2402MHz		4806	40.13	-33.87	74	56.62	35.16	10.93	62.58	100	360	Р	V
		4884	41.36	-32.64	74	57.35	35.17	11.04	62.2	100	360	Р	н
BT		7320	43.34	-30.66	74	55.13	36.87	13.48	62.14	100	360	Р	н
CH 39 2441MHz		4884	42.55	-31.45	74	58.54	35.17	11.04	62.2	100	360	Р	V
244 111172		7320	42.38	-31.62	74	54.17	36.87	13.48	62.14	100	360	Р	V
		4962	41.73	-32.27	74	57.43	35.19	11.14	62.03	100	360	Р	н
BT		7440	40.91	-33.09	74	52.54	36.89	13.59	62.11	100	360	Р	н
CH 78 2480MHz		4962	41.01	-32.99	74	56.71	35.19	11.14	62.03	100	360	Р	V
240011112		7440	41.4	-32.6	74	53.03	36.89	13.59	62.11	100	360	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	е.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT (LF)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		38.73	21.43	-18.57	40	33.38	20.02	1.11	33.08	-	-	Ρ	н
		62.01	21.12	-18.88	40	40.22	12.2	1.72	33.02	-	-	Р	Н
		215.27	29.27	-14.23	43.5	43.65	16.18	2.31	32.87	100	0	Р	Н
		345.25	28.31	-17.69	46	37.74	20.48	2.88	32.79	-	-	Ρ	Н
0.4011-		715.79	26.81	-19.19	46	28	27.23	4.11	32.53	-	-	Ρ	Н
2.4GHz BT		890.39	28.89	-17.11	46	27.3	29.28	4.53	32.22	-	-	Ρ	Н
LF		30	26.74	-13.26	40	35.73	23	1.11	33.1	100	0	Р	V
		96.93	28.78	-14.72	43.5	44.38	15.74	1.64	32.98	-	-	Р	V
		127	20.98	-22.52	43.5	35.47	16.75	1.81	33.05	-	-	Ρ	V
		213.33	26.78	-16.72	43.5	41.31	16.04	2.3	32.87	-	-	Ρ	V
		629.46	25.78	-20.22	46	28.24	26.35	3.87	32.68	-	-	Ρ	V
		890.39	29.28	-16.72	46	27.69	29.28	4.53	32.22	-	-	Ρ	V
Remark		o other spurio I results are F		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

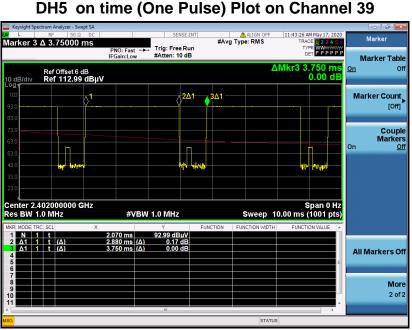
2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

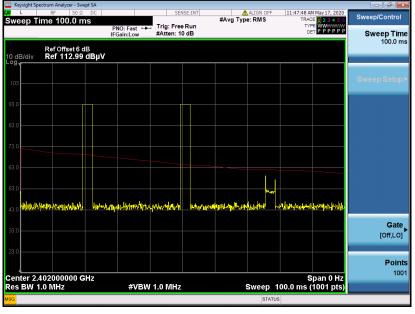
1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)


For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)


Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.