

Report No. : FR051232A

FCC RADIO TEST REPORT

FCC ID	:	IHDT56ZB2
Equipment	:	Mobile Cellular Phone
Brand Name	:	Motorola
Model Name	:	XT2071-4
Applicant	:	Motorola Mobility, LLC
		222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States
Manufacturer	:	Motorola Mobility, LLC
		222 W Merchandise Mart Plaza, Suite
		1800, Chicago, IL 60654, United States
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on May 12, 2020 and testing was started from May 20, 2020 and completed on Jun. 25, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Page Number	: 1 of 61
Issued Date	: Jul. 30, 2020
Report Version	: 01

Table of Contents

His	tory o	f this test report	.3
Sur		of Test Result	
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Product Specification of Equipment Under Test	.7
	1.3	Modification of EUT	.7
	1.4	Testing Location	.8
	1.5	Applicable Standards	.8
2	Test	Configuration of Equipment Under Test	.9
	2.1	Carrier Frequency Channel	.9
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	12
	2.5	EUT Operation Test Setup	12
	2.6	Measurement Results Explanation Example	
3	Test I	Result	13
	3.1	Number of Channel Measurement	13
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	34
	3.6	Conducted Band Edges Measurement	35
	3.7	Conducted Spurious Emission Measurement	42
	3.8	Radiated Band Edges and Spurious Emission Measurement	52
	3.9	AC Conducted Emission Measurement	56
		Antenna Requirements	
4	List o	f Measuring Equipment	59
5	Unce	rtainty of Evaluation	61
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	

Appendix D. Radiated Spurious Emission Plots

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR051232A	01	Initial issue of report	Jul. 30, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 6.77 dB at 902.030 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 17.55 dB at 0.503 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Tina Chuang

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular P	hone		
Brand Name	Motorola			
Model Name	XT2071-4			
FCC ID	IHDT56ZB2			
	Conducted :	IMEI 1: 351648110011153 IMEI 2: 351648110011161		
IMEI Code	Conduction :	IMEI 1: 351648110009132 IMEI 2: 351648110009140		
	Radiation :	IMEI 1: 351648110009058 IMEI 2: 351648110009066		
	CDMA/EV-DO/G	SM/EGPRS/WCDMA/HSPA/LTE/5GNR/		
	GNSS/NFC			
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40			
	WLAN 11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
HW Version	DVT2			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer.

	Accessory List					
	Brand Name : Motorola					
AC Adapter 1 (US)	Model Name : SC-51					
,	Manufacturer : Chenyang					
	Brand Name : Motorola					
AC Adapter 1 (EU)	Model Name : SC-52					
	Manufacturer : Chenyang					
	Brand Name : Motorola					
AC Adapter 1 (UK)	Model Name : SC-53UK					
	Manufacturer : Chenyang					
	Brand Name : Motorola					
AC Adapter 1 (AR)	Model Name : SC-56					
	Manufacturer : Chenyang					
	Brand Name : Motorola					
AC Adapter 1 (AU)	Model Name : SC-55AU					
	Manufacturer : Chenyang					
	Brand Name : Motorola					
AC Adapter 2 (US)	Model Name : SC-51					
	Manufacturer : Acbel					
	Brand Name : Motorola					
AC Adapter 2 (EU)	Model Name : SC-52					
(10) (10) (10)	Manufacturer : Acbel					
	Brand Name : Motorola					
AC Adapter 2 (AR)	Model Name : SC-56					
	Manufacturer : Acbel					
	Brand Name : Motorola					
AC Adapter 3 (IN)	Model Name : SC-54					
	Manufacturer : Salom					
	Brand Name : Motorola					
Battery 1	Model Name : LS30					
Battery	Manufacturer: ATL					
	Brand Name : Motorola					
Battery 2	Model Name : LS40					
	Manufacturer : ATL					
	Brand Name : Motorola					
Standard 3.5mm Headset 1	Model Name : SH38C37773					
	Manufacturer : Lianyun					
	Brand Name : Motorola					
Standard 3.5mm Headset 2	Model Name : SH38C44959					
	Manufacturer : Lianyun					
	Brand Name : Motorola					
USB-C to 3.5mm headset adaptor 1	Model Name : SC18C27844					
	Brand Name : Motorola					
USB-C to 3.5mm headset adaptor 2	Model Name : SC18C27845					
	Brand Name : Motorola					
LISB Cable 1						
USB Cable 1	Model Name : SC18C24367					
	Manufacturer : Saibao					
USB Cable 2	Brand Name : Motorola					
USB Cable 2	Model Name : SC18C24368					
	Manufacturer : Luxshare					

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz			
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
	Bluetooth BR(1Mbps) : 15.74 dBm (0.0375 W)		
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 15.35 dBm (0.0343 W)		
	Bluetooth EDR (3Mbps) : 15.73 dBm (0.0374 W)		
	Bluetooth BR(1Mbps) : 0.892 MHz		
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.224 MHz		
	Bluetooth EDR (3Mbps) : 1.203 MHz		
Antenna Type / Gain	Slot Antenna Type with gain -2.0 dBi		
	Bluetooth BR (1Mbps) : GFSK		
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK		
	Bluetooth EDR (3Mbps) : 8-DPSK		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton TH05-HY	Site No. CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH15-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

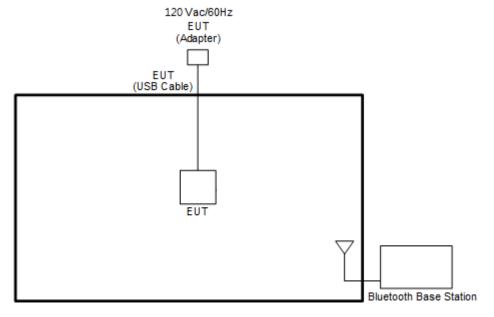
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

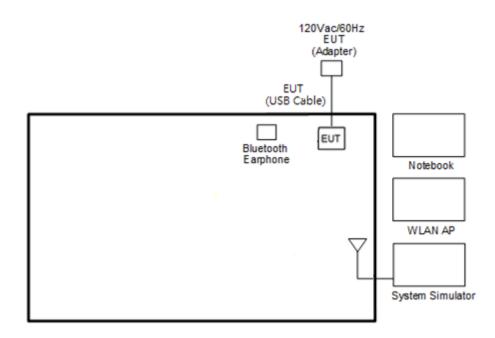
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z and Accessory (Earphone or Adapter). The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases					
	Data Rate / Modulation					
т	est Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps		
		GFSK	π /4-DQPSK	8-DPSK		
~	a n du ata d	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
	onducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
Ie	est Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
	Bluetooth EDR 3Mbps 8-DPSK					
Radiated Mode 1: CH00_2402 MHz						
Test Cases			Mode 2: CH39_2441 MHz			
		Mode 3: CH78_2480 MHz				
	AC	Mode 1: CSM 850 Idle + WI	AN (2.4GHz) Link + Bluetooth	Link + USB Cable 1		
Co	onducted		Adapter 1 (US)) + SIM 2 for O			
E	mission	(Charging nom AC7				
Remark:						
1. For radiated test cases, the worst mode data rate 3Mbps was reported only since the highest RF						
	output power in the preliminary tests. The conducted spurious emissions and conducted band edge					
	measurement for other data rates were not worse than 3Mbps, and no other significantly					
	frequencies found in conducted spurious emission.					
2		ated Test Cases, the tests were performed with AC Adepter 4 (US) and USD Cable 4				


The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, the tests were performed with AC Adapter 1 (US) and USB Cable 1.



2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

TEL : 886-3-327-3456	Page Number	: 11 of 61
FAX : 886-3-328-4978	Issued Date	: Jul. 30, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility ""QRCT V4.0.00156.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

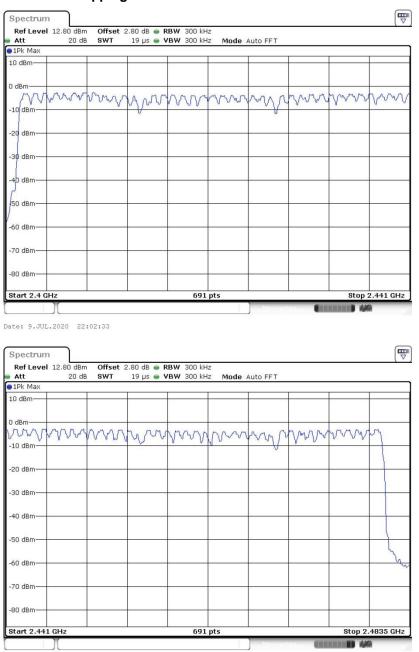
3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer

EUT

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

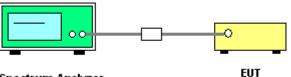
Number of Hopping Channel Plot on Channel 00 - 78

Date: 9.JUL.2020 22:02:55

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

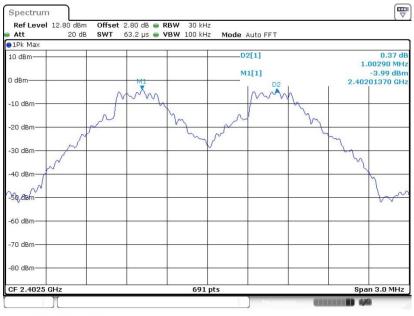
See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

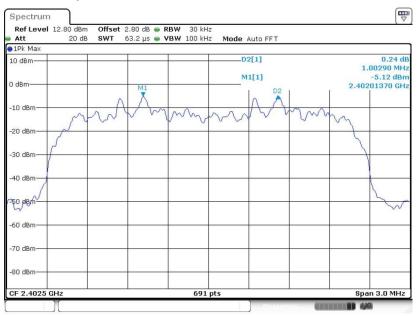
<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 9.JUL.2020 21:05:37

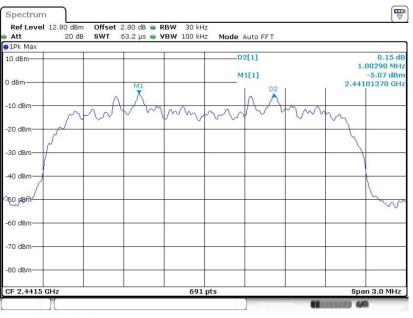
Channel Separation Plot on Channel 39 - 40

Date: 9.JUL.2020 21:17:02



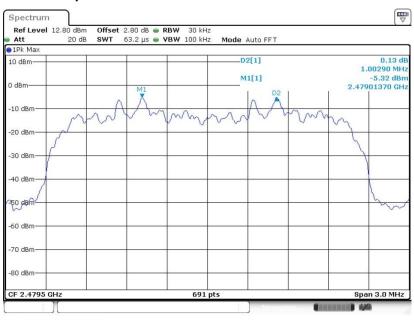
Channel Separation Plot on Channel 77 - 78

Date: 9.JUL.2020 21:22:01


<2Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 9.JUL.2020 21:44:51

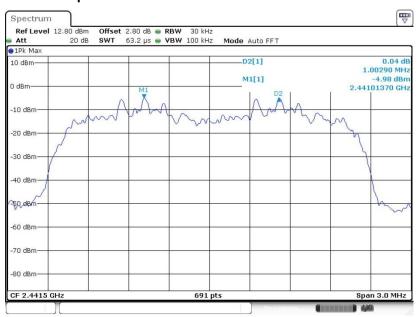


Channel Separation Plot on Channel 39 - 40

Date: 9.JUL.2020 21:35:44

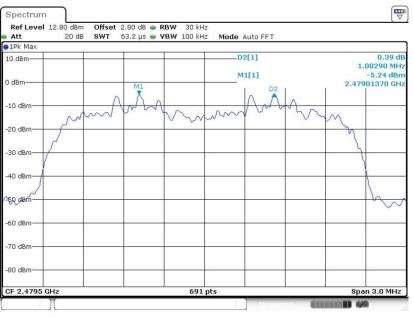
Channel Separation Plot on Channel 77 - 78

Date: 9.JUL.2020 21:30:55


<3Mbps>

Spectrum Ref Level 12.80 dBm Offset 2.80 dB ■ RBW 30 kHz SWT 63.2 μs ■ VBW 100 kHz Att 20 dB Mode Auto FFT ⊖1Pk Max 0.24 dB 1.00290 MHz -5.11 dBm 2.40201370 GHz 10 dBm M1[1] 0 dBm X -10 dBm 100 nn -20 dBm -30 dBm -40 dBm -50 dBr -60 dBn -70 dBm -80 dBm CF 2.4025 GH 691 pts Span 3.0 MHz

Channel Separation Plot on Channel 00 - 01


Date: 9.JUL.2020 21:51:44

Channel Separation Plot on Channel 39 - 40

Date: 9.JUL.2020 21:56:04

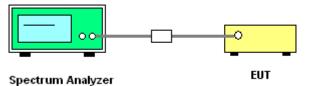
Channel Separation Plot on Channel 77 - 78

Date: 9.JUL.2020 22:01:46

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

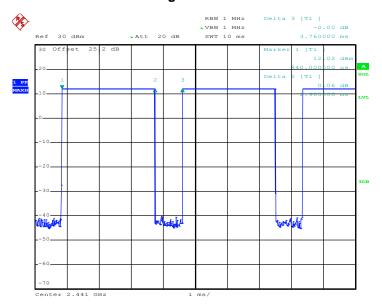

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL : 886-3-327-3456	Page Number	: 21 of 61
FAX : 886-3-328-4978	Issued Date	: Jul. 30, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

Package Transfer Time Plot

Date: 20.MAY.2020 01:28:35

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

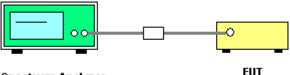
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

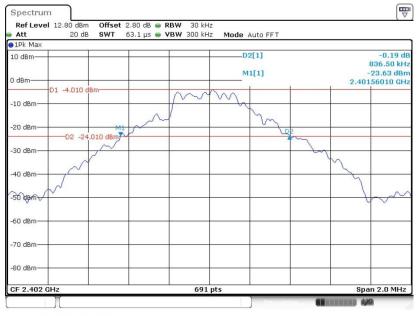
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

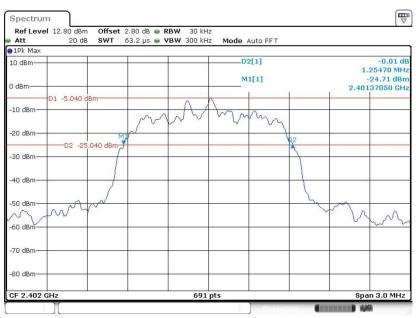
<1Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 9.JUL.2020 21:09:10

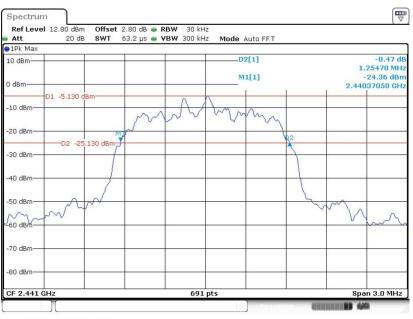
20 dB Bandwidth Plot on Channel 39

Date: 9.JUL.2020 21:15:38



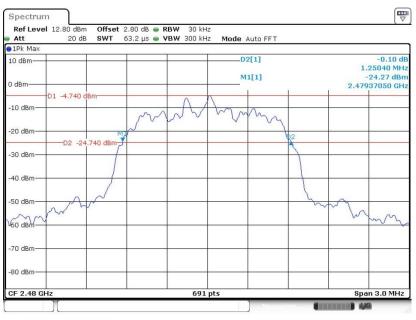
20 dB Bandwidth Plot on Channel 78

Date: 9.JUL.2020 21:20:40


<2Mbps>

20 dB Bandwidth Plot on Channel 00

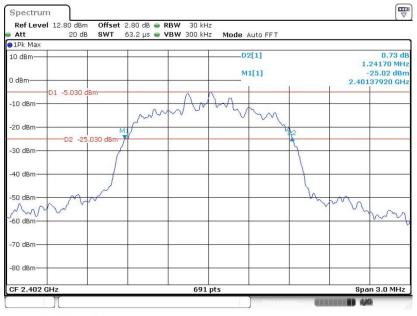
Date: 9.JUL.2020 21:43:33



20 dB Bandwidth Plot on Channel 39

Date: 9.JUL.2020 21:34:17

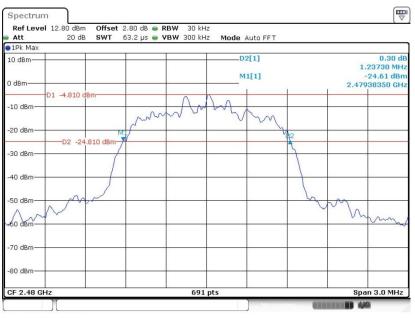
20 dB Bandwidth Plot on Channel 78



Date: 9.JUL.2020 21:27:28

<3Mbps>

20 dB Bandwidth Plot on Channel 00

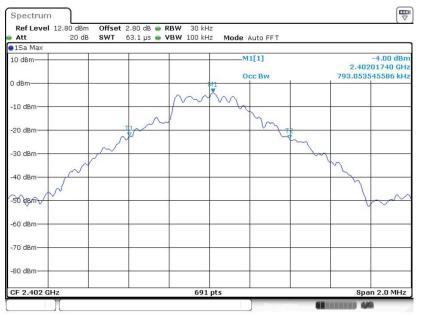

Date: 9.JUL.2020 21:50:17

20 dB Bandwidth Plot on Channel 39

Date: 9.JUL.2020 21:54:46

20 dB Bandwidth Plot on Channel 78

Date: 9.JUL.2020 22:00:23



3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>


99% Occupied Bandwidth Plot on Channel 00

Date: 9.JUL.2020 21:09:44

TEL : 886-3-327-3456	Page Number	: 29 of 61
FAX : 886-3-328-4978	Issued Date	: Jul. 30, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

99% Occupied Bandwidth Plot on Channel 39

Date: 9.JUL.2020 21:14:40

99% Occupied Bandwidth Plot on Channel 78

Date: 9.JUL.2020 21:19:23

<2Mbps>

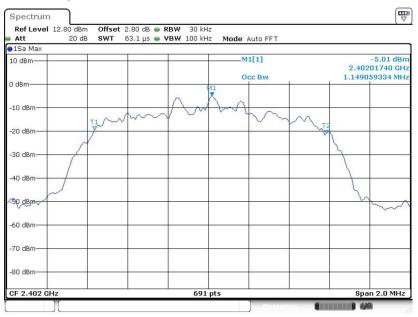
Spectrum Ref Level 12.80 dBm Offset 2.80 dB ● RBW 30 kHz SWT 63.1 μs ● VBW 100 kHz Att 20 dB Mode Auto FFT ⊖1Sa Max M1[1] -5.03 dBn 10 dBm-2.40201740 GHz 1.160636758 MHz Occ Bw 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -90 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GH 691 pts Span 2.0 MHz

99% Occupied Bandwidth Plot on Channel 00

Date: 9.JUL.2020 21:40:36

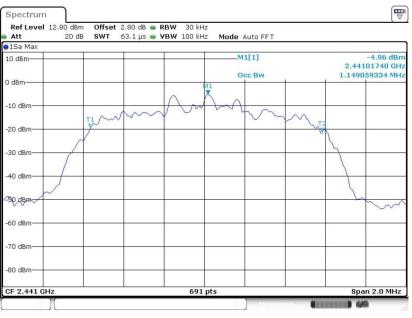
99% Occupied Bandwidth Plot on Channel 39

Date: 9.JUL.2020 21:38:12



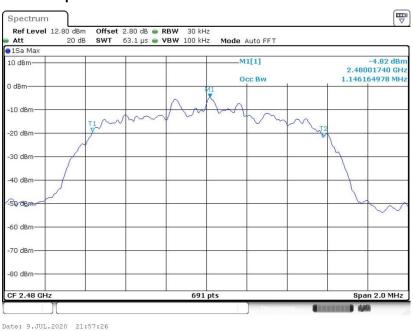
99% Occupied Bandwidth Plot on Channel 78

Date: 9.JUL.2020 21:25:16


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 9.JUL.2020 21:46:54



99% Occupied Bandwidth Plot on Channel 39

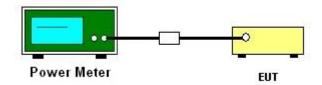
Date: 9.JUL.2020 21:52:30

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

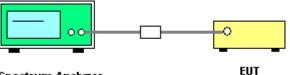
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

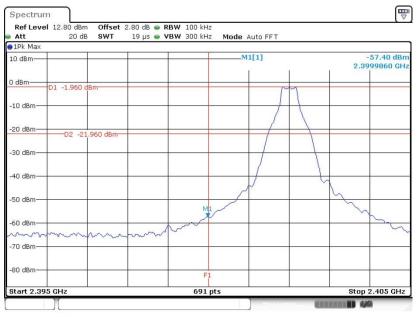

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

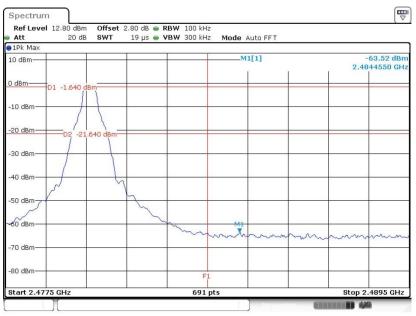
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

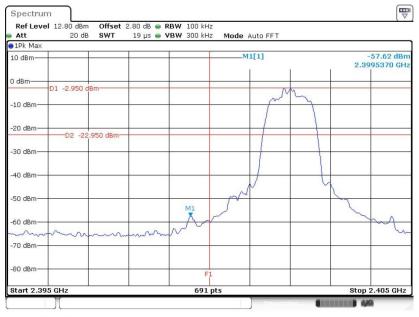
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

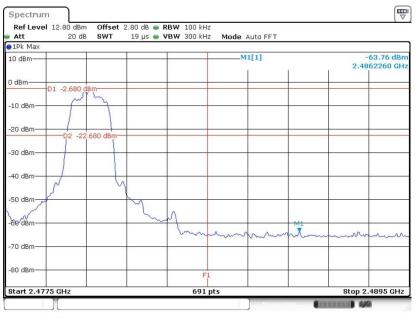
Low Band Edge Plot on Channel 00

Date: 9.JUL.2020 21:03:03

High Band Edge Plot on Channel 78



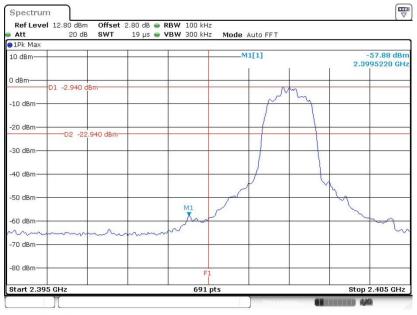
Date: 9.JUL.2020 21:19:43


<2Mbps>

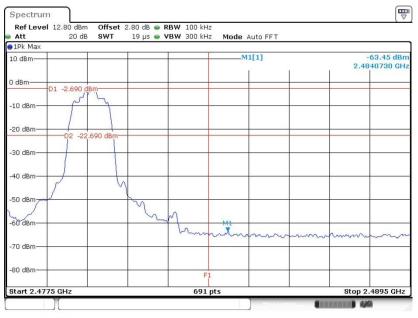
Low Band Edge Plot on Channel 00

Date: 9.JUL.2020 21:42:29

High Band Edge Plot on Channel 78



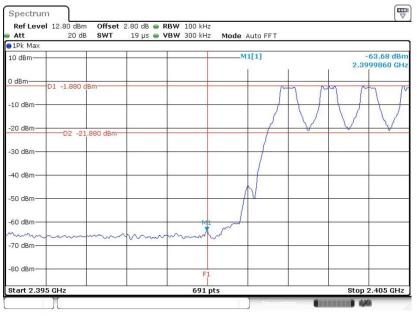
Date: 9.JUL.2020 21:25:35


<3Mbps>

Low Band Edge Plot on Channel 00

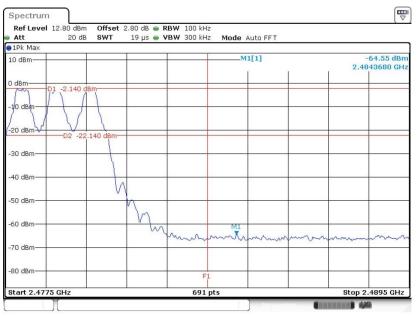
Date: 9.JUL.2020 21:48:50

High Band Edge Plot on Channel 78



Date: 9.JUL.2020 21:56:52

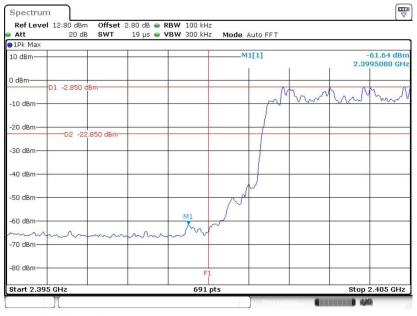
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 9.JUL.2020 21:05:54

Hopping Mode High Band Edge Plot



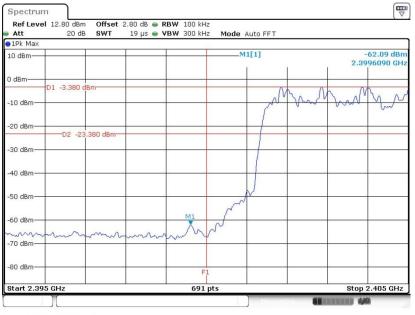
Date: 9.JUL.2020 21:17:24

<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 9.JUL.2020 21:45:12

Hopping Mode High Band Edge Plot



Date: 9.JUL.2020 21:31:29

<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 9.JUL.2020 22:03:20

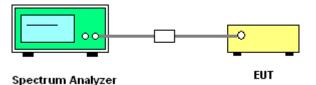
Hopping Mode High Band Edge Plot

Date: 9.JUL.2020 22:03:38

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

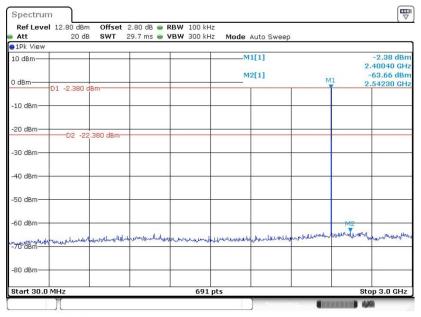

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

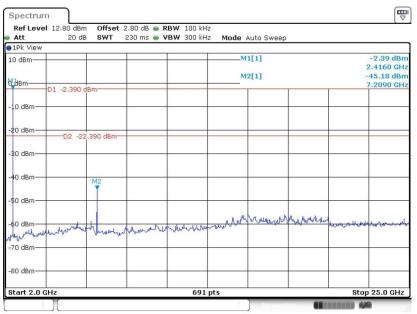
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 9.JUL.2020 21:10:16

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 9.JUL.2020 21:10:48

Att	20 dB SWT 29.7	' ms 👄 VBW 300 kH	z Mode Auto Sweep		
1Pk View 10 dBm			M1[1]		-2.71 dBn
) dBm	2.710 dBm	17	M2[1]	M1	2.43910 GH -63.31 dBn 2.96780 GH
10 dBm					
20 dBm	02 -22.710 dBm				
30 dBm					
40 dBm					
50 dBm					
60 dBm				NR. alle Der Max des	alana a catal
70 dBm	maderingheneret	men and man mille	altreatentitier	Total and a second	- upper hand
80 dBm					
Start 30.0 MHz		691	pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 9.JUL.2020 21:13:30

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 👄	VBW 300 k	Hz Mode	Auto Sweep	8		
1Pk View									
10 dBm					N	41[1]			-2.21 dBn
					N	12[1]			2.4490 GH -45.75 dBr
ddBm	D1 -2.210 d	Des		N A		iz[z]			7.3090 GH
	DI -2.210 u	DIII							
-10 dBm—						-			
-20 dBm	D2 -22	.210 dBm-		-					
30 dBm—									
-40 dBm		M2		25 CL					
-50 dBm		-							
-60 dBm			. 91	h	MAN	witherspecial	uter when the we	marcallet	- producedor
he Murique	Munimumar	hyberty	M. Marken M	mun	Acres .			A REAL PROPERTY OF THE	
-70 dBm									-
-80 dBm				-					
Start 2.0 (1 pts				25.0 GHz

Date: 9.JUL.2020 21:14:01

Att	20 dB SWT	29.7 ms 🖷 VBN	V 300 kHz Mode	e Auto Sweep		
1Pk View				M1[1]		-2.14 dBn 2.48210 GH
) dBm	2.140 dBm			M2[1]	M1	-63.39 dBn 2.50360 GH:
10 dBm						
20 dBm	D2 -22.140 dBm-					
30 dBm						2
40 dBm						
50 dBm						
60 dBm					142	
70 dBm	nunununununulu	uprettalionan	alarman block and	habertoninerstand	which have water	municipalities

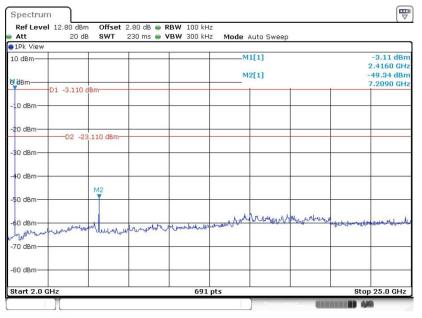
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 9.JUL.2020 21:17:59

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	12.80 dBm 20 dB		_	RBW 100 kH		Auto Sweep			
1Pk View				0.00		10			
10 dBm					N	11[1]			-2.13 dBr
						12[1]			2.4830 GH -50.56 dBr
dBm-		_		_		12[1]			7.4420 GH
	D1 -2.130 d	Bm							
10 dBm-						-			-
20 dBm				_					
	D2 -22	.130 dBm-							-
30 dBm									
do ubili									
40 dBm-									-
		M2							
SO dBm									
		1.5		when the start	. IA wA	Manut	Mrs & Patha		1.1.1
60 dBm	1 menteration	Anna	medmin	a have non the	harmon the	A Of Ways	a ad a read	- marcheling	and all and a start of the start
Muhan	W	allow of	10						
70 dBm				-					+
80 dBm —			-						
Start 2.0 G	Hz			691	pts			Sto	p 25.0 GHz

Date: 9.JUL.2020 21:18:30


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Att 1Pk View	20 di	B SWT	29.7 ms 👄	1011 300 K	na moue	Auto Sweep			
10 dBm-					M	1[1]		-3.24	
) dBm	-D1 -3.240	dBm			M	2[1]	M1	-63.44 2.49500	
-10 dBm—	DI OLIO					-			
20 dBm—	D2 -2:	3.240 dBm-							
30 dBm—				-					
-40 dBm—									
50 dBm—									
60 dBm—								M2	
70 dBm	hoursehad	www.huhrow	difference	Meduralitorium	Repetition	Munimula	webb-month	whitewarder planted	daran

Date: 9.JUL.2020 21:41:22

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 9.JUL.2020 21:42:10

Att	20 dB	SWT	29.7 ms 👄	VBW 300 kH	z Mode /	Auto Sweep			
1Pk View 10 dBm	·				M1	[1]			-3.46 dBm
D dBm					MS	2[1]		M1	2.43910 GHz -63.63 dBm 2.52940 GHz
-10 dBm—	D1 -3.460 c	18m							
20 dBm—		.460 dBm-							
30 dBm—	02 -20								
-40 dBm—									
50 dBm—									
-60 dBm—								M2	Unin Mahandrawan
70 dBm-	welder produces of	he welderheiter	a tole and the	hallowhand	havenderener	alle will be and	howwalk	- and the	ur - Maloudrumme
-80 dBm—									
Start 30.0	0 MHz			691	nts				Stop 3.0 GHz

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 9.JUL.2020 21:39:02

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 🔵	VBW 300 kH	lz Mode	Auto Sweep			
1Pk View									
10 dBm					M	11[1]			-4.30 dBr
					M	2[1]			2.4490 GH -52.80 dBr
QidBm-			-	11.2					7.3090 GH
T	D1 -4.300 d	Bm	-						
-10 dBm				-		1			
-20 dBm									
	D2 -24	.300 dBm-				-			
-30 dBm					-	-			
-40 dBm									
-50 dBm		M2	_	-		-			
-60 dBm-				aumount	row	mound	mulaberlike	Annapolitican	and the second starts
Ja Mulu	1 house on the week	where	Manna	un and the	1) - frame				a substantia a subst
-70 dBm-						1			
-80 dBm									
Start 2.0 G	Hz			691	pts			Stop	25.0 GHz

Date: 9.JUL.2020 21:39:50

Att	20 dB SWT	29.7 ms 🕳 V	BW 300 KHZ	Mode Auto S	weep		
1Pk View				M1[1]			-3.01 dBn 2.48210 GH
0 dBm-D1	-3.010 dBm			M2[1]		M1	-63.66 dBn 2.46490 GH
-10 dBm							
-20 dBm	-D2 -23.010 dBm						
30 dBm			10 J				
40 dBm							
50 dBm						_	
60 dBm						MIL	
70 dBm	munimulai	mlohmullout	nurudhumm	with mean invited	noutranthorne	t-1900 and	work worknow
80 dBm							
-80 dBm	Iz						Stop 3.0 G

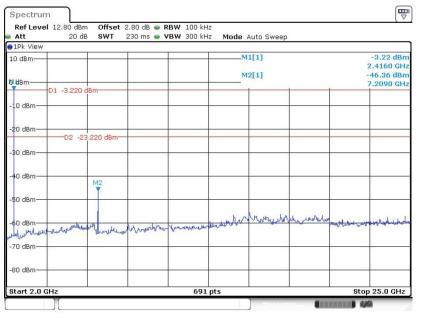
CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 9.JUL.2020 21:24:05

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	l 12.80 dBn 20 dB		230 ms 👄	VBW 300 kH	z Mode	Auto Sweep	S.		
1Pk View									
10 dBm					M	1[1]			-3.44 dBn
					N	2[1]			2.4830 GH
01dBm	and the second		-	19 25		12[1]			7.4420 GH
1	D1 -3,440 (dBm							
-10 dBm—				1					-
-20 dBm									
	D2 -23	3.440 dBm-							
-30 dBm—									
-40 dBm				<u>212</u>					
-50 dBm		M2							
-60 dBm				murrentrophene	and Ard	Manuell	mightune	America	-
ny portunies	Annahore	hilkorry	antumury	- markan approx					Contraction of the second
-70 dBm									
-80 dBm									
Start 2.0 (GHz			691	pts			Sto	p 25.0 GHz

Date: 9.JUL.2020 21:24:33


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

9.7 ms 🖷 VBW 300 kHz 🛛 Mode Auto Sweep	20 dB SWT 29.7 ms 🖷 VBW 300 kH
	w
M1[1] -3.20 dBn 2.40040 GH:	
M2[1] -63.41 dBn	
M1 2.53370 GH	01 0 000 40 -
	D1 -3.200 dBm
	D2 -23,200 dBm
	D2 -23.200 dBm
M2	
and a second a	and the share and we have a start and a start of the star
691 pts Stop	.0 MHz 691

Date: 9.JUL.2020 21:47:55

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 9.JUL.2020 21:48:25

Att 20 c	ib SWT 29.7	ms 🕳 VBW 300 k	Hz Mode Auto Sweep		
1Pk View					
10 dBm			M1[1]		-3.23 dBn 2.43910 GH;
			M2[1]		-63.63 dBn
D dBm-01 -3.230	dBm			M1	2.65830 GH
-10 dBm					
10 0011					
-20 dBm					
D2 -2	23.230 dBm				
-30 dBm	-	1.0			
-40 dBm					
-50 dBm					
60 dBm					M2
and the state of the second second	un wunderuter	when when have a strand	any house of the second and the second se	wellow when the we	week understand
70 dBm					
00 40					
-80 dBm					
Start 30.0 MHz		69	1 pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 9.JUL.2020 21:53:12

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB SWT 2	30 ms 👄 VBW 300	kHz Mode Auto Swe	зер	
1Pk View				10	
10 dBm			M1[1]		-2.94 dBr 2.4490 GH
			M2[1]		-53.34 dBr
Malam-			inz[1]		7.3090 GH
D1 -2	2.940 dBm				
-10 dBm			-	-	
-20 dBm					
	02 -22.940 dBm				
30 dBm					
-40 dBm		13 12			
-50 dBm-	M2		_		
	Ţ				
-60 dBm			And Mary Mary	Mithing for the more	-
My appresentation	or man hundred	mon have marked and	and the second	o o o	Contract Designation
-70 dBm					
-80 dBm					
Start 2.0 GHz		6	91 pts		Stop 25.0 GHz
oture 210 une		0.	, i pts		otop zoto art

Date: 9.JUL.2020 21:53:43

Att	20 c	IB SWT	29.7 ms 🕳 🕯	VBW 300 kH	Iz Mode	Auto Sweep	í		
1Pk View 10 dBm					M	1[1]			-2.91 dBr 2.47780 GH
0 dBm	D1 -2.910	dBm		3	M	2[1]	1	M1	-63.06 dBr 2.63250 GH
-10 dBm									
-20 dBm	D2 -2	2.910 dBm-							
30 dBm—									
-40 dBm				3					
-50 dBm									
-60 dBm						5.0.		Arabas	M2
70 dBm	onter mathematic hours	indolocial	n ware all a	huderstatelist	mutur	and and a second s	for her was	0000	and the manufactured
80 dBm—									
Start 30.0	MHz			691	nts				Stop 3.0 GHz

CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 9.JUL.2020 21:58:04

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB SWT	230 ms 🥃 VI	BW 300 kHz	Mode /	Auto Sweep			
1Pk View								
10 dBm					1[1]			-3.81 dBr 2.4830 GH
91dBm				M	2[1]			-49.25 dBr 7.4420 GH
	-3.810 dBm						-	7.4420 GH
-10 dBm		-						-
-20 dBm								
	-D2 -23.810 dBm						-	-
-30 dBm								
-40 dBm							-	
-50 dBm	M2							
d0 d0m	uton which			. is Anthy	Mury Mit	when hall my me		Like hered
1 munter	Whoman Tabaha	marduentrue	hunder	where a c			- William -	trans the rank of
-70 dBm								
-80 dBm								
Start 2.0 GHz			691 p	ts			Sto	p 25.0 GHz

Date: 9.JUL.2020 21:58:34

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

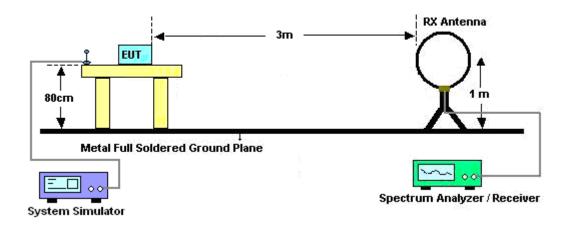
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

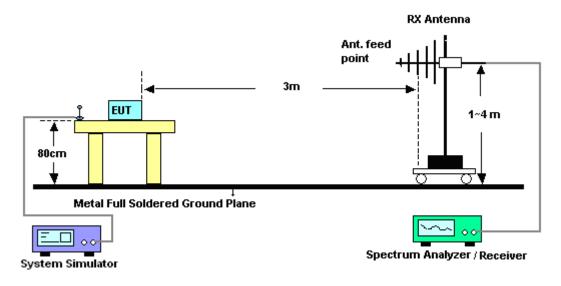
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures

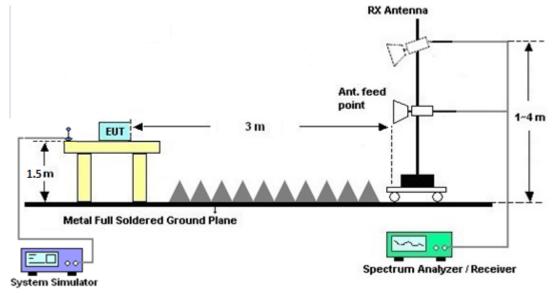

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

TEL : 886-3-327-3456	Page Number	: 54 of 61
FAX : 886-3-328-4978	Issued Date	: Jul. 30, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

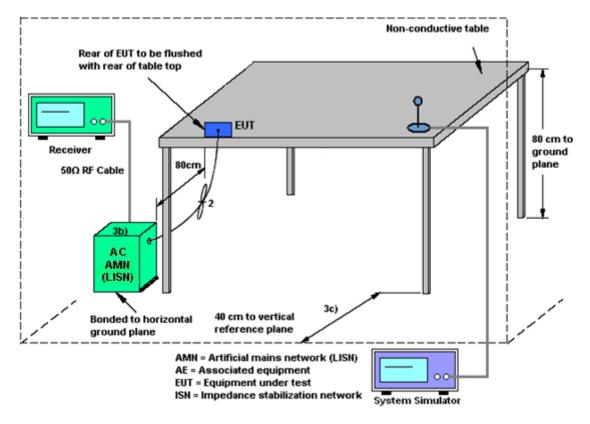
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL : 886-3-327-3456	Page Number	: 57 of 61
FAX : 886-3-328-4978	Issued Date	: Jul. 30, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	HTC-1	2	N/A	Mar. 02, 2020	May 20, 2020~ Jun. 25, 2020	Mar. 01, 2021	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2019	May 20, 2020~ Jun. 25, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2019	May 20, 2020~ Jun. 25, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Jul. 15, 2019	May 20, 2020~ Jun. 25, 2020	Jul. 14, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Dec. 30, 2019	May 20, 2020~ Jun. 25, 2020	Dec. 29, 2020	Conducted (TH05-HY)
BT Base Station	Rohde & Schwarz	CBT	101136	BT 3.0	Oct. 27, 2019	May 20, 2020~ Jun. 25, 2020	Oct. 26, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Aug. 22, 2019	May 20, 2020~ Jun. 25, 2020	Aug. 21, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 23, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	May 23, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	May 23, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	May 23, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 23, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	May 23, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	May 23, 2020	Jan. 01, 2021	Conduction (CO05-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 09, 2020	May 30, 2020~ Jun. 18, 2020	Jan. 08, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&0 0800N1D01N- 06	41912&05	30MHz to 1GHz	Feb. 09, 2020	May 30, 2020~ Jun. 18, 2020	Feb. 08, 2021	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 27, 2019	May 30, 2020~ Jun. 18, 2020	Dec. 26, 2020	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-162 0	1-18GHz	Oct. 28, 2019	May 30, 2020~ Jun. 18, 2020	Oct. 27, 2020	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 10, 2019	May 30, 2020~ Jun. 18, 2020	Dec. 09, 2020	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0055006	1GHz~18GHz	May 07, 2020	May 30, 2020~ Jun. 18, 2020	May 06, 2021	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 23, 2019	May 30, 2020~ Jun. 18, 2020	Aug. 22, 2020	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 13, 2019	May 30, 2020~ Jun. 18, 2020	Dec. 12, 2020	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY541300 85	20MHz~8.4GHz	Nov. 01, 2019	May 30, 2020~ Jun. 18, 2020	Oct. 31, 2020	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	May 04, 2020	May 30, 2020~ Jun. 18, 2020	May 03, 2021	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	May 30, 2020~ Jun. 18, 2020	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	May 30, 2020~ Jun. 18, 2020	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k 5)	RK-00045 1	N/A	N/A	May 30, 2020~ Jun. 18, 2020	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 14, 2020	May 30, 2020~ Jun. 18, 2020	Apr. 13, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4 PE	30M-18G	Apr. 14, 2020	May 30, 2020~ Jun. 18, 2020	Apr. 13, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY37710/ 4	30M-18G	Apr. 17, 2020	May 30, 2020~ Jun. 18, 2020	Apr. 16, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 25, 2020	May 30, 2020~ Jun. 18, 2020	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 25, 2020	May 30, 2020~ Jun. 18, 2020	Feb. 24, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN4	1.53G Low Pass	Jul. 04, 2019	May 30, 2020~ Jun. 18, 2020	Jul. 03, 2020	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN4	3GHz High Pass Filter	Sep. 17, 2019	May 30, 2020~ Jun. 18, 2020	Sep. 16, 2020	Radiation (03CH15-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	0.0

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.0
--	-----

Report Number : FR051232A

Appendix A. Test Result of Conducted Test Items

Test Engineer:Kai Liao/Ryan/Shiming LiuTemperature:21.4~24.1%Test Date:2020/5/20~2020/6/25Relative Humidity:51~57.8%												
	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation											
	Hopping Channel											

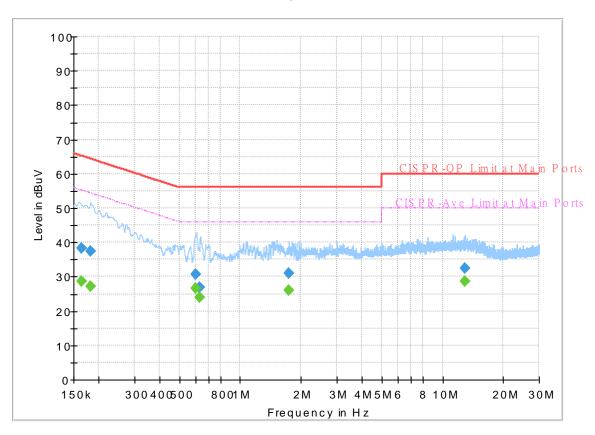
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Separation Measurement (MHz)	Separation Measurement Limit (MHz)	Pass/Fail
ЭН	1Mbps	1	0	2402	0.892	0.816	0.999	0.5943	Pass
DH	1Mbps	1	39	2441	0.889	0.822	0.999	0.5924	Pass
DH	1Mbps	1	78	2480	0.889	0.822	1.003	0.5924	Pass
2DH	2Mbps	1	0	2402	1.220	1.143	1.033	0.8133	Pass
2DH	2Mbps	1	39	2441	1.224	1.143	1.003	0.8162	Pass
2DH	2Mbps	1	78	2480	1.224	1.152	1.185	0.8162	Pass
3DH	3Mbps	1	0	2402	1.198	1.143	0.990	0.7989	Pass
3DH	3Mbps	1	39	2441	1.198	1.120	1.003	0.7989	Pass
3DH	3Mbps	1	78	2480	1.203	1.126	1.029	0.8017	Pass

	<u>TEST RESULTS DATA</u> Dwell Time								
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail			
Nomal	79	106.67	2.90	0.31	0.4	Pass			
AFH	20	53.33	2.90	0.15	0.4	Pass			

<u>TEST RESULTS DATA</u> Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result				
	0	1	15.12	30.00	Pass				
DH1	39	1	15.64	30.00	Pass				
Γ	78	1	15.74	30.00	Pass				
	0	1	14.46	20.97	Pass				
2DH1	39	1	15.15	20.97	Pass				
	78	1	15.35	20.97	Pass				
	0	1	15.11	20.97	Pass				
3DH1	39	1	15.63	20.97	Pass				
Γ	78	1	15.73	20.97	Pass				

				Ave	T RESULTS DATA rage Power Table Reporting Only)	
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)		
	0	1	15.04	5.21		
DH1	39	1	15.56	5.21		
Ī	78	1	15.67	5.21		
	0	1	12.19	5.12		
2DH1	39	1	12.47	5.12		
Ī	78	1	12.72	5.12		
	0	1	12.20	5.16		
3DH1	39	1	12.59	5.16		
Ī	78	1	12.67	5.16		

<u>TEST RESULTS DATA</u> Number of Hopping Frequency								
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail					
79	20	> 15	Pass					

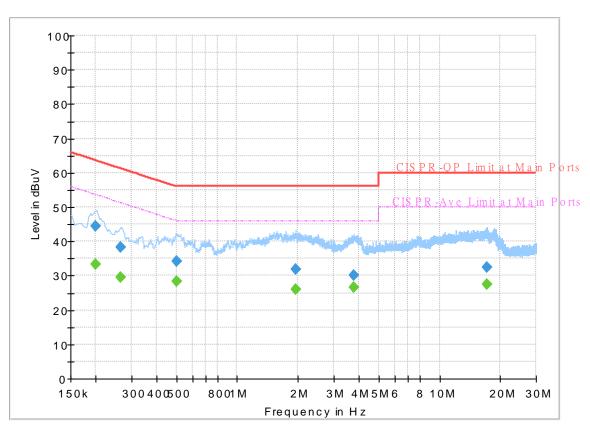


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Lee	Temperature :	21~24 ℃
rest Engineer.	Tom Lee	Relative Humidity :	42~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 051232 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.163500		28.55	55.28	26.73	L1	OFF	19.6
0.163500	38.16		65.28	27.12	L1	OFF	19.6
0.181500		27.26	54.42	27.16	L1	OFF	19.6
0.181500	37.38		64.42	27.04	L1	OFF	19.6
0.605220		26.69	46.00	19.31	L1	OFF	19.6
0.605220	30.68		56.00	25.32	L1	OFF	19.6
0.631500		24.12	46.00	21.88	L1	OFF	19.6
0.631500	26.81		56.00	29.19	L1	OFF	19.6
1.747500		25.90	46.00	20.10	L1	OFF	19.6
1.747500	30.89		56.00	25.11	L1	OFF	19.6
12.852330		28.54	50.00	21.46	L1	OFF	20.2
12.852330	32.55		60.00	27.45	L1	OFF	20.2

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 051232 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.199950		33.44	53.61	20.17	Ν	OFF	19.6
0.199950	44.46		63.61	19.15	Ν	OFF	19.6
0.265380		29.50	51.26	21.76	Ν	OFF	19.6
0.265380	38.18		61.26	23.08	Ν	OFF	19.6
0.502620		28.45	46.00	17.55	Ν	OFF	19.6
0.502620	34.28		56.00	21.72	Ν	OFF	19.6
1.943880		26.05	46.00	19.95	Ν	OFF	19.6
1.943880	31.87		56.00	24.13	Ν	OFF	19.6
3.790500		26.66	46.00	19.34	Ν	OFF	19.7
3.790500	30.24		56.00	25.76	Ν	OFF	19.7
17.215620		27.36	50.00	22.64	Ν	OFF	20.3
17.215620	32.33		60.00	27.67	Ν	OFF	20.3