

Report No. : FR9D0635-01H

FCC RADIO TEST REPORT

FCC ID :	IHDT56YJ2
Equipment :	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT2061-3
Applicant	Motorola Mobility, LLC
	222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States
Manufacturer	Motorola Mobility, LLC
	222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States
Standard	FCC Part 15 Subpart C §15.209

The product was received on Jan. 16, 2020 and testing was started from Mar. 04, 2020 and completed on Mar. 04, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History	y of this test report	
Summ	y of this test report ary of Test Result	4
1. Gen	neral Description	5
1.1	Product Feature of Equipment Under Test	5
1.2	Product Specification of Equipment Under Test	6
1.3	Modification of EUT	6
1.4	Testing Location	6
1.5	Applicable Standards	6
2. Test	t Configuration of Equipment Under Test	7
2.1	Descriptions of Test Mode	
2.2	Connection Diagram of Test System	7
2.3	······································	
2.4	EUT Operation Test Setup	7
3. Test	t Results	8
3.1	Radiated Emissions Measurement	
3.2	Antenna Requirements	
	of Measuring Equipment	
5. Unc	ertainty of Evaluation	
Appen	ndix A. Test Results of Radiated Test Items	

A1. Test Result of Field Strength of Fundamental Emissions

A2. Results of Radiated Emissions (9 kHz~30MHz)

A3. Results of Radiated Emissions (30MHz~1GHz)

History of this test report

Report No.	Version	Description	Issued Date
FR9D0635-01H	01	Initial issue of report	Mar. 20, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	- 15.207 AC Power Line Conducted Emissions		Not Required	-
	15.215(c)	20dB Spectrum Bandwidth	Not Required	-
- 2.1049		99% OBW Spectrum Bandwidth	Not Required	-
		Field Strength of Fundamental Emissions	Pass	Max level 37.81 dBµV/m at 0.140 MHz
3.1	15.209	15.209 Radiated Spurious Emissions	Pass	Under limit 7.05 dB at 41.640MHz
3.2	15.203	Antenna Requirements	Pass	-

Remark:

1. Not required means after assessing, test items are not necessary to carry out.

 This is a variant report which can be referred Product Equality Declaration. All the test cases were performed on original report which can be referred to Sporton Report Number FR9D0635H. Based on the original report, only worst case was verified.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Yvonne Cheng

1. General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	Mobile Cellular Phone		
Brand Name	Motorola		
Model Name	XT2061-3		
FCC ID	IHDT56YJ2		
IMEI Code	Radiation: IMEI : 359124100005433		
EUT supports Radios application	CDMA/EV-DO/GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/ GNSS/NFC/WPC WLAN 11b/g/n HT20		
HW Version	DVT2		
EUT Stage	Identical Prototype		

Remark:

1. The above EUT's information was declared by manufacturer.

2. All the tests were performed with Adapter 1 and USB Cable 1.

Accessory List				
	Brand Name :	Motorola		
AC Adapter 1	Model Name :	SC-51 (SA18C30116)		
	Manufacturer :	Chenyang		
	Brand Name :	Motorola		
AC Adapter 2	Model Name :	SC-51 (SA18C62985)		
	Manufacturer :	Acbel		
Battery	Brand Name :	ATL		
	Model Name :	LW50		
	Brand Name :	Motorola		
USB Cable 1	Model Name :	SC18C24367		
	Manufacturer :	Saibao		
	Brand Name :	Motorola		
USB Cable 2	Model Name :	SC18C24368		
	Manufacturer :	Luxshare		

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency 100~300kHZ		
Antenna Type	flex pattern antenna	

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory	
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.	
Test Site NO.	03CH11-HY	
Test Engineer Fu Chen, Cookie Ku		
Temperature	20.2~21.6 ℃	
Relative Humidity	22.7~23.9%	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW0007

1.5 Applicable Standards

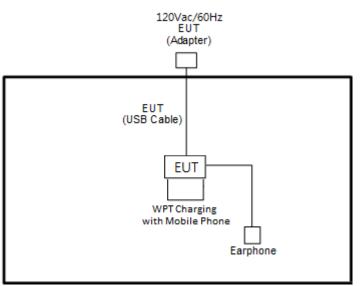
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.209
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations.


The following table is a list of the test modes shown in this test report.

Test Items		
Field Strength of Fundamental Emissions	Radiated Emissions 9kHz~30MHz	
Radiated Emissions 30MHz~1GHz		

Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.

2.2 Connection Diagram of Test System

<WPT Tx Mode>

2.3 Table for Supporting Units

	ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
	1.	Mobile Phone	Moto	moto burton	N/A	N/A	N/A
ſ	2.	Earphone	Moto	NASH38C16618	N/A	Unshielded, 1.0 m	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

3. Test Results

3.1 Radiated Emissions Measurement

3.1.1 Limit

The field strength of any emissions which appear band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.1.2 Measuring Instruments

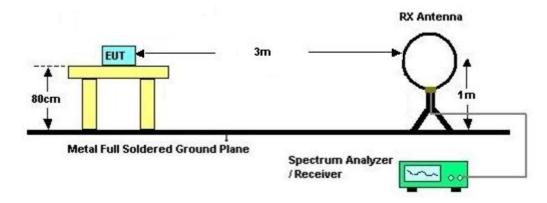
See list of measuring instruments of this test report.

3.1.3 Measuring Instrument Setting

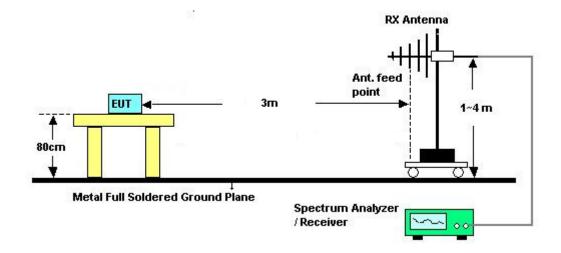
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.1.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.1.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.1.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix A.

3.2 Antenna Requirements

3.2.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.2.2 Antenna Anti-Replacement Construction

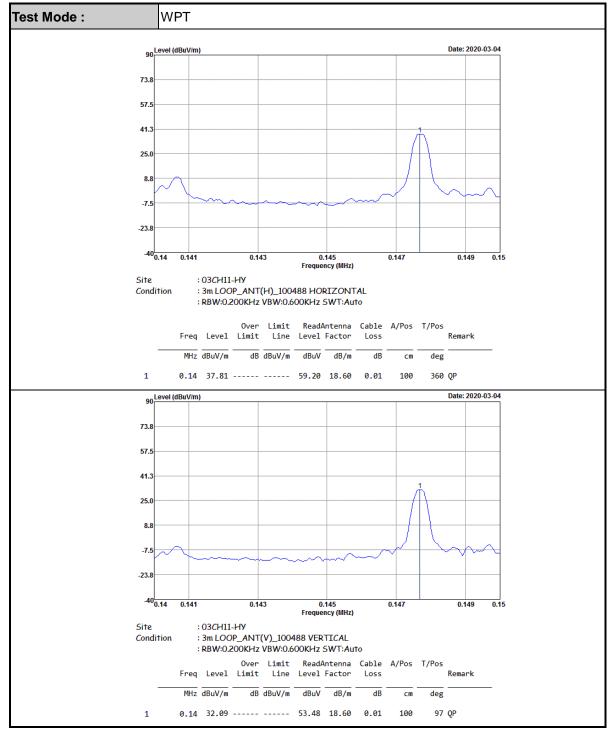
An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics Calibration Date		Test Date	Due Date	Remark
Software	Audix	E3 6.2009-8-24	RK-00105 3	N/A	N/A	Mar. 04, 2020	N/A	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz Dec. 03, 2019 M		Mar. 04, 2020	Dec. 02, 2020	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 12, 2019	Mar. 04, 2020	Oct. 11, 2020	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 09, 2020	Mar. 04, 2020	Jan. 08, 2021	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Mar. 04, 2020	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Mar. 04, 2020	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Mar. 04, 2020	N/A	Radiation (03CH11-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY554201 70	20MHz~8.4GHz	Mar. 08, 2019	Mar. 04, 2020	Mar. 07, 2020	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz~44GHz	Oct. 28, 2019	Mar. 04, 2020	Oct. 27, 2020	Radiation (03CH11-HY)
Filter	Wainwright	WHK20/1000 C7/40SS	SN2	20M High Pass	Sep. 15, 2019	Mar. 04, 2020	Sep. 14, 2020	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz-30MHz	Mar. 13, 2019	Mar. 04, 2020	Mar. 12, 2020	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	30M-18G	Mar. 13, 2019	Mar. 04, 2020	Mar. 12, 2020	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 13, 2019	Mar. 04, 2020	Mar. 12, 2020	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTN-303B	TP140325	N/A	Nov. 07, 2019	Mar. 04, 2020	Nov. 06, 2020	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTN-303B	TP161237	N/A	Oct. 25, 2019	Mar. 04, 2020	Oct. 24, 2020	Radiation (03CH11-HY)

5. Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)


Measuring Uncertainty for a Level of Confidence	3.12
of 95% (U = 2Uc(y))	3.12

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Appendix A. Test Results of Radiated Test Items

A1. Test Result of Field Strength of Fundamental Emissions

Test Mode : WPT Tx			Polariz	ation :	Hoi	Horizontal			
	90 Level (dBuV/r	n)						Date: 2020	-03-04
	90								
71	1.3								
52	2.5								
21	3.8							LE 200 L INNI	
								15.209 LIMIT	LINE
15	5.0 7			8					
4	3.8				9				10
-22	2.5								
	*								
-41									
	60 <mark>0.009 3.</mark>	5. 7.	9. 11.		5. 17. ⁻ cy (MHz)	19. 21.	23. 25	. 27.	29. 30
_									
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.01925	-4.98	-46.9	41.92	55.88	19.13	0.01	-	-	Average
0.06252	-22.58	-54.26	31.68	38.44	18.97	0.01	-	-	Average
0.09378	-29.48	-57.64	28.16	31.85	18.66	0.01	-	-	QP
0.14064	-30.58	-55.22	24.64	30.81	18.6	0.01	-	-	Average
0.14768	-2.51	-26.73	24.22	58.88	18.6	0.01	-	-	Average
0.15	-2.87	-26.95	24.08	58.52	18.6	0.01	-	-	Average
1.279	3.35	-22.12	25.47	24.74	18.6	0.01	100	0	QP
13.56	3.97	-25.53	29.5	23.25	20.58	0.14	-	-	QP
17.053	-3.03	-32.53	29.5	15.95	20.86	0.16	-	-	QP
29.08	-2.27	-31.77	29.5	16.25	21.28	0.2	-	-	QP

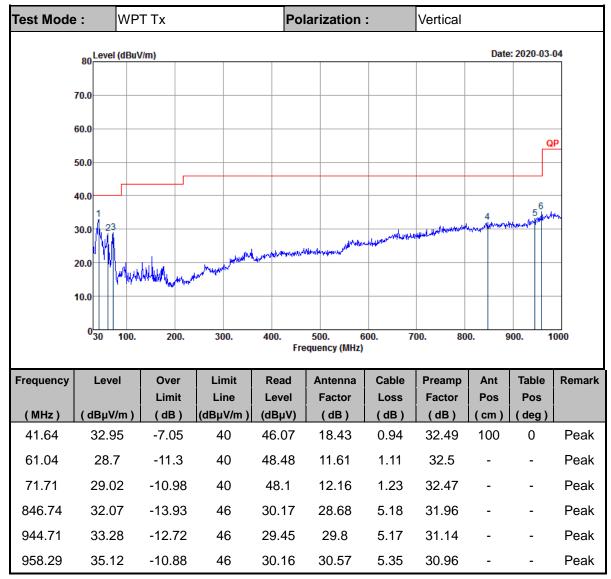
A2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode : WPT Tx				Polariz	ation :	Vert	Vertical			
	90 Level (dBuV/n			Date: 2020)-03-04					
	1.3									
	3.8							15.209 LIMI	TLINE	
	3.85	7		8	9			10		
	2.5									
	-60 _{0.009} 3.	5. 7.	9. 11.	13. 1 Frequen	5. 17. 1 cy (MHz)	19. 21.	23. 25	. 27.	29. 30	
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark	
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)		
0.01925	-17.08	-59	41.92	43.78	19.13	0.01	- (ciii)	- (ucg)	Average	
0.06648	-33.14	-64.29	31.15	27.91	18.94	0.01	-	-	Average	
0.09378	-43.51	-71.67	28.16	17.82	18.66	0.01	-	-	QP	
0.14068	-43.7	-68.34	24.64	17.69	18.6	0.01	-	-	Average	
0.14764	-7.8	-32.02	24.22	53.59	18.6	0.01	-	-	Average	
0.15	-8.15	-32.23	24.08	53.24	18.6	0.01	-	-	Average	
6.145	2.99	-26.51	29.5	23.43	19.45	0.11	100	0	QP	
13.56	10.11	-19.39	29.5	29.39	20.58	0.14	-	-	QP	
16.414	-2.24	-31.74	29.5	16.79	20.81	0.16	-	-	QP	
26.065	-2.24	-31.74	29.5	16.35	21.22	0.19	-	-	QP	

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Test Mode	e: W	WPT Tx			larization	Horizontal				
	80 Level (dE	BuV/m)						Date	e: 2020-03-0	04
	70.0									
	60.0									
	50.0								Q	P
	40.0									_
	30.0		4			. Anter Mark	fortgaar die the stand of the s	5 Mar 10 10	margaret While	**
	2 20.0	Malla	when	homewan	eren alers and being	H-Backing in the second second				_
	10.0	water way in the	<u>.</u>							_
	030 10	0. 200.	300.	400.			700. 80	0. 9	000. 1	000
				Fr	equency (MHz)					
requency	Level (dBµV/m	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remar
(MHz) 30.97	21.06) (dB) -18.94	<mark>(dBμV/m)</mark> 40	(dBµV) 28.69	(dB) 23.86	(dB) 0.93	(dB) 32.42	(cm) -	(deg) -	Peak
61.04	24.78	-15.22	40	44.56	11.61	1.11	32.5	-	-	Peak
94.02	21.11	-22.39	43.5	36.94	15.13	1.44	32.4	-	-	Peak
341.37	29.27	-16.73	46	39.12	19.65	2.59	32.09	-	-	Peak
870.02	32.06	-13.94	46	29.76	29.07	5.09	31.86	-	-	Peak
959.26	34.47	-11.53	46	29.42	30.64	5.36	30.95	100	0	Peak

A3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

------THE END---